Articles | Volume 15, issue 24
https://doi.org/10.5194/amt-15-7395-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-7395-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of a low-cost dryer for a low-cost optical particle counter
Miriam Chacón-Mateos
CORRESPONDING AUTHOR
Department of Flue Gas Cleaning and Air Quality Control, University of Stuttgart, 70569 Stuttgart, Germany
Bernd Laquai
Department of Flue Gas Cleaning and Air Quality Control, University of Stuttgart, 70569 Stuttgart, Germany
Ulrich Vogt
Department of Flue Gas Cleaning and Air Quality Control, University of Stuttgart, 70569 Stuttgart, Germany
Cosima Stubenrauch
Institute of Physical Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
Related authors
Miriam Chacón-Mateos, Héctor García-Salamero, Bernd Laquai, and Ulrich Vogt
Atmos. Meas. Tech., 18, 4061–4085, https://doi.org/10.5194/amt-18-4061-2025, https://doi.org/10.5194/amt-18-4061-2025, 2025
Short summary
Short summary
This study evaluates PM2.5 and NO2 sensors for their use in health studies. Sensors were calibrated using data from reference instruments, and regression and machine learning models were evaluated, identifying opportunities and limitations in model transferability in both indoor and outdoor environments and showcasing the importance of integrating metadata such as activity logs and diffusive tubes to improve data validation and interpretation during deployment in the houses of the participants.
Miriam Chacón-Mateos, Héctor García-Salamero, Bernd Laquai, and Ulrich Vogt
Atmos. Meas. Tech., 18, 4061–4085, https://doi.org/10.5194/amt-18-4061-2025, https://doi.org/10.5194/amt-18-4061-2025, 2025
Short summary
Short summary
This study evaluates PM2.5 and NO2 sensors for their use in health studies. Sensors were calibrated using data from reference instruments, and regression and machine learning models were evaluated, identifying opportunities and limitations in model transferability in both indoor and outdoor environments and showcasing the importance of integrating metadata such as activity logs and diffusive tubes to improve data validation and interpretation during deployment in the houses of the participants.
Ajit Ahlawat, Kay Weinhold, Jesus Marval, Paolo Tronville, Ari Leskinen, Mika Komppula, Holger Gerwig, Lars Gerling, Stephan Weber, Rikke Bramming Jørgensen, Thomas Nørregaard Jensen, Marouane Merizak, Ulrich Vogt, Carla Ribalta, Mar Viana, Andre Schmitz, Maria Chiesa, Giacomo Gerosa, Lothar Keck, Markus Pesch, Gerhard Steiner, Thomas Krinke, Torsten Tritscher, Wolfram Birmili, and Alfred Wiedensohler
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-155, https://doi.org/10.5194/amt-2022-155, 2022
Revised manuscript not accepted
Short summary
Short summary
Measurements of ultrafine particles must be done with quality-assured instruments. The performance of portable instruments such as NanoScan SMPS, and GRIMM Mini WRAS spectrometer measuring the particle number size distribution in the range from 10 to 200 nm were investigated. The influence of different aerosol types and maintenance activities on these instruments were explored. The results show that these portable instruments are suitable for mobile UFP measurements for source identification.
Cited articles
Alphasense Ltd.: OPC-R1 Optical Particle Counter User Manual: Issue 1, 072-0500, 2019.
Angelov, K., Todorov, P., and Pérez-Díaz, J. L.: Aerosol generation
devices suitable for simulating fogs in laboratory conditions, Security &
Future, 1, 38–41, https://stumejournals.com/journals/confsec/2017/1/38.full.pdf (last access: 21 December 2022), 2017.
Badura, M., Batog, P., Drzeniecka-Osiadacz, A., and Modzel, P.: Regression
methods in the calibration of low-cost sensors for ambient particulate
matter measurements, SN Appl. Sci., 1, 622, https://doi.org/10.1007/s42452-019-0630-1, 2019.
Barkjohn, K. K., Gantt, B., and Clements, A. L.: Development and application of a United States-wide correction for PM2.5 data collected with the PurpleAir sensor, Atmos. Meas. Tech., 14, 4617–4637, https://doi.org/10.5194/amt-14-4617-2021, 2021.
Boucher, O.: Atmospheric Aerosols: Properties and Climate Impacts,
Springer-Verlag, s.l., 311 pp., https://doi.org/10.1007/978-94-017-9649-1, 2015.
Bulot, F. M. J., Russell, H. S., Rezaei, M., Johnson, M. S., Ossont, S. J.
J., Morris, A. K. R., Basford, P. J., Easton, N. H. C., Foster, G. L.,
Loxham, M., and Cox, S. J.: Laboratory Comparison of Low-Cost Particulate
Matter Sensors to Measure Transient Events of Pollution, Sensors, 20, 2219,
https://doi.org/10.3390/s20082219, 2020.
Cai, J., Yan, B., Ross, J., Zhang, D., Kinney, P. L., Perzanowski, M. S.,
Jung, K., Miller, R., and Chillrud, S. N.: Validation of
MicroAeth® as a Black Carbon Monitor for Fixed-Site Measurement and Optimization for Personal Exposure Characterization, Aerosol Air Qual. Res., 14, 1–9, https://doi.org/10.4209/aaqr.2013.03.0088, 2014.
Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain,
B., Broday, D., and Bartonova, A.: Can commercial low-cost sensor platforms
contribute to air quality monitoring and exposure estimates?, Environ. Int.,
99, 293–302, https://doi.org/10.1016/j.envint.2016.12.007, 2017.
Castell, N., Grossberndt, S., Gray, L., Fredriksen, M. F., Skaar, J. S., and
Høiskar, B. A. K.: Implementing Citizen Science in Primary Schools:
Engaging Young Children in Monitoring Air Pollution, Front. Clim., 3, 639128,
https://doi.org/10.3389/fclim.2021.639128, 2021.
Chacón-Mateos, M.: MiriamChacon/OPC-R1_with-air-dryer: Arduino Codes for OPC-R1 with low-cost air dryer (v1.0.3), Zenodo [code], https://doi.org/10.5281/zenodo.7045960, 2022.
Crilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R., Young, S., Lewis, A. C., and Pope, F. D.: Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring, Atmos. Meas. Tech., 11, 709–720, https://doi.org/10.5194/amt-11-709-2018, 2018.
Crilley, L. R., Singh, A., Kramer, L. J., Shaw, M. D., Alam, M. S., Apte, J. S., Bloss, W. J., Hildebrandt Ruiz, L., Fu, P., Fu, W., Gani, S., Gatari, M., Ilyinskaya, E., Lewis, A. C., Ng'ang'a, D., Sun, Y., Whitty, R. C. W., Yue, S., Young, S., and Pope, F. D.: Effect of aerosol composition on the performance of low-cost optical particle counter correction factors, Atmos. Meas. Tech., 13, 1181–1193, https://doi.org/10.5194/amt-13-1181-2020, 2020.
Demanega, I., Mujan, I., Singer, B. C., Anđelković, A. S., Babich,
F., and Licina, D.: Performance assessment of low-cost environmental
monitors and single sensors under variable indoor air quality and thermal
conditions, Build. Environ., 187, 107415,
https://doi.org/10.1016/j.buildenv.2020.107415, 2021.
Di Antonio, A.: Development of novel methodologies for utilising low-cost
sensors for ambient Particulate Matter measurement, Apollo – University of
Cambridge Repository, https://doi.org/10.17863/CAM.68376, 2021.
Di Antonio, A., Popoola, O. A. M., Ouyang, B., Saffell, J., and Jones, R.
L.: Developing a Relative Humidity Correction for Low-Cost Sensors Measuring
Ambient Particulate Matter, Sensors, 18, 2790, https://doi.org/10.3390/s18092790,
2018.
English, P., Amato, H., Bejarano, E., Carvlin, G., Lugo, H., Jerrett, M.,
King, G., Madrigal, D., Meltzer, D., Northcross, A., Olmedo, L., Seto, E.,
Torres, C., Wilkie, A., and Wong, M.: Performance of a Low-Cost Sensor
Community Air Monitoring Network in Imperial County, CA, Sensors, 20, 3031,
https://doi.org/10.3390/s20113031, 2020.
Gao, M., Cao, J., and Seto, E.: A distributed network of low-cost continuous
reading sensors to measure spatiotemporal variations of PM2.5 in Xi'an,
China, Environ. Pollut., 199, 56–65, https://doi.org/10.1016/j.envpol.2015.01.013, 2015.
GRIMM Aerosol Technik GmbH: Environmental Dust Monitor #180. User Manual,
Ainring, 2003.
Gulia, S., Prasad, P., Goyal, S. K., and Kumar, R.: Sensor-based Wireless
Air Quality Monitoring Network (SWAQMN) – A smart tool for urban air quality
management, Atmos. Pollut. Res., 11, 1588–1597,
https://doi.org/10.1016/j.apr.2020.06.016, 2020.
Hinds, W. C.: Aerosol Technology: Properties, Behavior, and Measurement of
Airborne Particles, Second Edition, Wiley-Interscience, s.l., 464 pp., ISBN 978-1-118-59197-0, 1999.
Höfner, S. and Schütze, A.: Air Quality Measurements and Education:
Improving Environmental Awareness of High School Students, Front. Sens., 2, 657920, https://doi.org/10.3389/fsens.2021.657920, 2021.
Holstius, D. M., Pillarisetti, A., Smith, K. R., and Seto, E.: Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California, Atmos. Meas. Tech., 7, 1121–1131, https://doi.org/10.5194/amt-7-1121-2014, 2014.
Hong, G.-H., Le, T.-C., Tu, J.-W., Wang, C., Chang, S.-C., Yu, J.-Y., Lin,
G.-Y., Aggarwal, S. G., and Tsai, C.-J.: Long-term evaluation and
calibration of three types of low-cost PM2.5 sensors at different air
quality monitoring stations, J. Aerosol Sci., 157, 105829,
https://doi.org/10.1016/j.jaerosci.2021.105829, 2021.
Huffman, J. A., Ziemann, P. J., Jayne, J. T., Worsnop, D. R., and Jimenez,
J. L.: Development and Characterization of a Fast-Stepping/Scanning
Thermodenuder for Chemically-Resolved Aerosol Volatility Measurements,
Aerosol Sci. Tech., 42, 395–407, https://doi.org/10.1080/02786820802104981, 2008.
Huffman, J. A., Docherty, K. S., Aiken, A. C., Cubison, M. J., Ulbrich, I. M., DeCarlo, P. F., Sueper, D., Jayne, J. T., Worsnop, D. R., Ziemann, P. J., and Jimenez, J. L.: Chemically-resolved aerosol volatility measurements from two megacity field studies, Atmos. Chem. Phys., 9, 7161–7182, https://doi.org/10.5194/acp-9-7161-2009, 2009.
Jayaratne, R., Liu, X., Thai, P., Dunbabin, M., and Morawska, L.: The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog, Atmos. Meas. Tech., 11, 4883–4890, https://doi.org/10.5194/amt-11-4883-2018, 2018.
Karali, D., Loupa, G., and Rapsomanikis, S.: Nephelometer Sensitivities for
the Determination of PM2.5 Mass Concentration in Ambient and Indoor Air,
Aerosol Air Qual. Res., 21, 200159, https://doi.org/10.4209/aaqr.2020.04.0159, 2021.
Kumar, S., Mishra, S., and Singh, S. K.: A machine learning-based model to
estimate PM2.5 concentration levels in Delhi's atmosphere, Heliyon, 6,
e05618, https://doi.org/10.1016/j.heliyon.2020.e05618, 2020.
Laquai, B. and Kroseberg, B.: Comparison of a Computational Method for
Correcting the Humidity Influence with the Use of a Low-Cost Aerosol Dryer
on a SDS011 Low-Cost PM-Sensor, https://www.researchgate.net/publication/351245900_Comparison_of_a_Computational_Method_for_Correcting_the_Humidity_Influence_with_the_Use_of_a_Low-Cost_Aerosol_Dryer_on_a_SDS011_Low-Cost_PM-Sensor (last access: 6 December 2022), 2021.
Laskina, O., Morris, H. S., Grandquist, J. R., Qin, Z., Stone, E. A.,
Tivanski, A. V., and Grassian, V. H.: Size matters in the water uptake and
hygroscopic growth of atmospherically relevant multicomponent aerosol
particles, J. Phys. Chem. A, 119, 4489–4497,
https://doi.org/10.1021/jp510268p, 2015.
Lau, C. J., Loebel Roson, M., Klimchuk, K. M., Gautam, T., Zhao, B., and
Zhao, R.: Particulate matter emitted from ultrasonic humidifiers-Chemical
composition and implication to indoor air, Indoor Air, 31, 769–782,
https://doi.org/10.1111/ina.12765, 2021.
Li, J.: Recent advances in low-cost particulate matter sensor: calibration
and application, Engineering and Applied Science Theses & Dissertations,
Washington University, St. Louis, https://doi.org/10.7936/v9wd-dr27, 2019.
Li, X., Gupta, D., Eom, H.-J., Kim, H., and Ro, C.-U.: Deliquescence and
efflorescence behavior of individual NaCl and KCl mixture aerosol particles,
Atmos. Environ., 82, 36–43, https://doi.org/10.1016/j.atmosenv.2013.10.011, 2014.
Liu, H.-Y., Schneider, P., Haugen, R., and Vogt, M.: Performance Assessment
of a Low-Cost PM2.5 Sensor for a near Four-Month Period in Oslo, Norway,
Atmosphere, 10, 41, https://doi.org/10.3390/atmos10020041, 2019.
Lukeville, A.: Assessing air quality through citizen science, Publications
Office of the European Union, Luxembourg, 64 pp., https://doi.org/10.2800/619, 2019.
Masic, A., Bibic, D., Pikula, B., Blazevic, A., Huremovic, J., and Zero, S.: Evaluation of optical particulate matter sensors under realistic conditions of strong and mild urban pollution, Atmos. Meas. Tech., 13, 6427–6443, https://doi.org/10.5194/amt-13-6427-2020, 2020.
Novak, R., Kocman, D., Robinson, J. A., Kanduč, T., Sarigiannis, D., and
Horvat, M.: Comparing Airborne Particulate Matter Intake Dose Assessment
Models Using Low-Cost Portable Sensor Data, Sensors, 20, 1406,
https://doi.org/10.3390/s20051406, 2020.
Paciga, A., Karnezi, E., Kostenidou, E., Hildebrandt, L., Psichoudaki, M., Engelhart, G. J., Lee, B.-H., Crippa, M., Prévôt, A. S. H., Baltensperger, U., and Pandis, S. N.: Volatility of organic aerosol and its components in the megacity of Paris, Atmos. Chem. Phys., 16, 2013–2023, https://doi.org/10.5194/acp-16-2013-2016, 2016.
Palas GmbH: Operating Manual. Fine Dust Monitor System. Fidas®: Version V0020312, Karlsruhe, 2012.
Sain, A. E., Zook, J., Davy, B. M., Marr, L. C., and Dietrich, A. M.: Size
and mineral composition of airborne particles generated by an ultrasonic
humidifier, Indoor Air, 28, 80–88, https://doi.org/10.1111/ina.12414, 2018.
Samad, A., Obando Nuñez, D. R., Solis Castillo, G. C., Laquai, B., and
Vogt, U.: Effect of Relative Humidity and Air Temperature on the Results
Obtained from Low-Cost Gas Sensors for Ambient Air Quality Measurements,
Sensors, 20, 5175, https://doi.org/10.3390/s20185175, 2020.
Samad, A., Melchor Mimiaga, F. E., Laquai, B., and Vogt, U.: Investigating a
Low-Cost Dryer Designed for Low-Cost PM Sensors Measuring Ambient Air
Quality, Sensors, 21, 804, https://doi.org/10.3390/s21030804, 2021.
Schaefer, T., Kieslinger, B., and Fabian, C. M.: Citizen-Based Air Quality
Monitoring: The Impact on Individual Citizen Scientists and How to Leverage
the Benefits to Affect Whole Regions, Citizen Science: Theory and Practice,
5, p. 6, https://doi.org/10.5334/cstp.245, 2020.
Si, M., Xiong, Y., Du, S., and Du, K.: Evaluation and calibration of a low-cost particle sensor in ambient conditions using machine-learning methods, Atmos. Meas. Tech., 13, 1693–1707, https://doi.org/10.5194/amt-13-1693-2020, 2020.
Spiridonov, V. and Ćurić, M.: Fundamentals of Meteorology, Springer
International Publishing, Cham, https://doi.org/10.1007/978-3-030-52655-9, 2021.
Steinle, S., Reis, S., Sabel, C. E., Semple, S., Twigg, M. M., Braban, C.
F., Leeson, S. R., Heal, M. R., Harrison, D., Lin, C., and Wu, H.: Personal
exposure monitoring of PM2.5 in indoor and outdoor microenvironments, Sci. Total Environ., 508, 383–394,
https://doi.org/10.1016/j.scitotenv.2014.12.003, 2015.
Toma, C., Alexandru, A., Popa, M., and Zamfiroiu, A.: IoT Solution for Smart
Cities' Pollution Monitoring and the Security Challenges, Sensors, 19, 3401,
https://doi.org/10.3390/s19153401, 2019.
Venkatraman Jagatha, J., Klausnitzer, A., Chacón-Mateos, M., Laquai, B.,
Nieuwkoop, E., van der Mark, P., Vogt, U., and Schneider, C.: Calibration
Method for Particulate Matter Low-Cost Sensors Used in Ambient Air Quality
Monitoring and Research, Sensors, 21, 3960, https://doi.org/10.3390/s21123960,
2021.
Wang, W.-C. V., Lung, S.-C. C., and Liu, C.-H.: Application of Machine
Learning for the in-Field Correction of a PM2.5 Low-Cost Sensor Network,
Sensors, 20, 5002, https://doi.org/10.3390/s20175002, 2020.
Wang, Y., Li, J., Jing, H., Zhang, Q., Jiang, J., and Biswas, P.: Laboratory
Evaluation and Calibration of Three Low-Cost Particle Sensors for
Particulate Matter Measurement, Aerosol Sci. Tech., 49, 1063–1077,
https://doi.org/10.1080/02786826.2015.1100710, 2015.
Wise, M. E., Biskos, G., Martin, S. T., Russell, L. M., and Buseck, P. R.:
Phase Transitions of Single Salt Particles Studied Using a Transmission
Electron Microscope with an Environmental Cell, Aerosol Sci. Tech., 39,
849–856, https://doi.org/10.1080/02786820500295263, 2005.
WMO/GAW: Aerosol measurement procedures: Guidelines and recommendations, 2nd
edition, GAW report, no. 227, World Meteorological Organization, Geneva,
Switzerland, ISBN 978-92-63-11177-7, 2016.
Yao, W., Gallagher, D. L., and Dietrich, A. M.: An overlooked route of
inhalation exposure to tap water constituents for children and adults:
Aerosolized aqueous minerals from ultrasonic humidifiers, Water Res. X, 9,
100060, https://doi.org/10.1016/j.wroa.2020.100060, 2020.
Zimmerman, N., Presto, A. A., Kumar, S. P. N., Gu, J., Hauryliuk, A., Robinson, E. S., Robinson, A. L., and R. Subramanian: A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring, Atmos. Meas. Tech., 11, 291–313, https://doi.org/10.5194/amt-11-291-2018, 2018.
Short summary
The study evaluates a low-cost dryer to avoid the negative effect of hygroscopic growth and fog droplets in the particulate matter (PM) concentrations of sensors. The results show a reduction in the overestimation of the PM but also an underestimation compared to reference devices. Special care is needed when designing a dryer as high temperatures change the sampled air by evaporating the most volatile particulate species. Low-cost dryers are very promising for different sensor applications.
The study evaluates a low-cost dryer to avoid the negative effect of hygroscopic growth and fog...