Articles | Volume 16, issue 15
https://doi.org/10.5194/amt-16-3581-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/amt-16-3581-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The EarthCARE mission – science and system overview
Tobias Wehr
European Space Agency, ESA – ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, the Netherlands
deceased, 1 February 2023
Japan Aerospace Exploration Agency (JAXA), 305-8505 2 Chome–1–1, Sengen, Tsukuba, Ibaraki, Japan
Georgios Tzeremes
European Space Agency, ESA – ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, the Netherlands
Kotska Wallace
CORRESPONDING AUTHOR
European Space Agency, ESA – ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, the Netherlands
Hirotaka Nakatsuka
Japan Aerospace Exploration Agency (JAXA), 305-8505 2 Chome–1–1, Sengen, Tsukuba, Ibaraki, Japan
Yuichi Ohno
National Institute of Information and Communications Technology (NICT), 184-8795 4-2-1 Nukui-Kitamachi, Koganei, Tokyo, Japan
Rob Koopman
European Space Agency, ESA – ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, the Netherlands
Stephanie Rusli
European Space Agency, ESA – ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, the Netherlands
Maki Kikuchi
Japan Aerospace Exploration Agency (JAXA), 305-8505 2 Chome–1–1, Sengen, Tsukuba, Ibaraki, Japan
Michael Eisinger
European Space Agency, ESA – ECSAT, Fermi Avenue, Didcot, OX11 0FD, UK
Toshiyuki Tanaka
Japan Aerospace Exploration Agency (JAXA), 305-8505 2 Chome–1–1, Sengen, Tsukuba, Ibaraki, Japan
Masatoshi Taga
Japan Aerospace Exploration Agency (JAXA), 305-8505 2 Chome–1–1, Sengen, Tsukuba, Ibaraki, Japan
Patrick Deghaye
European Space Agency, ESA – ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, the Netherlands
Eichi Tomita
Japan Aerospace Exploration Agency (JAXA), 305-8505 2 Chome–1–1, Sengen, Tsukuba, Ibaraki, Japan
Dirk Bernaerts
European Space Agency, ESA – ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, the Netherlands
Related authors
No articles found.
Shunsuke Aoki, Takuji Kubota, and Francis Joseph Turk
EGUsphere, https://doi.org/10.5194/egusphere-2025-3596, https://doi.org/10.5194/egusphere-2025-3596, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The EarthCARE/CPR provides the first spaceborne Doppler velocity measurements, while the GPM/DPR excels at observing rain and heavy snow, which are more attenuated in CPR. Using coincident observations from both radars, we examined vertical motions in stratiform and convective precipitation systems. The synergy between the radars enables a more comprehensive understanding of hydrometeor fall speeds and vertical air motions across different precipitation types.
Bernat Puigdomènech Treserras, Pavlos Kollias, Alessandro Battaglia, Simone Tanelli, and Hirotaka Nakatsuka
EGUsphere, https://doi.org/10.5194/egusphere-2025-1680, https://doi.org/10.5194/egusphere-2025-1680, 2025
Short summary
Short summary
In this study, we examined how seasonal sunlight variations affect the pointing of EarthCARE’s radar antenna and introduced a correction based on surface Doppler signals. This correction reduces Doppler velocity biases and improves the accuracy of the measurements. The results confirm the importance of continuous pointing characterization to ensure the quality of EarthCARE’s observations of atmospheric dynamics.
Hajime Okamoto, Kaori Sato, Tomoaki Nishizawa, Yoshitaka Jin, Shota Ogawa, Hiroshi Ishimoto, Yuichiro Hagihara, EIji Oikawa, Maki Kikuchi, Masaki Satoh, and Wooosub Roh
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-103, https://doi.org/10.5194/amt-2024-103, 2024
Publication in AMT not foreseen
Short summary
Short summary
The article gives the descriptions of the Japan Aerospace Exploration Agency (JAXA) level 2 (L2) cloud mask and cloud particle type algorithms for CPR and ATLID onboard Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) satellite. The 355nm-multiple scattering polarization lidar was used to develop ATLID algorithm. Evaluations show the agreements for CPR-only, ATLID-only and CPR-ATLID synergy algorithms to be about 80%, 85% and 80%, respectively on average for about two EarthCARE orbits.
Hajime Okamoto, Kaori Sato, Tomoaki Nishizawa, Yoshitaka Jin, Takashi Nakajima, Minrui Wang, Masaki Satoh, Kentaroh Suzuki, Woosub Roh, Akira Yamauchi, Hiroaki Horie, Yuichi Ohno, Yuichiro Hagihara, Hiroshi Ishimoto, Rei Kudo, Takuji Kubota, and Toshiyuki Tanaka
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-101, https://doi.org/10.5194/amt-2024-101, 2024
Publication in AMT not foreseen
Short summary
Short summary
This article gives overviews of the JAXA L2 algorithms and products by Japanese science teams for EarthCARE. The algorithms provide corrected Doppler velocity, cloud particle shape and orientations, microphysics of clouds and aerosols, and radiative fluxes and heating rate. The retrievals by the algorithms are demonstrated and evaluated using NICAM/J-simulator outputs. The JAXA EarthCARE L2 products will bring new scientific knowledge about the clouds, aerosols, radiation and convections.
Woosub Roh, Masaki Satoh, Yuichiro Hagihara, Hiroaki Horie, Yuichi Ohno, and Takuji Kubota
Atmos. Meas. Tech., 17, 3455–3466, https://doi.org/10.5194/amt-17-3455-2024, https://doi.org/10.5194/amt-17-3455-2024, 2024
Short summary
Short summary
The advantage of the use of Doppler velocity in the categorization of the hydrometeors is that Doppler velocities suffer less impact from the attenuation of rain and wet attenuation on an antenna. The ground Cloud Profiling Radar observation of the radar reflectivity for the precipitation case is limited because of wet attenuation on an antenna. We found the main contribution to Doppler velocities is the terminal velocity of hydrometeors by analysis of simulation results.
Michael Eisinger, Fabien Marnas, Kotska Wallace, Takuji Kubota, Nobuhiro Tomiyama, Yuichi Ohno, Toshiyuki Tanaka, Eichi Tomita, Tobias Wehr, and Dirk Bernaerts
Atmos. Meas. Tech., 17, 839–862, https://doi.org/10.5194/amt-17-839-2024, https://doi.org/10.5194/amt-17-839-2024, 2024
Short summary
Short summary
The Earth Cloud Aerosol and Radiation Explorer (EarthCARE) is an ESA–JAXA satellite mission to be launched in 2024. We presented an overview of the EarthCARE processors' development, with processors developed by teams in Europe, Japan, and Canada. EarthCARE will allow scientists to evaluate the representation of cloud, aerosol, precipitation, and radiative flux in weather forecast and climate models, with the objective to better understand cloud processes and improve weather and climate models.
Woosub Roh, Masaki Satoh, Tempei Hashino, Shuhei Matsugishi, Tomoe Nasuno, and Takuji Kubota
Atmos. Meas. Tech., 16, 3331–3344, https://doi.org/10.5194/amt-16-3331-2023, https://doi.org/10.5194/amt-16-3331-2023, 2023
Short summary
Short summary
JAXA EarthCARE synthetic data (JAXA L1 data) were compiled using the global storm-resolving model (GSRM) NICAM (Nonhydrostatic ICosahedral
Atmospheric Model) simulation with 3.5 km horizontal resolution and the Joint-Simulator. JAXA L1 data are intended to support the development of JAXA retrieval algorithms for the EarthCARE sensor before launch of the satellite. The expected orbit of EarthCARE and horizontal sampling of each sensor were used to simulate the signals.
Yuichiro Hagihara, Yuichi Ohno, Hiroaki Horie, Woosub Roh, Masaki Satoh, and Takuji Kubota
Atmos. Meas. Tech., 16, 3211–3219, https://doi.org/10.5194/amt-16-3211-2023, https://doi.org/10.5194/amt-16-3211-2023, 2023
Short summary
Short summary
The CPR on the EarthCARE satellite is the first satellite-borne Doppler radar. We evaluated the effectiveness of horizontal integration and the unfolding method for the reduction of the Doppler error (the standard deviation of the random error) in the CPR_ECO product. The error was higher in the tropics than in the other latitudes due to frequent rain echo occurrence and limitation of its unfolding correction. If we use low-mode operation (high PRF), the errors become small enough.
Minrui Wang, Takashi Y. Nakajima, Woosub Roh, Masaki Satoh, Kentaroh Suzuki, Takuji Kubota, and Mayumi Yoshida
Atmos. Meas. Tech., 16, 603–623, https://doi.org/10.5194/amt-16-603-2023, https://doi.org/10.5194/amt-16-603-2023, 2023
Short summary
Short summary
SMILE (a spectral misalignment in which a shift in the center wavelength appears as a distortion in the spectral image) was detected during our recent work. To evaluate how it affects the cloud retrieval products, we did a simulation of EarthCARE-MSI forward radiation, evaluating the error in simulated scenes from a global cloud system-resolving model and a satellite simulator. Our results indicated that the error from SMILE was generally small and negligible for oceanic scenes.
Mayumi Yoshida, Keiya Yumimoto, Takashi M. Nagao, Taichu Y. Tanaka, Maki Kikuchi, and Hiroshi Murakami
Atmos. Chem. Phys., 21, 1797–1813, https://doi.org/10.5194/acp-21-1797-2021, https://doi.org/10.5194/acp-21-1797-2021, 2021
Short summary
Short summary
We developed a new aerosol satellite retrieval algorithm combining a numerical aerosol forecast. This is the first study that utilizes the assimilated model forecast of aerosol as an a priori estimate of the retrieval. Aerosol retrievals were improved by effectively incorporating both model and satellite information. By using the assimilated forecast as an a priori estimate, information from previous observations can be propagated to future retrievals, thus leading to better retrieval accuracy.
Cited articles
Chepfer, H., Noel, V., Winker, D., and Chiriaco, M.: Where and when will we
observe cloud changes due to climate warming?, Geophys. Res. Lett.,
41, 8387–8395, https://doi.org/10.1002/2014GL061792, 2014. a
Cole, J. N. S., Barker, H. W., Qu, Z., Villefranque, N., and Shephard, M. W.: Broadband Radiative Quantities for the EarthCARE Mission: The ACM-COM and ACM-RT Products, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2022-304, in review, 2022. a, b
Cosentino, A., D'Ottavi, A., Sapia, A., and Suetta, E.: Spaceborne lasers
development for ALADIN and ATLID instruments, in: 2012 IEEE International
Geoscience and Remote Sensing Symposium, 5673–5676,
https://doi.org/10.1109/IGARSS.2012.6352324, 2012. a
do Carmo, J. P., de Villele, G., Wallace, K., Lefebvre, A., Ghose, K., Kanitz,
T., Chassat, F., Corselle, B., Belhadj, T., and Bravetti, P.: ATmospheric
LIDar (ATLID): Pre-Launch Testing and Calibration of the European Space
Agency Instrument That Will Measure Aerosols and Thin Clouds in the
Atmosphere, Atmosphere, 12, 76, https://doi.org/10.3390/atmos12010076, 2021. a
Docter, N., Preusker, R., Filipitsch, F., Kritten, L., Schmidt, F., and Fischer, J.: Aerosol optical depth retrieval from the EarthCARE multi-spectral imager: the M-AOT product, EGUsphere, 2023, 1–31, https://doi.org/10.5194/egusphere-2023-150, 2023. a
Donovan, D., van Zadelhoff, G.-J., and Wang, P.: The ATLID L2a
profile processor (A-AER, A-EBD, A-TC and A-ICE products), Atmos. Meas. Tech., in preparation, 2022. a
Donovan, D. P., Kollias, P., Velázquez Blázquez, A., and van Zadelhoff, G.-J.: The Generation of EarthCARE L1 Test Data sets Using Atmospheric Model Data Sets, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-384, 2023. a, b
Fisher, J., Baumback, M. M., Bowles, J. H., Grossmann, J. M., and Antoniades,
J. A.: Comparison of low-cost hyperspectral sensors, in: Imaging
Spectrometry IV, edited by: Descour, M. R. and Shen, S. S., vol. 3438, 23–30, International Society for Optics and Photonics, SPIE,
https://doi.org/10.1117/12.328112, 1998. a
Haarig, M., Hünerbein, A., Wandinger, U., Docter, N., Bley, S., Donovan, D., and van Zadelhoff, G.-J.: Cloud top heights and aerosol columnar properties from combined EarthCARE lidar and imager observations: the AM-CTH and AM-ACD products, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-327, 2023. a, b
Hagihara, Y., Ohno, Y., Horie, H., Roh, W., Satoh, M., Kubota, T., and Oki, R.:
Assessments of Doppler Velocity Errors of EarthCARE Cloud Profiling Radar
Using Global Cloud System Resolving Simulations: Effects of Doppler
Broadening and Folding, IEEE Trans. Geosci. Remote Sens., 60, 1–9, 2021. a
Hagihara, Y., Ohno, Y., Horie, H., Roh, W., Satoh, M., and Kubota, T.: Global evaluation of Doppler velocity errors of EarthCARE Cloud Profiling Radar using global storm-resolving simulation, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1255, 2022. a
Harries, J. E., Russell, J. E., Hanafin, J. A., Brindley, H., Futyan, J.,
Rufus, J., Kellock, S., Matthews, G., Wrigley, R., Last, A., Mueller, J.,
Mossavati, R., Ashmall, J., Sawyer, E., Parker, D., Caldwell, M., Allan,
P. M., Smith, A., Bates, M. J., Coan, B., Stewart, B. C., Lepine, D. R.,
Cornwall, L. A., Ricketts, D. R. C. M. J., Drummond, D., Smart, D., Cutler,
R., Dewitte, S., Clerbaux, N., Gonzalez, L., Ipe, A., Bertrand, C., Joukoff,
A., Crommelynck, D., Nelms, N., LLewellyn-Jones, D. T., Butcher, G., Smith,
G. L., Szewczyk, Z. P., Mlynczak, P. E., Slingo, A., Allan, R. P., and
Ringer, M. A.: The Geostationary Earth Radiation Budget Project, B.
Am. Meteorol. Soc., 86, 945–960, https://doi.org/10.1175/BAMS-86-7-945, 2005. a
Heliere, A., Wallace, K., do Cormo, J. P., Eisinger, M., and Lefebvre, A.:
EarthCARE instruments description, European Space Agency,
https://earth.esa.int/eogateway/documents/20142/37627/EarthCARE-instrument-descriptions.pdf (last access: 3 July 2023),
2017. a
Hünerbein, A., Bley, S., Horn, S., Deneke, H., and Walther, A.: Cloud mask algorithm from the EarthCARE multi-spectral imager: the M-CM products, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1240, 2022. a
Hünerbein, A., Bley, S., Deneke, H., Meirink, J. F., van Zadelhoff, G.-J., and Walther, A.: Cloud optical and physical properties retrieval from EarthCARE multi-spectral imager: the M-COP products, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-305, 2023. a
Illingworth, A. J., Barker, H. W., Beljaars, A., Ceccaldi, M., Chepfer, H.,
Clerbaux, N., Cole, J., Delanoë, J., Domenech, C., Donovan, D. P.,
Fukuda, S., Hirakata, M., Hogan, R. J., Huenerbein, A., Kollias, P., Kubota,
T., Nakajima, T., Nakajima, T. Y., Nishizawa, T., Ohno, Y., Okamoto, H., Oki,
R., Sato, K., Satoh, M., Shephard, M. W., Velázquez-Blázquez, A.,
Wandinger, U., Wehr, T., and van Zadelhoff, G.-J.: The EarthCARE Satellite:
The Next Step Forward in Global Measurements of Clouds, Aerosols,
Precipitation, and Radiation, B. Am. Meteorol.
Soc., 96, 1311–1332, https://doi.org/10.1175/BAMS-D-12-00227.1, 2015. a
IPCC 2021: Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan,
C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M.,
Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B.: Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA,
https://doi.org/10.1017/9781009157896, in press, 2021. a
Irbah, A., Delanoë, J., van Zadelhoff, G.-J., Donovan, D. P., Kollias, P., Puigdomènech Treserras, B., Mason, S., Hogan, R. J., and Tatarevic, A.: The classification of atmospheric hydrometeors and aerosols from the EarthCARE radar and lidar: the A-TC, C-TC and AC-TC products, Atmos. Meas. Tech., 16, 2795–2820, https://doi.org/10.5194/amt-16-2795-2023, 2023. a, b
Janisková, M. and Fielding, M. D.: Direct 4D-Var assimilation of space-borne
cloud radar and lidar observations. Part II: Impact on analysis and
subsequent forecast, Q. J. Roy. Meteorol. Soc.,
146, 3900–3916, https://doi.org/10.1002/qj.3879, 2020. a, b
Kato, S., Rose, F. G., Sun-Mack, S., Miller, W. F., Chen, Y., Rutan, D. A.,
Stephens, G. L., Loeb, N. G., Minnis, P., Wielicki, B. A., Winker, D. M.,
Charlock, T. P., Stackhouse, P. W., Xu, K.-M., and Collins, W. D.:
Improvements of top-of-atmosphere and surface irradiance computations with
CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties, J. Geophys. Res., 116, D19209, https://doi.org/10.1029/2011JD016050, 2011. a
Kollias, P., Puidgomènech Treserras, B., Battaglia, A., Borque, P., and Tatarevic, A.: Processing reflectivity and Doppler velocity from EarthCARE’s cloud profiling radar: the C-FMR, C-CD and C-APC products, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1284, 2022. a
Kudo, R., Nishizawa, T., and Aoyagi, T.: Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements, Atmos. Meas. Tech., 9, 3223–3243, https://doi.org/10.5194/amt-9-3223-2016, 2016. a
Mason, S. L., Hogan, R. J., Bozzo, A., and Pounder, N. L.: A unified synergistic retrieval of clouds, aerosols and precipitation from EarthCARE: the ACM-CAP product, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1195, 2022. a, b, c
Masunaga, H., Matsui, T., Tao, W.-K., Hou, A. Y., Kummerow, C. D., Nakajima,
T., Bauer, P., Olson, W. S., Sekiguchi, M., and Nakajima, T. Y.: Satellite
data simulator unit: A multisensor, multispectral satellite simulator
package, B. Am. Meteorol. Soc., 91, 1625–1632,
2010. a
Matsui, T., Iguchi, T., Li, X., Han, M., Tao, W.-K., Petersen, W., L'Ecuyer, T., Meneghini, R., Olson, W., Kummerow, C. D., Hou, A. Y., Schwaller, M. R., Stocker, E. F., and Kwiatkowski, J.: GPM satellite
simulator over ground validation sites, B. Am.
Meteorol. Soc., 94, 1653–1660, https://doi.org/10.1175/BAMS-D-12-00160.1, 2013. a
Mroz, K., Treserras, B. P., Battaglia, A., Kollias, P., Tatarevic, A., and Tridon, F.: Cloud and precipitation microphysical retrievals from the EarthCARE Cloud Profiling Radar: the C-CLD product, Atmos. Meas. Tech., 16, 2865–2888, https://doi.org/10.5194/amt-16-2865-2023, 2023. a
Nakajima, T. and Tanaka, M.: Matrix formulations for the transfer of solar
radiation in a plane-parallel scattering atmosphere, J. Quant.
Spectrosc. Ra., 35, 13–21, 1986. a
Nakajima, T. and Tanaka, M.: Algorithms for radiative intensity calculations in
moderately thick atmospheres using a truncation approximation, J.
Quant. Spectrosc. Ra., 40, 51–69, 1988. a
Nakajima, T. Y., Ishida, H., Nagao, T. M., Hori, M., Letu, H., Higuchi, R.,
Tamaru, N., Imoto, N., and Yamazaki, A.: Theoretical basis of the algorithms
and early phase results of the GCOM-C (Shikisai) SGLI cloud products,
Prog. Earth Planet. Sci., 6, 1–25, 2019. a
Nakatsuka, H., Kimura, T., Seki, Y., Kadosaki, G., Iide, Y., Okada, K.,
Yamaguchi, J., Takahashi, N., Ohno, Y., Horie, H., and Sato, K.: Design and
development status of the EarthCARE Cloud Profiling Radar, in: 2012 IEEE
International Geoscience and Remote Sensing Symposium, 2415–2418,
https://doi.org/10.1109/IGARSS.2012.6351004, 2012. a
Nishizawa, T., Sugimoto, N., Matsui, I., Shimizu, A., Tatarov, B., and Okamoto,
H.: Algorithm to retrieve aerosol optical properties from
high-spectral-resolution lidar and polarization Mie-scattering lidar
measurements, IEEE T. Geosci. Remote Sens., 46,
4094–4103, 2008. a
Oikawa, E., Nakajima, T., and Winker, D.: An evaluation of the shortwave direct
aerosol radiative forcing using CALIOP and MODIS observations, J.
Geophys. Res.-Atmos., 123, 1211–1233, 2018. a
Okamoto, H., Iwasaki, S., Yasui, M., Horie, H., Kuroiwa, H., and Kumagai, H.:
An algorithm for retrieval of cloud microphysics using 95-GHz cloud radar and
lidar, J. Geophys. Res.-Atmos., 108, D7, https://doi.org/10.1029/2001JD001225, 2003. a
Okamoto, H., Nishizawa, T., Takemura, T., Kumagai, H., Kuroiwa, H., Sugimoto,
N., Matsui, I., Shimizu, A., Emori, S., Kamei, A., and Nakajima, T.: Vertical cloud
structure observed from shipborne radar and lidar: Midlatitude case study
during the MR01/K02 cruise of the research vessel Mirai, J.
Geophys. Res.-Atmos., 112, D8, https://doi.org/10.1029/2006JD007628, 2007. a
Okamoto, H., Nishizawa, T., Takemura, T., Sato, K., Kumagai, H., Ohno, Y.,
Sugimoto, N., Shimizu, A., Matsui, I., and Nakajima, T.: Vertical cloud
properties in the tropical western Pacific Ocean: Validation of the
CCSR/NIES/FRCGC GCM by shipborne radar and lidar, J. Geophys.
Res.-Atmos., 113, D24, https://doi.org/10.1029/2008JD009812, 2008. a
Okamoto, H., Sato, K., Oikawa, E., Ishimoto, H., Ohno, Y., Horie, H., Hagihara,
Y., Nishizawa, T., Kudo, R., Higurashi, A., Jin, Y., Nakajima, T. Y., Wang,
M., Roh, W., Satoh, M., Suzuki, K., Kubota, T., Yamauchi, A., Sekiguchi, M.,
and Nagao, T. M.: New perspectives of clouds, radiation and dynamics from
EarthCARE observation, Atmos. Meas. Tech., in preparation, 2023. a, b, c, d
Okata, M., Nakajima, T., Suzuki, K., Inoue, T., Nakajima, T., and Okamoto, H.:
A study on radiative transfer effects in 3-D cloudy atmosphere using
satellite data, J. Geophys. Res.-Atmos., 122, 443–468,
2017. a
Proulx, C., Allard, M., T. Pope, B. T., Williamson, F., Julien, C., Larouche, C., Delderfield, J., and Parker, D.: Performance characterization of the EarthCARE BBR Detectors, Proc. SPIE 10565, International Conference on Space Optics – ICSO 2010, 1056508 (20 November 2017), https://doi.org/10.1117/12.2309219, 2017. a
Qu, Z., Donovan, D. P., Barker, H. W., Cole, J. N. S., Shephard, M. W., and Huijnen, V.: Numerical Model Generation of Test Frames for Pre-launch Studies of EarthCARE’s Retrieval Algorithms and Data Management System, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2022-300, in review, 2022. a, b
Qu, Z., Barker, H. W., Cole, J. N. S., and Shephard, M. W.: Across-track extension of retrieved cloud and aerosol properties for the EarthCARE mission: the ACMB-3D product, Atmos. Meas. Tech., 16, 2319–2331, https://doi.org/10.5194/amt-16-2319-2023, 2023. a, b
Roh, W., Satoh, M., Hagihara, Y., Ohno, Y., and Horie, H.: Investigation of the
performances of the EarthCARE CPR using NICAM and the ground data in Japan,
EGUSphere [preprint], https://doi.org/10.5194/amt-16-3331-2023, 2023. a
Sekiguchi, M. and Nakajima, T.: A k-distribution-based radiation code and its
computational optimization for an atmospheric general circulation model,
J. Quant. Spectrosc. Ra., 109, 2779–2793,
2008. a
Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M.,
Hargreaves, J. C., Hegerl, G., Klein, S. A., Marvel, K. D., Rohling, E. J.,
Watanabe, M., Andrews, T., Braconnot, P., Bretherton, C. S., Foster, G. L.,
Hausfather, Z., von der Heydt, A. S., Knutti, R., Mauritsen, T., Norris,
J. R., Proistosescu, C., Rugenstein, M., Schmidt, G. A., Tokarska, K. B., and
Zelinka, M. D.: An Assessment of Earth's Climate Sensitivity Using Multiple
Lines of Evidence, Rev. Geophys., 58, e2019RG000678,
https://doi.org/10.1029/2019RG000678, 2020. a
Stephens, G., Winker, D., Pelon, J., Trepte, C., Vane, D., Yuhas, C.,
L’Ecuyer, T., and Lebsock, M.: CloudSat and CALIPSO within the A-Train: Ten
Years of Actively Observing the Earth System, B. Am.
Meteorol. Soc., 99, 569–581, https://doi.org/10.1175/BAMS-D-16-0324.1, 2018. a, b
Stephens, G. L., Vane, D. G., Tanelli, S., Im, E., Durden, S., Rokey, M.,
Reinke, D., Partain, P., Mace, G. G., Austin, R., L'Ecuyer, T., Haynes, J.,
Lebsock, M., Suzuki, K., Waliser, D., Wu, D., Kay, J., Gettelman, A., Wang,
Z., and Marchand, R.: CloudSat mission: Performance and early science after
the first year of operation, J. Geophys. Res.-Atmos.,
113, D8, https://doi.org/10.1029/2008JD009982, 2008. a
Straume, A., Rennie, M., Isaksen, L., de Kloe, J., Marseille, G.-J.,
Stoffelen, A., Flament, T., Stieglitz, H., Dabas, A., Huber, D.,
Reitebuch, O., Lemmerz, C., Lux, O., Marksteiner, U., Weiler, F.,
Witschas, B., Meringer, M., Schmidt, K., Nikolaus, I., Geiss, A.,
Flamant, P., Kanitz, T., Wernham, D., von Bismarck, J., Bley, S.,
Fehr, T., Floberghagen, R., and Parinello, T.: ESA's Space-Based
Doppler Wind Lidar Mission Aeolus – First Wind and Aerosol Product Assessment
Results, EPJ Web Conf., 237, 01007, https://doi.org/10.1051/epjconf/202023701007,
2020. a
Takahashi, H., Lebsock, M. D., Richardson, M., Marchand, R., and Kay, J. E.:
When Will Spaceborne Cloud Radar Detect Upward Shifts in Cloud Heights?,
J. Geophys. Res.-Atmos., 124, 7270–7285,
https://doi.org/10.1029/2018JD030242, 2019. a
Vaillant de Guélis, T., Chepfer, H., Guzman, R., Bonazzola, M., Winker,
D. M., and Noel, V.: Space lidar observations constrain longwave cloud
feedback, Sci. Rep., 8, 1–8, https://doi.org/10.1038/s41598-018-34943-1,
2018. a
van Zadelhoff, G.-J., Donovan, D. P., and Wang, P.: Detection of aerosol and cloud features for the EarthCARE lidar ATLID: the A-FM product, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-145, 2023a. a
van Zadelhoff, G.-J., Barker, H. W., Baudrez, E., Bley, S., Clerbaux, N., Cole, J. N. S., de Kloe, J., Docter, N., Domenech, C., Donovan, D. P., Dufresne, J.-L., Eisinger, M., Fischer, J., García-Marañón, R., Haarig, M., Hogan, R. J., Hünerbein, A., Kollias, P., Koopman, R.,
Madenach, N., Mason, S. L., Preusker, R., Puigdomènech Treserras, B., Qu, Z., Ruiz-Saldaña, M., Shephard, M., Velázquez-Blazquez, A., Villefranque, N., Wandinger, U., Wang, P., and Wehr, T.: EarthCARE level-2 demonstration products from simulated scenes, Zenodo [data set], https://doi.org/10.5281/zenodo.7117115, 2023b. a
Wallace, K., Perez-Albinana, A., Lemanczyk, J., Heliere, A., Wehr, T.,
Eisinger, M., Lefebvre, A., Nakatsuka, H., and Tomita, E.: The EarthCARE
satellite payload, in: Sensors, Systems, and Next-Generation Satellites
XVIII, edited by: Meynart, R., Neeck, S. P., and Shimoda, H., vol. 9241, p.
92410F, International Society for Optics and Photonics, SPIE,
https://doi.org/10.1117/12.2067208, 2014.
a
Wallace, K., Hélière, A., Lefebvre, A., Eisinger, M., and Wehr, T.:
Status of ESA's EarthCARE mission, passive instruments payload, in: Earth
Observing Systems XXI, edited by: Butler, J. J., Xiong, X. J., and Gu, X.,
vol. 9972, p. 997214, International Society for Optics and Photonics, SPIE,
https://doi.org/10.1117/12.2236498, 2016. a
Wandinger, U., Floutsi, A. A., Baars, H., Haarig, M., Ansmann, A., Hünerbein, A., Docter, N., Donovan, D., van Zadelhoff, G.-J., Mason, S., and Cole, J.: HETEAC – The Hybrid End-To-End Aerosol Classification model for EarthCARE, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1241, 2022. a, b
Wandinger, U., Haarig, M., Baars, H., Donovan, D., and van Zadelhoff, G.-J.: Cloud top heights and aerosol layer properties from EarthCARE lidar observations: the A-CTH and A-ALD products, EGUSphere [preprint], https://doi.org/10.5194/egusphere-2023-748, 2023. a
Wang, M., Nakajima, T. Y., Roh, W., Satoh, M., Suzuki, K., Kubota, T., and Yoshida, M.: Evaluation of the smile effect on the Earth Clouds, Aerosols and Radiation Explorer (EarthCARE)/Multi-Spectral Imager (MSI) cloud product, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-736, 2022. a
Wehr, T. (Ed.): EarthCARE Mission Requirements Document, Earth and Mission
Science Division, European Space Agency,
https://doi.org/10.5270/esa.earthcare-mrd.2006, 2006. a
Weiler, F., Kanitz, T., Wernham, D., Rennie, M., Huber, D., Schillinger, M., Saint-Pe, O., Bell, R., Parrinello, T., and Reitebuch, O.: Characterization of dark current signal measurements of the ACCDs used on board the Aeolus satellite, Atmos. Meas. Tech., 14, 5153–5177, https://doi.org/10.5194/amt-14-5153-2021, 2021. a
Wernham, D., Alves, J., Pettazzi, F., and Tighe, A. P.: Laser-induced
contamination mitigation on the ALADIN laser for ADM-Aeolus, in:
Laser-Induced Damage in Optical Materials: 2010, edited by: Exarhos, G. J.,
Gruzdev, V. E., Menapace, J. A., Ristau, D., and Soileau, M. J., vol. 7842,
394 – 405, International Society for Optics and Photonics, SPIE,
https://doi.org/10.1117/12.867268, 2010. a
Wielicki, B. A., Barkstrom, B. R., Harrison, E. F., LeeIII, R. B., Smith,
G. L., and Cooper, J. E.: Clouds and the Earth's Radiant Energy System
(CERES):An Earth Observing System Experiment, B. Am. Meteorol. Soc., 77,
853–868, 1996. a
Winker, D., Chepfer, H., Noel, V., and Cai, X.: Observational Constraints on
Cloud Feedbacks: The Role of Active Satellite Sensors, Surv. Geophys., 38,
1483–1508, https://doi.org/10.1007/s10712-017-9452-0, 2017. a
Winker, D. M., Tackett, J. L., Getzewich, B. J., Liu, Z., Vaughan, M. A., and Rogers, R. R.: The global 3-D distribution of tropospheric aerosols as characterized by CALIOP, Atmos. Chem. Phys., 13, 3345–3361, https://doi.org/10.5194/acp-13-3345-2013, 2013. a
Yamauchi, A., Suzuki, K., Oikawa, E., Sekiguchi, M., and Nagao, T. M.: Description and validation of the Japanese algorithms for radiative flux and heating rate products with all four EarthCARE instruments, EGUSphere, in preparation, 2023. a
Executive editor
The paper provides the general overview on the upcoming EarthCARE mission, which carries a unique suite of active and passive instruments for aerosol, cloud and radiation observations. It is thought to be the introductory paper for the AMT Special Issue "EarthCARE Level 2 algorithms and data products".
The paper provides the general overview on the upcoming EarthCARE mission, which carries a...
Short summary
The EarthCARE satellite is due for launch in 2024. It includes four scientific instruments to measure global vertical profiles of aerosols, clouds and precipitation properties together with radiative fluxes and derived heating rates. The mission's scientific requirements, the satellite and the ground segment are described. In particular, the four scientific instruments and their performance are described at the level of detail required by mission data users.
The EarthCARE satellite is due for launch in 2024. It includes four scientific instruments to...
Special issue