Articles | Volume 15, issue 9
https://doi.org/10.5194/amt-15-2923-2022
https://doi.org/10.5194/amt-15-2923-2022
Research article
 | 
11 May 2022
Research article |  | 11 May 2022

Infrasound measurement system for real-time in situ tornado measurements

Brandon C. White, Brian R. Elbing, and Imraan A. Faruque

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Instruments and Platforms
Toward quantifying turbulent vertical airflow and sensible heat flux in tall forest canopies using fiber-optic distributed temperature sensing
Mohammad Abdoli, Karl Lapo, Johann Schneider, Johannes Olesch, and Christoph K. Thomas
Atmos. Meas. Tech., 16, 809–824, https://doi.org/10.5194/amt-16-809-2023,https://doi.org/10.5194/amt-16-809-2023, 2023
Short summary
A fiber-optic distributed temperature sensor for continuous in situ profiling up to 2 km beneath constant-altitude scientific balloons
J. Douglas Goetz, Lars E. Kalnajs, Terry Deshler, Sean M. Davis, Martina Bramberger, and M. Joan Alexander
Atmos. Meas. Tech., 16, 791–807, https://doi.org/10.5194/amt-16-791-2023,https://doi.org/10.5194/amt-16-791-2023, 2023
Short summary
New Absolute Cavity Pyrgeometer equation by application of Kirchhoff's law and adding a convection term
Bruce W. Forgan, Julian Gröbner, and Ibrahim Reda
Atmos. Meas. Tech., 16, 727–743, https://doi.org/10.5194/amt-16-727-2023,https://doi.org/10.5194/amt-16-727-2023, 2023
Short summary
The DataHawk2 uncrewed aircraft system for atmospheric research
Jonathan Hamilton, Gijs de Boer, Abhiram Doddi, and Dale A. Lawrence
Atmos. Meas. Tech., 15, 6789–6806, https://doi.org/10.5194/amt-15-6789-2022,https://doi.org/10.5194/amt-15-6789-2022, 2022
Short summary
The measurement of mean wind, variances, and covariances from an instrumented mobile car in a rural environment
Stefan J. Miller and Mark Gordon
Atmos. Meas. Tech., 15, 6563–6584, https://doi.org/10.5194/amt-15-6563-2022,https://doi.org/10.5194/amt-15-6563-2022, 2022
Short summary

Cited articles

Abdullah, A. J.: The musical sound emitted by a tornado, Mon. Weather Rev., 94, 213–220, https://doi.org/10.1175/1520-0493(1966)094<0213:TMSEBA>2.3.CO;2, 1966. a
Ashley, W. S.: Spatial and temporal analysis of tornado fatalities in the United States: 1880–2005, Weather Forecast., 22, 1214–1228, https://doi.org/10.1175/2007WAF2007004.1, 2007. a
Bedard, A. J.: Low-frequency atmospheric acoustic energy associated with vortices produced by thunderstorms, Mon. Weather Rev., 133, 241–263, https://doi.org/10.1175/MWR-2851.1, 2005. a, b, c, d, e
Bedard, A. J., Bartram, B. W., Entwistle, B., Golden, J., Hodanish, S., Jones, R. M., Nishiyama, R. T., Keane, A. N., Mooney, L., Nicholls, M., Szoke, E. J., Thaler, E., and Welsh, D. C.: Overview of the ISNET data set and conclusions and recommendations from a March 2004 workshop to review ISNET data, in: 22nd Conference on Severe Local Storms, 4 October 2004​​​​​​​, Hyannis, MA, USA, American Meteorological Society, https://ams.confex.com/ams/pdfpapers/81666.pdf (last access: 26 May 2021), 2004a. a, b
Bedard, A. J., Bartram, B. W., Keane, A. N., Welsh, D. C., and Nishiyama, R. T.: The infrasound network (ISNET): Background, design details, and display capabilities as an 88D adjunct tornado detection tool, in: 22nd Conference on Severe Local Storms, 4 October 2004, Hyannis, MA, USA, American Meteorological Society, https://ams.confex.com/ams/pdfpapers/81656.pdf (last access: 26 May 2021), 2004b. a, b
Download
Short summary
Tornadic storms have been hypothesized to emit sound at frequencies below human hearing which animals and certain microphones can detect. This study covers the design, fabrication, and deployment of a specialized microphone that can be carried by first responders and storm chasers. The study also presents real-time processing methods, analyzes several recorded severe weather events including a tornado, and introduces a real-time web interface to allow for live monitoring of the mobile sensor.