Articles | Volume 16, issue 7
https://doi.org/10.5194/amt-16-2037-2023
https://doi.org/10.5194/amt-16-2037-2023
Research article
 | 
17 Apr 2023
Research article |  | 17 Apr 2023

Use of lidar aerosol extinction and backscatter coefficients to estimate cloud condensation nuclei (CCN) concentrations in the southeast Atlantic

Emily D. Lenhardt, Lan Gao, Jens Redemann, Feng Xu, Sharon P. Burton, Brian Cairns, Ian Chang, Richard A. Ferrare, Chris A. Hostetler, Pablo E. Saide, Calvin Howes, Yohei Shinozuka, Snorre Stamnes, Mary Kacarab, Amie Dobracki, Jenny Wong, Steffen Freitag, and Athanasios Nenes

Related authors

Aerosol effective radius governs the relationship between cloud condensation nuclei (CCN) concentration and aerosol backscatter
Emily D. Lenhardt, Lan Gao, Chris A. Hostetler, Richard A. Ferrare, Sharon P. Burton, Richard H. Moore, Luke D. Ziemba, Ewan Crosbie, Armin Sorooshian, Cassidy Soloff, and Jens Redemann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2422,https://doi.org/10.5194/egusphere-2025-2422, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Instruments and Platforms
The EarthCARE lidar cloud and aerosol profile processor (A-PRO): the A-AER, A-EBD, A-TC, and A-ICE products
David Patrick Donovan, Gerd-Jan van Zadelhoff, and Ping Wang
Atmos. Meas. Tech., 17, 5301–5340, https://doi.org/10.5194/amt-17-5301-2024,https://doi.org/10.5194/amt-17-5301-2024, 2024
Short summary
Shortwave Array Spectroradiometer-Hemispheric (SAS-He): design and evaluation
Evgueni Kassianov, Connor J. Flynn, James C. Barnard, Brian D. Ermold, and Jennifer M. Comstock
Atmos. Meas. Tech., 17, 4997–5013, https://doi.org/10.5194/amt-17-4997-2024,https://doi.org/10.5194/amt-17-4997-2024, 2024
Short summary
HARP2 Pre-Launch Calibration Overview: The Effects of a Wide Field of View
Noah Sienkiewicz, J. Vanderlei Martins, Brent A. McBride, Xiaoguang Xu, Anin Puthukkudy, Rachel Smith, and Roberto Fernandez-Borda
EGUsphere, https://doi.org/10.5194/egusphere-2024-2024,https://doi.org/10.5194/egusphere-2024-2024, 2024
Short summary
Enhancing mobile aerosol monitoring with CE376 dual-wavelength depolarization lidar
Maria Fernanda Sanchez Barrero, Ioana Elisabeta Popovici, Philippe Goloub, Stephane Victori, Qiaoyun Hu, Benjamin Torres, Thierry Podvin, Luc Blarel, Gaël Dubois, Fabrice Ducos, Eric Bourrianne, Aliaksandr Lapionak, Lelia Proniewski, Brent Holben, David Matthew Giles, and Anthony LaRosa
Atmos. Meas. Tech., 17, 3121–3146, https://doi.org/10.5194/amt-17-3121-2024,https://doi.org/10.5194/amt-17-3121-2024, 2024
Short summary
Assessment of the spectral misalignment effect (SMILE) on EarthCARE's Multi-Spectral Imager aerosol and cloud property retrievals
Nicole Docter, Anja Hünerbein, David P. Donovan, Rene Preusker, Jürgen Fischer, Jan Fokke Meirink, Piet Stammes, and Michael Eisinger
Atmos. Meas. Tech., 17, 2507–2519, https://doi.org/10.5194/amt-17-2507-2024,https://doi.org/10.5194/amt-17-2507-2024, 2024
Short summary

Cited articles

Adebiyi, A. A. and Zuidema, P.: The role of the southern African easterly jet in modifying the southeast Atlantic aerosol and cloud environments, Q. J. Roy. Meteorol. Soc., 142, 1574–1589, https://doi.org/10.1002/qj.2765, 2016. 
Adebiyi, A. A., Zuidema, P., and Abel, S. J.: The Convolution of Dynamics and Moisture with the Presence of Shortwave Absorbing Aerosols over the Southeast Atlantic, J. Climate, 28, 1997–2024, https://doi.org/10.1175/JCLI-D-14-00352.1, 2015.  
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Nature, 25, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. 
Andreae, M. O.: Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions, Atmos. Chem. Phys., 9, 543–556, https://doi.org/10.5194/acp-9-543-2009, 2009. 
Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008. 
Download
Short summary
Small atmospheric particles, such as smoke from wildfires or pollutants from human activities, impact cloud properties, and clouds have a strong influence on climate. To better understand the distributions of these particles, we develop relationships to derive their concentrations from remote sensing measurements from an instrument called a lidar. Our method is reliable for smoke particles, and similar steps can be taken to develop relationships for other particle types.
Share