Articles | Volume 16, issue 10
https://doi.org/10.5194/amt-16-2641-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-2641-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An automated online field instrument to quantify the oxidative potential of aerosol particles via ascorbic acid oxidation
Battist Utinger
Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
Steven John Campbell
Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
Department of Atmospheric and Oceanic Sciences, University of
California at Los Angeles, Los Angeles, CA 90095-1565, USA
Nicolas Bukowiecki
Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
Alexandre Barth
Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
Benjamin Gfeller
Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
Ray Freshwater
Department of Chemistry, Centre for Atmospheric Science, University of Cambridge, Cambridge, CB2 1EW, UK
Hans-Rudolf Rüegg
Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
Markus Kalberer
CORRESPONDING AUTHOR
Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
Related authors
Kevin Kilchhofer, Alexandre Barth, Battist Utinger, Markus Kalberer, and Markus Ammann
Aerosol Research, 3, 337–349, https://doi.org/10.5194/ar-3-337-2025, https://doi.org/10.5194/ar-3-337-2025, 2025
Short summary
Short summary
We report a substantial buildup of reactive molecules (due to sunlight) in organic particulate matter, causing adverse health effects. Metals, which occur naturally or are emitted by traffic, can complex with organic materials and initiate photochemical processes. At low humidity, organic particles may become highly viscous, which allows for the accumulation of reactive species. We found that copper acts as an reducing species to remove some of these harmful species from particles.
Battist Utinger, Alexandre Barth, Andreas Paul, Arya Mukherjee, Steven John Campbell, Christa-Maria Müller, Mika Ihalainen, Pasi Yli-Pirilä, Miika Kortelainen, Zheng Fang, Patrick Martens, Markus Somero, Juho Louhisalmi, Thorsten Hohaus, Hendryk Czech, Olli Sippula, Yinon Rudich, Ralf Zimmermann, and Markus Kalberer
Aerosol Research, 3, 205–218, https://doi.org/10.5194/ar-3-205-2025, https://doi.org/10.5194/ar-3-205-2025, 2025
Short summary
Short summary
The oxidative potential (OP) of air pollution particles might be a metric explaining particle toxicity. This study quantifies the OP of fresh and aged car and wood burning emission particles and explores how the OP changes over time, using novel high-temporal-resolution instruments. We show that emissions from wood burning are more toxic than car exhaust per unit particle mass, especially as they age in the atmosphere. We also calculate emission factors for the OP, which could help to improve air pollution policies.
Pamela A. Dominutti, Jean-Luc Jaffrezo, Anouk Marsal, Takoua Mhadhbi, Rhabira Elazzouzi, Camille Rak, Fabrizia Cavalli, Jean-Philippe Putaud, Aikaterini Bougiatioti, Nikolaos Mihalopoulos, Despina Paraskevopoulou, Ian Mudway, Athanasios Nenes, Kaspar R. Daellenbach, Catherine Banach, Steven J. Campbell, Hana Cigánková, Daniele Contini, Greg Evans, Maria Georgopoulou, Manuella Ghanem, Drew A. Glencross, Maria Rachele Guascito, Hartmut Herrmann, Saima Iram, Maja Jovanović, Milena Jovašević-Stojanović, Markus Kalberer, Ingeborg M. Kooter, Suzanne E. Paulson, Anil Patel, Esperanza Perdrix, Maria Chiara Pietrogrande, Pavel Mikuška, Jean-Jacques Sauvain, Katerina Seitanidi, Pourya Shahpoury, Eduardo J. d. S. Souza, Sarah Steimer, Svetlana Stevanovic, Guillaume Suarez, P. S. Ganesh Subramanian, Battist Utinger, Marloes F. van Os, Vishal Verma, Xing Wang, Rodney J. Weber, Yuhan Yang, Xavier Querol, Gerard Hoek, Roy M. Harrison, and Gaëlle Uzu
Atmos. Meas. Tech., 18, 177–195, https://doi.org/10.5194/amt-18-177-2025, https://doi.org/10.5194/amt-18-177-2025, 2025
Short summary
Short summary
In this work, 20 labs worldwide collaborated to evaluate the measurement of air pollution's oxidative potential (OP), a key indicator of its harmful effects. The study aimed to identify disparities in the widely used OP dithiothreitol assay and assess the consistency of OP among labs using the same protocol. The results showed that half of the labs achieved acceptable results. However, variability was also found, highlighting the need for standardisation in OP procedures.
Zhi-Hui Zhang, Elena Hartner, Battist Utinger, Benjamin Gfeller, Andreas Paul, Martin Sklorz, Hendryk Czech, Bin Xia Yang, Xin Yi Su, Gert Jakobi, Jürgen Orasche, Jürgen Schnelle-Kreis, Seongho Jeong, Thomas Gröger, Michal Pardo, Thorsten Hohaus, Thomas Adam, Astrid Kiendler-Scharr, Yinon Rudich, Ralf Zimmermann, and Markus Kalberer
Atmos. Chem. Phys., 22, 1793–1809, https://doi.org/10.5194/acp-22-1793-2022, https://doi.org/10.5194/acp-22-1793-2022, 2022
Short summary
Short summary
Using a novel setup, we comprehensively characterized the formation of particle-bound reactive oxygen species (ROS) in anthropogenic and biogenic secondary organic aerosols (SOAs). We found that more than 90 % of all ROS components in both SOA types have a short lifetime. Our results also show that photochemical aging promotes particle-bound ROS production and enhances the oxidative potential of the aerosols. We found consistent results between chemical-based and biological-based ROS analyses.
Steven J. Campbell, Kate Wolfer, Battist Utinger, Joe Westwood, Zhi-Hui Zhang, Nicolas Bukowiecki, Sarah S. Steimer, Tuan V. Vu, Jingsha Xu, Nicholas Straw, Steven Thomson, Atallah Elzein, Yele Sun, Di Liu, Linjie Li, Pingqing Fu, Alastair C. Lewis, Roy M. Harrison, William J. Bloss, Miranda Loh, Mark R. Miller, Zongbo Shi, and Markus Kalberer
Atmos. Chem. Phys., 21, 5549–5573, https://doi.org/10.5194/acp-21-5549-2021, https://doi.org/10.5194/acp-21-5549-2021, 2021
Short summary
Short summary
In this study, we quantify PM2.5 oxidative potential (OP), a metric widely suggested as a potential measure of particle toxicity, in Beijing in summer and winter using four acellular assays. We correlate PM2.5 OP with a comprehensive range of atmospheric and particle composition measurements, demonstrating inter-assay differences and seasonal variation of PM2.5 OP. Using multivariate statistical analysis, we highlight specific particle chemical components and sources that influence OP.
Anni Hartikainen, Mika Ihalainen, Deeksha Shukla, Marius Rohkamp, Arya Mukherjee, Quanfu He, Sandra Piel, Aki Virkkula, Delun Li, Tuukka Kokkola, Seongho Jeong, Hanna Koponen, Uwe Etzien, Anusmita Das, Krista Luoma, Lukas Schwalb, Thomas Gröger, Alexandre Barth, Martin Sklorz, Thorsten Streibel, Hendryk Czech, Benedikt Gündling, Markus Kalberer, Bert Buchholz, Andreas Hupfer, Thomas Adam, Thorsten Hohaus, Johan Øvrevik, Ralf Zimmermann, and Olli Sippula
Atmos. Chem. Phys., 25, 9275–9294, https://doi.org/10.5194/acp-25-9275-2025, https://doi.org/10.5194/acp-25-9275-2025, 2025
Short summary
Short summary
Photochemical reactions altered the properties of kerosene-operated jet engine burner exhaust emissions, which were studied in a laboratory using an oxidation flow reactor. Particle mass increased 300-fold as particles and gases became more oxidized. Light absorption increased, but the total direct radiative forcing efficiency was estimated to have shifted from positive to negative. The results highlight the importance of considering secondary aerosol formation when assessing the impacts of aviation.
Benjamin Gfeller, Mariia Becker, Adrian D. Aebi, Nicolas Bukowiecki, Marcus Wyss, and Markus Kalberer
Aerosol Research, 3, 351–369, https://doi.org/10.5194/ar-3-351-2025, https://doi.org/10.5194/ar-3-351-2025, 2025
Short summary
Short summary
Metal nanoparticles (Au, Pt, Cu and Ni) were generated in the aerosol phase using spark ablation and analysed for size, shape and number concentration. Particles as small as 1 nm and up to > 60 nm show shapes from fully spherical to fractal-like as characterized by electron microscopy. Furthermore, the metal particles were mixed with TiO2 nanoparticles, and the number and size of metal particles coating the TiO2 were determined.
Kevin Kilchhofer, Alexandre Barth, Battist Utinger, Markus Kalberer, and Markus Ammann
Aerosol Research, 3, 337–349, https://doi.org/10.5194/ar-3-337-2025, https://doi.org/10.5194/ar-3-337-2025, 2025
Short summary
Short summary
We report a substantial buildup of reactive molecules (due to sunlight) in organic particulate matter, causing adverse health effects. Metals, which occur naturally or are emitted by traffic, can complex with organic materials and initiate photochemical processes. At low humidity, organic particles may become highly viscous, which allows for the accumulation of reactive species. We found that copper acts as an reducing species to remove some of these harmful species from particles.
Battist Utinger, Alexandre Barth, Andreas Paul, Arya Mukherjee, Steven John Campbell, Christa-Maria Müller, Mika Ihalainen, Pasi Yli-Pirilä, Miika Kortelainen, Zheng Fang, Patrick Martens, Markus Somero, Juho Louhisalmi, Thorsten Hohaus, Hendryk Czech, Olli Sippula, Yinon Rudich, Ralf Zimmermann, and Markus Kalberer
Aerosol Research, 3, 205–218, https://doi.org/10.5194/ar-3-205-2025, https://doi.org/10.5194/ar-3-205-2025, 2025
Short summary
Short summary
The oxidative potential (OP) of air pollution particles might be a metric explaining particle toxicity. This study quantifies the OP of fresh and aged car and wood burning emission particles and explores how the OP changes over time, using novel high-temporal-resolution instruments. We show that emissions from wood burning are more toxic than car exhaust per unit particle mass, especially as they age in the atmosphere. We also calculate emission factors for the OP, which could help to improve air pollution policies.
Pamela A. Dominutti, Jean-Luc Jaffrezo, Anouk Marsal, Takoua Mhadhbi, Rhabira Elazzouzi, Camille Rak, Fabrizia Cavalli, Jean-Philippe Putaud, Aikaterini Bougiatioti, Nikolaos Mihalopoulos, Despina Paraskevopoulou, Ian Mudway, Athanasios Nenes, Kaspar R. Daellenbach, Catherine Banach, Steven J. Campbell, Hana Cigánková, Daniele Contini, Greg Evans, Maria Georgopoulou, Manuella Ghanem, Drew A. Glencross, Maria Rachele Guascito, Hartmut Herrmann, Saima Iram, Maja Jovanović, Milena Jovašević-Stojanović, Markus Kalberer, Ingeborg M. Kooter, Suzanne E. Paulson, Anil Patel, Esperanza Perdrix, Maria Chiara Pietrogrande, Pavel Mikuška, Jean-Jacques Sauvain, Katerina Seitanidi, Pourya Shahpoury, Eduardo J. d. S. Souza, Sarah Steimer, Svetlana Stevanovic, Guillaume Suarez, P. S. Ganesh Subramanian, Battist Utinger, Marloes F. van Os, Vishal Verma, Xing Wang, Rodney J. Weber, Yuhan Yang, Xavier Querol, Gerard Hoek, Roy M. Harrison, and Gaëlle Uzu
Atmos. Meas. Tech., 18, 177–195, https://doi.org/10.5194/amt-18-177-2025, https://doi.org/10.5194/amt-18-177-2025, 2025
Short summary
Short summary
In this work, 20 labs worldwide collaborated to evaluate the measurement of air pollution's oxidative potential (OP), a key indicator of its harmful effects. The study aimed to identify disparities in the widely used OP dithiothreitol assay and assess the consistency of OP among labs using the same protocol. The results showed that half of the labs achieved acceptable results. However, variability was also found, highlighting the need for standardisation in OP procedures.
Julian Resch, Kate Wolfer, Alexandre Barth, and Markus Kalberer
Atmos. Chem. Phys., 23, 9161–9171, https://doi.org/10.5194/acp-23-9161-2023, https://doi.org/10.5194/acp-23-9161-2023, 2023
Short summary
Short summary
Detailed chemical analysis of organic aerosols is necessary to better understand their effects on climate and health. Aerosol samples are often stored for days to months before analysis. We examined the effects of storage conditions (i.e., time, temperature, and aerosol storage on filters or as solvent extracts) on composition and found significant changes in the concentration of individual compounds, indicating that sample storage can strongly affect the detailed chemical particle composition.
Ivo Beck, Hélène Angot, Andrea Baccarini, Lubna Dada, Lauriane Quéléver, Tuija Jokinen, Tiia Laurila, Markus Lampimäki, Nicolas Bukowiecki, Matthew Boyer, Xianda Gong, Martin Gysel-Beer, Tuukka Petäjä, Jian Wang, and Julia Schmale
Atmos. Meas. Tech., 15, 4195–4224, https://doi.org/10.5194/amt-15-4195-2022, https://doi.org/10.5194/amt-15-4195-2022, 2022
Short summary
Short summary
We present the pollution detection algorithm (PDA), a new method to identify local primary pollution in remote atmospheric aerosol and trace gas time series. The PDA identifies periods of contaminated data and relies only on the target dataset itself; i.e., it is independent of ancillary data such as meteorological variables. The parameters of all pollution identification steps are adjustable so that the PDA can be tuned to different locations and situations. It is available as open-access code.
Zhi-Hui Zhang, Elena Hartner, Battist Utinger, Benjamin Gfeller, Andreas Paul, Martin Sklorz, Hendryk Czech, Bin Xia Yang, Xin Yi Su, Gert Jakobi, Jürgen Orasche, Jürgen Schnelle-Kreis, Seongho Jeong, Thomas Gröger, Michal Pardo, Thorsten Hohaus, Thomas Adam, Astrid Kiendler-Scharr, Yinon Rudich, Ralf Zimmermann, and Markus Kalberer
Atmos. Chem. Phys., 22, 1793–1809, https://doi.org/10.5194/acp-22-1793-2022, https://doi.org/10.5194/acp-22-1793-2022, 2022
Short summary
Short summary
Using a novel setup, we comprehensively characterized the formation of particle-bound reactive oxygen species (ROS) in anthropogenic and biogenic secondary organic aerosols (SOAs). We found that more than 90 % of all ROS components in both SOA types have a short lifetime. Our results also show that photochemical aging promotes particle-bound ROS production and enhances the oxidative potential of the aerosols. We found consistent results between chemical-based and biological-based ROS analyses.
Clémence Rose, Martine Collaud Coen, Elisabeth Andrews, Yong Lin, Isaline Bossert, Cathrine Lund Myhre, Thomas Tuch, Alfred Wiedensohler, Markus Fiebig, Pasi Aalto, Andrés Alastuey, Elisabeth Alonso-Blanco, Marcos Andrade, Begoña Artíñano, Todor Arsov, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Juan Andrés Casquero-Vera, Sébastien Conil, Konstantinos Eleftheriadis, Olivier Favez, Harald Flentje, Maria I. Gini, Francisco Javier Gómez-Moreno, Martin Gysel-Beer, Anna Gannet Hallar, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Neng-Huei Lin, Hassan Lyamani, Angela Marinoni, Sebastiao Martins Dos Santos, Olga L. Mayol-Bracero, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Jakub Ondracek, Marco Pandolfi, Noemi Pérez, Tuukka Petäjä, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Jean-Philippe Putaud, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Junying Sun, Pierre Tulet, Ville Vakkari, Pieter Gideon van Zyl, Fernando Velarde, Paolo Villani, Stergios Vratolis, Zdenek Wagner, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Vladimir Zdimal, and Paolo Laj
Atmos. Chem. Phys., 21, 17185–17223, https://doi.org/10.5194/acp-21-17185-2021, https://doi.org/10.5194/acp-21-17185-2021, 2021
Short summary
Short summary
Aerosol particles are a complex component of the atmospheric system the effects of which are among the most uncertain in climate change projections. Using data collected at 62 stations, this study provides the most up-to-date picture of the spatial distribution of particle number concentration and size distribution worldwide, with the aim of contributing to better representation of aerosols and their interactions with clouds in models and, therefore, better evaluation of their impact on climate.
Dac-Loc Nguyen, Hendryk Czech, Simone M. Pieber, Jürgen Schnelle-Kreis, Martin Steinbacher, Jürgen Orasche, Stephan Henne, Olga B. Popovicheva, Gülcin Abbaszade, Guenter Engling, Nicolas Bukowiecki, Nhat-Anh Nguyen, Xuan-Anh Nguyen, and Ralf Zimmermann
Atmos. Chem. Phys., 21, 8293–8312, https://doi.org/10.5194/acp-21-8293-2021, https://doi.org/10.5194/acp-21-8293-2021, 2021
Short summary
Short summary
Southeast Asia is well-known for emission-intense and recurring wildfires and after-harvest crop residue burning during the pre-monsoon season from February to April. We describe a biomass burning (BB) plume arriving at remote Pha Din meteorological station, outline its carbonaceous particulate matter (PM) constituents based on more than 50 target compounds and discuss possible BB sources. This study adds valuable information on chemical PM composition for a region with scarce data availability.
Steven J. Campbell, Kate Wolfer, Battist Utinger, Joe Westwood, Zhi-Hui Zhang, Nicolas Bukowiecki, Sarah S. Steimer, Tuan V. Vu, Jingsha Xu, Nicholas Straw, Steven Thomson, Atallah Elzein, Yele Sun, Di Liu, Linjie Li, Pingqing Fu, Alastair C. Lewis, Roy M. Harrison, William J. Bloss, Miranda Loh, Mark R. Miller, Zongbo Shi, and Markus Kalberer
Atmos. Chem. Phys., 21, 5549–5573, https://doi.org/10.5194/acp-21-5549-2021, https://doi.org/10.5194/acp-21-5549-2021, 2021
Short summary
Short summary
In this study, we quantify PM2.5 oxidative potential (OP), a metric widely suggested as a potential measure of particle toxicity, in Beijing in summer and winter using four acellular assays. We correlate PM2.5 OP with a comprehensive range of atmospheric and particle composition measurements, demonstrating inter-assay differences and seasonal variation of PM2.5 OP. Using multivariate statistical analysis, we highlight specific particle chemical components and sources that influence OP.
Sarah S. Steimer, Daniel J. Patton, Tuan V. Vu, Marios Panagi, Paul S. Monks, Roy M. Harrison, Zoë L. Fleming, Zongbo Shi, and Markus Kalberer
Atmos. Chem. Phys., 20, 13303–13318, https://doi.org/10.5194/acp-20-13303-2020, https://doi.org/10.5194/acp-20-13303-2020, 2020
Short summary
Short summary
Air pollution is of growing concern due to its negative effect on public health, especially in low- and middle-income countries. This study investigates how the chemical composition of particles in Beijing changes under different measurement conditions (pollution levels, season) to get a better understanding of the sources of this form of air pollution.
Cited articles
Alpert, P. A., Dou, J., Corral Arroyo, P., Schneider, F., Xto, J., Luo, B.,
Peter, T., Huthwelker, T., Borca, C. N., Henzler, K. D., Schaefer, T.,
Herrmann, H., Raabe, J., Watts, B., Krieger, U. K., and Ammann, M.:
Photolytic radical persistence due to anoxia in viscous aerosol particles,
Nat. Commun., 12, 1–8, https://doi.org/10.1038/s41467-021-21913-x, 2021.
Bates, J. T., Fang, T., Verma, V., Zeng, L., Weber, R. J., Tolbert, P. E.,
Abrams, J. Y., Sarnat, S. E., Klein, M., Mulholland, J. A., and Russell, A.
G.: Review of Acellular Assays of Ambient Particulate Matter Oxidative
Potential: Methods and Relationships with Composition, Sources, and Health
Effects, Environ. Sci. Technol., 53, 4003–4019,
https://doi.org/10.1021/acs.est.8b03430, 2019.
Baulig, A., Garlatti, M., Bonvallot, V., Marchand, A., Barouki, R., Marano,
F., and Baeza-Squiban, A.: Involvement of reactive oxygen species in the
metabolic pathways triggered by diesel exhaust particles in human airway
epithelial cells, Am. J. Physiol.-Lung C., 285, L671–L679, https://doi.org/10.1152/ajplung.00419.2002, 2003.
Birdwell, J. E. and Engel, A. S.: Characterization of dissolved organic
matter in cave and spring waters using UV-Vis absorbance and fluorescence
spectroscopy, Org. Geochem., 41, 270–280,
https://doi.org/10.1016/J.ORGGEOCHEM.2009.11.002, 2010.
Brunekreef, B. and Holgate, S. T.: Air pollution and health, Lancet
(London, England), 360, 1233–1242, https://doi.org/10.1016/S0140-6736(02)11274-8, 2002.
Calas, A., Uzu, G., Martins, J. M. F., Voisin, D., Spadini, L., Lacroix, T.,
and Jaffrezo, J. L.: The importance of simulated lung fluid (SLF)
extractions for a more relevant evaluation of the oxidative potential of
particulate matter, Scientific Reports, 7, 1–12, https://doi.org/10.1038/s41598-017-11979-3, 2017.
Calvo, A. I., Alves, C., Castro, A., Pont, V., Vicente, A. M., and Fraile,
R.: Research on aerosol sources and chemical composition: Past, current and
emerging issues, Atmos. Res., 120–121, 1–28,
https://doi.org/10.1016/J.ATMOSRES.2012.09.021, 2013.
Campbell, S. J., Utinger, B., Lienhard, D. M., Paulson, S. E., Shen, J.,
Griffiths, P. T., Stell, A. C., and Kalberer, M.: Development of a
physiologically relevant online chemical assay to quantify aerosol oxidative
potential, Anal. Chem., 91, 13088–13095, https://doi.org/10.1021/acs.analchem.9b03282, 2019a.
Campbell, S. J., Stevanovic, S., Miljevic, B., Bottle, S. E., Ristovski, Z.,
and Kalberer, M.: Quantification of Particle-Bound Organic Radicals in
Secondary Organic Aerosol, Environ. Sci. Technol., 53, 6729–6737,
https://doi.org/10.1021/acs.est.9b00825, 2019b.
Campbell, S. J., Wolfer, K., Utinger, B., Westwood, J., Zhang, Z.-H., Bukowiecki, N., Steimer, S. S., Vu, T. V., Xu, J., Straw, N., Thomson, S., Elzein, A., Sun, Y., Liu, D., Li, L., Fu, P., Lewis, A. C., Harrison, R. M., Bloss, W. J., Loh, M., Miller, M. R., Shi, Z., and Kalberer, M.: Atmospheric conditions and composition that influence PM2.5 oxidative potential in Beijing, China, Atmos. Chem. Phys., 21, 5549–5573, https://doi.org/10.5194/acp-21-5549-2021, 2021.
Chen, G., Canonaco, F., Tobler, A., Aas, W., Alastuey, A., Allan, J.,
Atabakhsh, S., Aurela, M., Baltensperger, U., Bougiatioti, A., De Brito, J.
F., Ceburnis, D., Chazeau, B., Chebaicheb, H., Daellenbach, K. R., Ehn, M.,
El Haddad, I., Eleftheriadis, K., Favez, O., Flentje, H., Font, A., Fossum,
K., Freney, E., Gini, M., Green, D. C., Heikkinen, L., Herrmann, H.,
Kalogridis, A.-C., Keernik, H., Lhotka, R., Lin, C., Lunder, C., Maasikmets,
M., Manousakas, M. I., Marchand, N., Marin, C., Marmureanu, L.,
Mihalopoulos, N., Močnik, G., Nęcki, J., O'Dowd, C., Ovadnevaite,
J., Peter, T., Petit, J.-E., Pikridas, M., Matthew Platt, S., Pokorná,
P., Poulain, L., Priestman, M., Riffault, V., Rinaldi, M.,
Różański, K., Schwarz, J., Sciare, J., Simon, L., Skiba, A.,
Slowik, J. G., Sosedova, Y., Stavroulas, I., Styszko, K., Teinemaa, E.,
Timonen, H., Tremper, A., Vasilescu, J., Via, M., Vodička, P.,
Wiedensohler, A., Zografou, O., Cruz Minguillón, M., and Prévôt,
A. S. H.: European aerosol phenomenology – 8: Harmonised source
apportionment of organic aerosol using 22 Year-long ACSM/AMS datasets,
Environ. Int., 166, 107325, https://doi.org/10.1016/j.envint.2022.107325, 2022.
Chowdhury, P. H., He, Q., Lasitza Male, T., Brune, W. H., Rudich, Y., and
Pardo, M.: Exposure of Lung Epithelial Cells to Photochemically Aged
Secondary Organic Aerosol Shows Increased Toxic Effects, Environ. Sci.
Tech. Let., 5, 424–430, https://doi.org/10.1021/acs.estlett.8b00256, 2018.
Donaldson, K., Stone, V., Seaton, A., and MacNee, W.: Ambient particle
inhalation and the cardiovascular system: Potential mechanisms, Environ.
Health Persp., 109, 523–527, https://doi.org/10.1289/ehp.01109s4523, 2001.
Fang, T., Verma, V., Guo, H., King, L. E., Edgerton, E. S., and Weber, R. J.: A semi-automated system for quantifying the oxidative potential of ambient particles in aqueous extracts using the dithiothreitol (DTT) assay: results from the Southeastern Center for Air Pollution and Epidemiology (SCAPE), Atmos. Meas. Tech., 8, 471–482, https://doi.org/10.5194/amt-8-471-2015, 2015.
Ferreira, C. M. H., Pinto, I. S. S., Soares, E. V., and Soares, H. M. V. M.:
(Un)suitability of the use of pH buffers in biological, biochemical and
environmental studies and their interaction with metal ions – a review, RSC
Adv., 5, 30989–31003, https://doi.org/10.1039/c4ra15453c, 2015.
Fuller, S. J., Wragg, F. P. H., Nutter, J., and Kalberer, M.: Comparison of
on-line and off-line methods to quantify reactive oxygen species (ROS) in
atmospheric aerosols, Atmos. Environ., 92, 97–103,
https://doi.org/10.1016/j.atmosenv.2014.04.006, 2014.
Gao, D., Fang, T., Verma, V., Zeng, L., and Weber, R. J.: A method for measuring total aerosol oxidative potential (OP) with the dithiothreitol (DTT) assay and comparisons between an urban and roadside site of water-soluble and total OP, Atmos. Meas. Tech., 10, 2821–2835, https://doi.org/10.5194/amt-10-2821-2017, 2017.
GBD 2013 Risk Factors Collaborators: Global, regional, and national
comparative risk assessment of 79 behavioural, environmental and
occupational, and metabolic risks or clusters of risks in 188 countries,
1990–2013: A systematic analysis for the Global Burden of Disease Study
2013, Lancet, 386, 2287–2323, https://doi.org/10.1016/S0140-6736(15)00128-2, 2015.
Godri, K. J., Duggan, S. T., Fuller, G. W., Baker, T., Green, D., Kelly, F.
J., and Mudway, I. S.: Particulate matter oxidative potential from waste
transfer station activity, Environ. Health Persp., 118, 493–498,
https://doi.org/10.1289/ehp.0901303, 2010.
Godri, K. J., Harrison, R. M., Evans, T., Baker, T., Dunster, C., Mudway, I.
S., and Kelly, F. J.: Increased oxidative burden associated with traffic
component of ambient particulate matter at roadside and Urban background
schools sites in London, PLoS One, 6, e21961, https://doi.org/10.1371/journal.pone.0021961, 2011.
Hama, S. M. L., Cordell, R. L., Staelens, J., Mooibroek, D., and Monks, P.
S.: Chemical composition and source identification of PM10 in five North
Western European cities, Atmos. Res., 214, 135–149,
https://doi.org/10.1016/J.ATMOSRES.2018.07.014, 2018.
Hart, J. E., Liao, X., Hong, B., Puett, R. C., Yanosky, J. D., Suh, H.,
Kioumourtzoglou, M. A., Spiegelman, D., and Laden, F.: The association of
long-term exposure to PM2.5 on all-cause mortality in the Nurses' Health
Study and the impact of measurement-error correction, Environmental Health, 14, 38, https://doi.org/10.1186/s12940-015-0027-6, 2015.
Huang, S., Gan, W., Yan, M., Zhang, X., Zhong, Y., and Yang, X.: Differential
UV–vis absorbance can characterize the reaction of organic matter with
ClO2, Water Res., 139, 442–449, https://doi.org/10.1016/J.WATRES.2018.04.006, 2018.
Huelin, F. E.: Investigations on the stability and determination of
dehydroascorbic acid, Aust. J. Biol. Sci., 2, 346–354,
https://doi.org/10.1071/BI9490346, 1949.
Isaacs, N. S. and Van Eldik, R.: A mechanistic study of the reduction of
quinones by ascorbic acid, J. Chem. Soc. Perk. T. 2, 8, 1465–1467,
https://doi.org/10.1039/a701072i, 1997.
Kamphus, M., Ettner-Mahl, M., Klimach, T., Drewnick, F., Keller, L., Cziczo, D. J., Mertes, S., Borrmann, S., and Curtius, J.: Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: single particle analysis during the Cloud and Aerosol Characterization Experiment (CLACE 6), Atmos. Chem. Phys., 10, 8077–8095, https://doi.org/10.5194/acp-10-8077-2010, 2010.
Keller, A., Kalbermatter, D. M., Wolfer, K., Specht, P., Steigmeier, P.,
Resch, J., Kalberer, M., Hammer, T., and Vasilatou, K.: The organic coating
unit, an all-in-one system for reproducible generation of secondary organic
matter aerosol, Aerosol Sci. Technol., 56, 947–958,
https://doi.org/10.1080/02786826.2022.2110448, 2022.
Koike, E. and Kobayashi, T.: Chemical and biological oxidative effects of
carbon black nanoparticles, Chemosphere, 65, 946–951,
https://doi.org/10.1016/j.chemosphere.2006.03.078, 2006.
Kostenidou, E., Pandis, S. N., Pathak, R. K., Pandis, S. N., Kostenidou, E.,
and Pandis, S. N.: An Algorithm for the Calculation of Secondary Organic
Aerosol Density Combining AMS and SMPS Data, Aerosol Sci. Tech., 41, 1002–1010, https://doi.org/10.1080/02786820701666270, 2007.
Künzi, L., Mertes, P., Schneider, S., Jeannet, N., Menzi, C., Dommen, J., Baltensperger, U., Prévôt, A. S. H., Salathe, M., Kalberer, M., and Geiser, M.: Responses of lung cells to realistic exposure of primary and aged carbonaceous aerosols, Atmos. Environ., 68, 143–150, https://doi.org/10.1016/j.atmosenv.2012.11.055, 2013.
Laden, F., Schwartz, J., Speizer, F. E., and Dockery, D. W.: Reduction in
fine particulate air pollution and mortality: Extended follow-up of the
Harvard Six Cities Study, Am. J. Resp. Crit. Care, 173, 667–672,
https://doi.org/10.1164/rccm.200503-443OC, 2006.
Lehman, S. E., Morris, A. S., Mueller, P. S., Salem, A. K., Grassian, V. H.,
and Larsen, S. C.: Silica nanoparticle-generated ROS as a predictor of
cellular toxicity: Mechanistic insights and safety by design, Environ. Sci.-Nano, 3, 56–66, https://doi.org/10.1039/c5en00179j, 2016.
Lepeule, J., Laden, F., Dockery, D., and Schwartz, J.: Chronic exposure to
fine particles and mortality: An extended follow-up of the Harvard six
cities study from 1974 to 2009, Environ. Health Persp., 120, 965–970,
https://doi.org/10.1289/ehp.1104660, 2012.
Li, N., Hao, M., Phalen, R. F., Hinds, W. C., and Nel, A. E.: Particulate air
pollutants and asthma: A paradigm for the role of oxidative stress in
PM-induced adverse health effects, Clin. Immunol., 109, 250–265,
https://doi.org/10.1016/j.clim.2003.08.006, 2003.
Lufthygiene Amt beider Basel: Luftqualität Nordwestschweiz,
https://luftqualitaet.ch/messdaten/datenarchiv/abfrage, last access: 7 January 2023.
McWhinney, R. D., Zhou, S., and Abbatt, J. P. D.: Naphthalene SOA: redox activity and naphthoquinone gas–particle partitioning, Atmos. Chem. Phys., 13, 9731–9744, https://doi.org/10.5194/acp-13-9731-2013, 2013.
Oberdörster, G., Oberdörster, E., and Oberdörster, J.:
Nanotoxicology: An emerging discipline evolving from studies of ultrafine
particles, Environ. Health Persp., 113, 823–839, https://doi.org/10.1289/ehp.7339, 2005.
Offer, S., Hartner, E., Di Bucchianico, S., Bisig, C., Bauer, S., Pantzke,
J., Zimmermann, E. J., Cao, X., Binder, S., Kuhn, E., Huber, A., Jeong, S.,
Käfer, U., Martens, P., Mesceriakovas, A., Bendl, J., Brejcha, R.,
Buchholz, A., Gat, D., Hohaus, T., Rastak, N., Jakobi, G., Kalberer, M.,
Kanashova, T., Hu, Y., Ogris, C., Marsico, A., Theis, F., Pardo, M.,
Gröger, T., Oeder, S., Orasche, J., Paul, A., Ziehm, T., Zhang, Z.-H.
H., Adam, T., Sippula, O., Sklorz, M., Schnelle-Kreis, J., Czech, H.,
Kiendler-Scharr, A., Rudich, Y., and Zimmermann, R.: Effect of Atmospheric
Aging on Soot Particle Toxicity in Lung Cell Models at the Air-Liquid
Interface: Differential Toxicological Impacts of Biogenic and Anthropogenic
Secondary Organic Aerosols (SOAs), Environ. Health Persp., 130, 1–19,
https://doi.org/10.1289/EHP9413, 2022.
Pietrogrande, M. C., Bertoli, I., Manarini, F., and Russo, M.: Ascorbate
assay as a measure of oxidative potential for ambient particles: Evidence
for the importance of cell-free surrogate lung fluid composition, Atmos.
Environ., 211, 103–112, https://doi.org/10.1016/j.atmosenv.2019.05.012, 2019.
Pietrogrande, M. C., Romanato, L., and Russo, M.: Synergistic and
Antagonistic Effects of Aerosol Components on Its Oxidative Potential as
Predictor of Particle Toxicity, Toxics, 10, 196, https://doi.org/10.3390/TOXICS10040196, 2022.
Prahalad, A. K., Inmon, J., Dailey, L. A., Madden, M. C., Ghio, A. J., and
Gallagher, J. E.: Air pollution particles mediated oxidative DNA base damage
in a cell free system and in human airway epithelial cells in relation to
particulate metal content and bioreactivity, Chem. Res. Toxicol., 14,
879–887, https://doi.org/10.1021/tx010022e, 2001.
Roginsky, V. A., Barsukova, T. K., and Stegmann, H. B.: Kinetics of redox
interaction between substituted quinones and ascorbate under aerobic
conditions, Chem.-Biol. Interact., 121, 177–197, https://doi.org/10.1016/S0009-2797(99)00099-X, 1999.
Salana, S., Wang, Y., Puthussery, J. V., and Verma, V.: A semi-automated instrument for cellular oxidative potential evaluation (SCOPE) of water-soluble extracts of ambient particulate matter, Atmos. Meas. Tech., 14, 7579–7593, https://doi.org/10.5194/amt-14-7579-2021, 2021.
Shen, J., Griffiths, P. T., Campbell, S. J., Utinger, B., Kalberer, M., and
Paulson, S. E.: Ascorbate oxidation by iron, copper and reactive oxygen
species: review, model development, and derivation of key rate constants,
Sci. Rep.-UK, 11, 1–14, https://doi.org/10.1038/s41598-021-86477-8, 2021.
Shi, Z., Vu, T., Kotthaus, S., Harrison, R. M., Grimmond, S., Yue, S., Zhu, T., Lee, J., Han, Y., Demuzere, M., Dunmore, R. E., Ren, L., Liu, D., Wang, Y., Wild, O., Allan, J., Acton, W. J., Barlow, J., Barratt, B., Beddows, D., Bloss, W. J., Calzolai, G., Carruthers, D., Carslaw, D. C., Chan, Q., Chatzidiakou, L., Chen, Y., Crilley, L., Coe, H., Dai, T., Doherty, R., Duan, F., Fu, P., Ge, B., Ge, M., Guan, D., Hamilton, J. F., He, K., Heal, M., Heard, D., Hewitt, C. N., Hollaway, M., Hu, M., Ji, D., Jiang, X., Jones, R., Kalberer, M., Kelly, F. J., Kramer, L., Langford, B., Lin, C., Lewis, A. C., Li, J., Li, W., Liu, H., Liu, J., Loh, M., Lu, K., Lucarelli, F., Mann, G., McFiggans, G., Miller, M. R., Mills, G., Monk, P., Nemitz, E., O'Connor, F., Ouyang, B., Palmer, P. I., Percival, C., Popoola, O., Reeves, C., Rickard, A. R., Shao, L., Shi, G., Spracklen, D., Stevenson, D., Sun, Y., Sun, Z., Tao, S., Tong, S., Wang, Q., Wang, W., Wang, X., Wang, X., Wang, Z., Wei, L., Whalley, L., Wu, X., Wu, Z., Xie, P., Yang, F., Zhang, Q., Zhang, Y., Zhang, Y., and Zheng, M.: Introduction to the special issue “In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)”, Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, 2019.
Steenhof, M., Gosens, I., Strak, M., Godri, K. J., Hoek, G., Cassee, F. R.,
Mudway, I. S., Kelly, F. J., Harrison, R. M., Lebret, E., Brunekreef, B.,
Janssen, N. A. H., and Pieters, R. H. H.: In vitro toxicity of particulate matter (PM) collected at different sites in the Netherlands is associated with PM composition, size fraction and oxidative potential - the RAPTES project, Part. Fibre Toxicol., 8, 26, https://doi.org/10.1186/1743-8977-8-26, 2011.
Steimer, S. S., Delvaux, A., Campbell, S. J., Gallimore, P. J., Grice, P., Howe, D. J., Pitton, D., Claeys, M., Hoffmann, T., and Kalberer, M.: Synthesis and characterisation of peroxypinic acids as proxies for highly oxygenated molecules (HOMs) in secondary organic aerosol, Atmos. Chem. Phys., 18, 10973–10983, https://doi.org/10.5194/acp-18-10973-2018, 2018.
Timonen, H., Aurela, M., Carbone, S., Saarnio, K., Frey, A., Saarikoski, S.,
Teinilä, K., Kulmala, M., and Hillamo, R.: Seasonal and diurnal changes
in inorganic ions, carbonaceous matter and mass in ambient aerosol particles
in an urban, background area, Boreal Environ. Res., 19, 71–86, https://helda.helsinki.fi/handle/10138/160095 (last access: 27 December 2022), 2014.
Tuet, W. Y., Chen, Y., Fok, S., Gao, D., Weber, R. J., Champion, J. A., and
Ng, N. L.: Chemical and cellular oxidant production induced by naphthalene
secondary organic aerosol (SOA): Effect of redox-active metals and
photochemical aging, Sci. Rep.-UK, 7, 1–10, https://doi.org/10.1038/s41598-017-15071-8, 2017.
Venkatachari, P., Hopke, P. K., Grover, B. D., and Eatough, D. J.:
Measurement of particle-bound reactive oxygen species in rubidoux aerosols,
J. Atmos. Chem., 50, 49–58, https://doi.org/10.1007/s10874-005-1662-z, 2005.
Wang, S., Zhao, Y., Chan, A. W. H., Yao, M., Chen, Z., and Abbatt, J. P. D.:
Organic Peroxides in Aerosol: Key Reactive Intermediates for Multiphase
Processes in the Atmosphere, Chem. Rev., 123, 1635–1679, https://doi.org/10.1021/acs.chemrev.2c00430, 2023.
Wang, Y., Hopke, P. K., Sun, L., Chalupa, D. C., and Utell, M. J.: Laboratory
and Field Testing of an Automated Atmospheric Particle-Bound Reactive Oxygen
Species Sampling-Analysis System, Journal of Toxicology, 2011, 419476,
https://doi.org/10.1155/2011/419476, 2011.
Weber, R. J., Orsini, D., Daun, Y., Lee, Y. N., Klotz, P. J., and Brechtel,
F.: A Particle-into-Liquid Collector for Rapid Measurement of Aerosol Bulk
Chemical Composition, Aerosol Sci. Tech., 35, 718–727, https://doi.org/10.1080/02786820152546761, 2010.
World Health Organisation: Ambient Air Pollution: A Global Assessment of
Exposure and Burden of Disease, World Health Organization,
https://www.who.int/publications/i/item/9789241511353
(last access: 8 February 2021), 2016.
Wragg, F. P. H., Fuller, S. J., Freshwater, R., Green, D. C., Kelly, F. J., and Kalberer, M.: An automated online instrument to quantify aerosol-bound reactive oxygen species (ROS) for ambient measurement and health-relevant aerosol studies, Atmos. Meas. Tech., 9, 4891–4900, https://doi.org/10.5194/amt-9-4891-2016, 2016.
Yang, A., Janssen, N. A. H., Brunekreef, B., Cassee, F. R., Hoek, G., and
Gehring, U.: Children's respiratory health and oxidative potential of PM2.5: the PIAMA birth cohort study, Occup. Environ. Med., 73, 154–160,
https://doi.org/10.1136/oemed-2015-103175, 2016.
Zhang, Z.-H., Hartner, E., Utinger, B., Gfeller, B., Paul, A., Sklorz, M., Czech, H., Yang, B. X., Su, X. Y., Jakobi, G., Orasche, J., Schnelle-Kreis, J., Jeong, S., Gröger, T., Pardo, M., Hohaus, T., Adam, T., Kiendler-Scharr, A., Rudich, Y., Zimmermann, R., and Kalberer, M.: Are reactive oxygen species (ROS) a suitable metric to predict toxicity of carbonaceous aerosol particles?, Atmos. Chem. Phys., 22, 1793–1809, https://doi.org/10.5194/acp-22-1793-2022, 2021.
Zhao, R., Kenseth, C. M., Huang, Y., Dalleska, N. F., Kuang, X. M., Chen,
J., Paulson, S. E., and Seinfeld, J. H.: Rapid Aqueous-Phase Hydrolysis of
Ester Hydroperoxides Arising from Criegee Intermediates and Organic Acids,
J. Phys. Chem. A, 122, 5190–5201, https://doi.org/10.1021/acs.jpca.8b02195, 2018.
Short summary
Exposure to atmospheric aerosols can lead to adverse health effect, but particle components responsible for this are unknown. Redox-active compounds, some with very short lifetimes, are considered to be a toxic class of compounds in particles. We developed the first online field instrument to quantify short-lived and stable redox-active compounds with a physiological assay based on ascorbic acid and a high time resolution and detection limits to allow measurements at unpolluted locations.
Exposure to atmospheric aerosols can lead to adverse health effect, but particle components...