Articles | Volume 16, issue 3
https://doi.org/10.5194/amt-16-825-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-825-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An optimised organic carbon ∕ elemental carbon (OC ∕ EC) fraction separation method for radiocarbon source apportionment applied to low-loaded Arctic aerosol filters
Martin Rauber
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Gary Salazar
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Karl Espen Yttri
Department of Atmospheric and Climate Research, NILU – Norwegian Institute for Air Research, Kjeller, Norway
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Related authors
No articles found.
Sarah Ann Rowan, Marc Luetscher, Thomas Laemmel, Anna Harrison, Sönke Szidat, and Franziska A. Lechleitner
Biogeosciences, 22, 6173–6203, https://doi.org/10.5194/bg-22-6173-2025, https://doi.org/10.5194/bg-22-6173-2025, 2025
Short summary
Short summary
We explored CO2 from the soil to subsurface at Milandre cave, finding very high concentrations at all depths. While forest soils produced modern CO2 year-round, cave and meadow soil CO2 influences vary with temperature-controlled cave ventilation, with older CO2 input in winter from old organic matter stored underground. These findings show that CO2 fluxes in karst systems are highly dynamic, and a better understanding of them is important for accurate carbon cycle modelling.
Giulia Zazzeri, Lukas Wacker, Negar Haghipour, Philip Gautschi, Thomas Laemmel, Sönke Szidat, and Heather Graven
Atmos. Meas. Tech., 18, 319–325, https://doi.org/10.5194/amt-18-319-2025, https://doi.org/10.5194/amt-18-319-2025, 2025
Short summary
Short summary
Radiocarbon (14C) is an optimal tracer of methane (CH4) emissions, as 14C measurements enable distinguishing between fossil methane and biogenic methane. However, these measurements are particularly challenging, mainly due to technical difficulties in the sampling procedure. We made the sample extraction much simpler and time efficient, providing a new technology that can be used by any research group, with the goal of expanding 14C measurements for an improved understanding of methane sources.
Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Changliu Wu, Fang Cao, Sönke Szidat, and Yanlin Zhang
Atmos. Chem. Phys., 25, 73–91, https://doi.org/10.5194/acp-25-73-2025, https://doi.org/10.5194/acp-25-73-2025, 2025
Short summary
Short summary
Reports on molecular-level knowledge of high-temporal-resolution particulate matter ≤2.5 µm in diameter (PM2.5) on hazy days are limited. We investigated various PM2.5 species and their sources. The results show biomass burning (BB) was the main source of organic carbon. Moreover, BB enhanced fungal spore emissions and secondary aerosol formation. The contribution of non-fossil sources increased with increasing haze pollution, suggesting BB may be an important driver of haze events in winter.
Gabriel Pereira Freitas, Ben Kopec, Kouji Adachi, Radovan Krejci, Dominic Heslin-Rees, Karl Espen Yttri, Alun Hubbard, Jeffrey M. Welker, and Paul Zieger
Atmos. Chem. Phys., 24, 5479–5494, https://doi.org/10.5194/acp-24-5479-2024, https://doi.org/10.5194/acp-24-5479-2024, 2024
Short summary
Short summary
Bioaerosols can participate in ice formation within clouds. In the Arctic, where global warming manifests most, they may become more important as their sources prevail for longer periods of the year. We have directly measured bioaerosols within clouds for a full year at an Arctic mountain site using a novel combination of cloud particle sampling and single-particle techniques. We show that bioaerosols act as cloud seeds and may influence the presence of ice within clouds.
Karl Espen Yttri, Are Bäcklund, Franz Conen, Sabine Eckhardt, Nikolaos Evangeliou, Markus Fiebig, Anne Kasper-Giebl, Avram Gold, Hans Gundersen, Cathrine Lund Myhre, Stephen Matthew Platt, David Simpson, Jason D. Surratt, Sönke Szidat, Martin Rauber, Kjetil Tørseth, Martin Album Ytre-Eide, Zhenfa Zhang, and Wenche Aas
Atmos. Chem. Phys., 24, 2731–2758, https://doi.org/10.5194/acp-24-2731-2024, https://doi.org/10.5194/acp-24-2731-2024, 2024
Short summary
Short summary
We discuss carbonaceous aerosol (CA) observed at the high Arctic Zeppelin Observatory (2017 to 2020). We find that organic aerosol is a significant fraction of the Arctic aerosol, though less than sea salt aerosol and mineral dust, as well as non-sea-salt sulfate, originating mainly from anthropogenic sources in winter and from natural sources in summer, emphasizing the importance of wildfires for biogenic secondary organic aerosol and primary biological aerosol particles observed in the Arctic.
Sudip Acharya, Maximilian Prochnow, Thomas Kasper, Linda Langhans, Peter Frenzel, Paul Strobel, Marcel Bliedtner, Gerhard Daut, Christopher Berndt, Sönke Szidat, Gary Salazar, Antje Schwalb, and Roland Zech
E&G Quaternary Sci. J., 72, 219–234, https://doi.org/10.5194/egqsj-72-219-2023, https://doi.org/10.5194/egqsj-72-219-2023, 2023
Short summary
Short summary
This study presents a palaeoenvironmental record from Lake Höglwörth, Bavaria, Germany. Before 870 CE peat deposits existed. Erosion increased from 1240 to 1380 CE, followed by aquatic productivity and anoxia from 1310 to 1470 CE. Increased allochthonous input and a substantial shift in the aquatic community in 1701 were caused by construction of a mill. Recent anoxia has been observed since the 1960s.
Jean-Philippe Putaud, Enrico Pisoni, Alexander Mangold, Christoph Hueglin, Jean Sciare, Michael Pikridas, Chrysanthos Savvides, Jakub Ondracek, Saliou Mbengue, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Laurent Poulain, Dominik van Pinxteren, Hartmut Herrmann, Andreas Massling, Claus Nordstroem, Andrés Alastuey, Cristina Reche, Noemí Pérez, Sonia Castillo, Mar Sorribas, Jose Antonio Adame, Tuukka Petaja, Katrianne Lehtipalo, Jarkko Niemi, Véronique Riffault, Joel F. de Brito, Augustin Colette, Olivier Favez, Jean-Eudes Petit, Valérie Gros, Maria I. Gini, Stergios Vratolis, Konstantinos Eleftheriadis, Evangelia Diapouli, Hugo Denier van der Gon, Karl Espen Yttri, and Wenche Aas
Atmos. Chem. Phys., 23, 10145–10161, https://doi.org/10.5194/acp-23-10145-2023, https://doi.org/10.5194/acp-23-10145-2023, 2023
Short summary
Short summary
Many European people are still exposed to levels of air pollution that can affect their health. COVID-19 lockdowns in 2020 were used to assess the impact of the reduction in human mobility on air pollution across Europe by comparing measurement data with values that would be expected if no lockdown had occurred. We show that lockdown measures did not lead to consistent decreases in the concentrations of fine particulate matter suspended in the air, and we investigate why.
Christine D. Groot Zwaaftink, Wenche Aas, Sabine Eckhardt, Nikolaos Evangeliou, Paul Hamer, Mona Johnsrud, Arve Kylling, Stephen M. Platt, Kerstin Stebel, Hilde Uggerud, and Karl Espen Yttri
Atmos. Chem. Phys., 22, 3789–3810, https://doi.org/10.5194/acp-22-3789-2022, https://doi.org/10.5194/acp-22-3789-2022, 2022
Short summary
Short summary
We investigate causes of a poor-air-quality episode in northern Europe in October 2020 during which EU health limits for air quality were vastly exceeded. Such episodes may trigger measures to improve air quality. Analysis based on satellite observations, transport simulations, and surface observations revealed two sources of pollution. Emissions of mineral dust in Central Asia and biomass burning in Ukraine arrived almost simultaneously in Norway, and transport continued into the Arctic.
Stephen M. Platt, Øystein Hov, Torunn Berg, Knut Breivik, Sabine Eckhardt, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Markus Fiebig, Rebecca Fisher, Georg Hansen, Hans-Christen Hansson, Jost Heintzenberg, Ove Hermansen, Dominic Heslin-Rees, Kim Holmén, Stephen Hudson, Roland Kallenborn, Radovan Krejci, Terje Krognes, Steinar Larssen, David Lowry, Cathrine Lund Myhre, Chris Lunder, Euan Nisbet, Pernilla B. Nizzetto, Ki-Tae Park, Christina A. Pedersen, Katrine Aspmo Pfaffhuber, Thomas Röckmann, Norbert Schmidbauer, Sverre Solberg, Andreas Stohl, Johan Ström, Tove Svendby, Peter Tunved, Kjersti Tørnkvist, Carina van der Veen, Stergios Vratolis, Young Jun Yoon, Karl Espen Yttri, Paul Zieger, Wenche Aas, and Kjetil Tørseth
Atmos. Chem. Phys., 22, 3321–3369, https://doi.org/10.5194/acp-22-3321-2022, https://doi.org/10.5194/acp-22-3321-2022, 2022
Short summary
Short summary
Here we detail the history of the Zeppelin Observatory, a unique global background site and one of only a few in the high Arctic. We present long-term time series of up to 30 years of atmospheric components and atmospheric transport phenomena. Many of these time series are important to our understanding of Arctic and global atmospheric composition change. Finally, we discuss the future of the Zeppelin Observatory and emerging areas of future research on the Arctic atmosphere.
Vaios Moschos, Martin Gysel-Beer, Robin L. Modini, Joel C. Corbin, Dario Massabò, Camilla Costa, Silvia G. Danelli, Athanasia Vlachou, Kaspar R. Daellenbach, Sönke Szidat, Paolo Prati, André S. H. Prévôt, Urs Baltensperger, and Imad El Haddad
Atmos. Chem. Phys., 21, 12809–12833, https://doi.org/10.5194/acp-21-12809-2021, https://doi.org/10.5194/acp-21-12809-2021, 2021
Short summary
Short summary
This study provides a holistic approach to studying the spectrally resolved light absorption by atmospheric brown carbon (BrC) and black carbon using long time series of daily samples from filter-based measurements. The obtained results provide (1) a better understanding of the aerosol absorption profile and its dependence on BrC and on lensing from less absorbing coatings and (2) an estimation of the most important absorbers at typical European locations.
Paul Strobel, Marcel Bliedtner, Andrew S. Carr, Peter Frenzel, Björn Klaes, Gary Salazar, Julian Struck, Sönke Szidat, Roland Zech, and Torsten Haberzettl
Clim. Past, 17, 1567–1586, https://doi.org/10.5194/cp-17-1567-2021, https://doi.org/10.5194/cp-17-1567-2021, 2021
Short summary
Short summary
This study presents a multi-proxy record from Lake Voёlvlei and provides new insights into the sea level and paleoclimate history of the past 8.5 ka at South Africa’s southern Cape coast. Our results show that sea level changes at the southern coast are in good agreement with the western coast of South Africa. In terms of climate our record provides valuable insights into changing sources of precipitation at the southern Cape coast, i.e. westerly- and easterly-derived precipitation contribution.
Congbo Song, Manuel Dall'Osto, Angelo Lupi, Mauro Mazzola, Rita Traversi, Silvia Becagli, Stefania Gilardoni, Stergios Vratolis, Karl Espen Yttri, David C. S. Beddows, Julia Schmale, James Brean, Agung Ghani Kramawijaya, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 21, 11317–11335, https://doi.org/10.5194/acp-21-11317-2021, https://doi.org/10.5194/acp-21-11317-2021, 2021
Short summary
Short summary
We present a cluster analysis of relatively long-term (2015–2019) aerosol aerodynamic volume size distributions up to 20 μm in the Arctic for the first time. The study found that anthropogenic and natural aerosols comprised 27 % and 73 % of the occurrence of the coarse-mode aerosols, respectively. Our study shows that about two-thirds of the coarse-mode aerosols are related to two sea-spray-related aerosol clusters, indicating that sea spray aerosol may more complex in the Arctic environment.
Michael Zech, Marcel Lerch, Marcel Bliedtner, Tobias Bromm, Fabian Seemann, Sönke Szidat, Gary Salazar, Roland Zech, Bruno Glaser, Jean Nicolas Haas, Dieter Schäfer, and Clemens Geitner
E&G Quaternary Sci. J., 70, 171–186, https://doi.org/10.5194/egqsj-70-171-2021, https://doi.org/10.5194/egqsj-70-171-2021, 2021
Siqi Hou, Di Liu, Jingsha Xu, Tuan V. Vu, Xuefang Wu, Deepchandra Srivastava, Pingqing Fu, Linjie Li, Yele Sun, Athanasia Vlachou, Vaios Moschos, Gary Salazar, Sönke Szidat, André S. H. Prévôt, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 21, 8273–8292, https://doi.org/10.5194/acp-21-8273-2021, https://doi.org/10.5194/acp-21-8273-2021, 2021
Short summary
Short summary
This study provides a newly developed method which combines radiocarbon (14C) with organic tracers to enable source apportionment of primary and secondary fossil vs. non-fossil sources of carbonaceous aerosols at an urban and a rural site of Beijing. The source apportionment results were compared with those by chemical mass balance and AMS/ACSM-PMF methods. Correlations of WINSOC and WSOC with different sources of OC were also performed to elucidate the formation mechanisms of SOC.
Karl Espen Yttri, Francesco Canonaco, Sabine Eckhardt, Nikolaos Evangeliou, Markus Fiebig, Hans Gundersen, Anne-Gunn Hjellbrekke, Cathrine Lund Myhre, Stephen Matthew Platt, André S. H. Prévôt, David Simpson, Sverre Solberg, Jason Surratt, Kjetil Tørseth, Hilde Uggerud, Marit Vadset, Xin Wan, and Wenche Aas
Atmos. Chem. Phys., 21, 7149–7170, https://doi.org/10.5194/acp-21-7149-2021, https://doi.org/10.5194/acp-21-7149-2021, 2021
Short summary
Short summary
Carbonaceous aerosol sources and trends were studied at the Birkenes Observatory. A large decrease in elemental carbon (EC; 2001–2018) and a smaller decline in levoglucosan (2008–2018) suggest that organic carbon (OC)/EC from traffic/industry is decreasing, whereas the abatement of OC/EC from biomass burning has been less successful. Positive matrix factorization apportioned 72 % of EC to fossil fuel sources and 53 % (PM2.5) and 78 % (PM10–2.5) of OC to biogenic sources.
Cited articles
Abbatt, J. P. D., Leaitch, W. R., Aliabadi, A. A., Bertram, A. K., Blanchet, J.-P., Boivin-Rioux, A., Bozem, H., Burkart, J., Chang, R. Y. W., Charette, J., Chaubey, J. P., Christensen, R. J., Cirisan, A., Collins, D. B., Croft, B., Dionne, J., Evans, G. J., Fletcher, C. G., Galí, M., Ghahreman, R., Girard, E., Gong, W., Gosselin, M., Gourdal, M., Hanna, S. J., Hayashida, H., Herber, A. B., Hesaraki, S., Hoor, P., Huang, L., Hussherr, R., Irish, V. E., Keita, S. A., Kodros, J. K., Köllner, F., Kolonjari, F., Kunkel, D., Ladino, L. A., Law, K., Levasseur, M., Libois, Q., Liggio, J., Lizotte, M., Macdonald, K. M., Mahmood, R., Martin, R. V., Mason, R. H., Miller, L. A., Moravek, A., Mortenson, E., Mungall, E. L., Murphy, J. G., Namazi, M., Norman, A.-L., O'Neill, N. T., Pierce, J. R., Russell, L. M., Schneider, J., Schulz, H., Sharma, S., Si, M., Staebler, R. M., Steiner, N. S., Thomas, J. L., von Salzen, K., Wentzell, J. J. B., Willis, M. D., Wentworth, G. R., Xu, J.-W., and Yakobi-Hancock, J. D.: Overview paper: New insights into aerosol and climate in the Arctic, Atmos. Chem. Phys., 19, 2527–2560, https://doi.org/10.5194/acp-19-2527-2019, 2019.
Agrios, K., Salazar, G., Zhang, Y.-L., Uglietti, C., Battaglia, M.,
Luginbühl, M., Ciobanu, V. G., Vonwiller, M., and Szidat, S.: Online
coupling of pure O2 thermo-optical methods – 14C AMS for source
apportionment of carbonaceous aerosols, Instrum. Meth. B, 361, 288–293,
https://doi.org/10.1016/j.nimb.2015.06.008, 2015.
Andersson, A., Sheesley, R. J., Kruså, M., Johansson, C., and
Gustafsson, Ö.: 14C-Based source assessment of soot aerosols in
Stockholm and the Swedish EMEP-Aspvreten regional background site, Atmos.
Environ., 45, 215–222, https://doi.org/10.1016/j.atmosenv.2010.09.015, 2011.
Barrett, T. E., Robinson, E. M., Usenko, S., and Sheesley, R. J.: Source
Contributions to Wintertime Elemental and Organic Carbon in the Western
Arctic Based on Radiocarbon and Tracer Apportionment, Environ. Sci.
Technol., 49, 11631–11639, https://doi.org/10.1021/acs.est.5b03081, 2015.
Barrie, L. A.: Arctic air pollution: An overview of current knowledge,
Atmos. Environ., 20, 643–663, https://doi.org/10.1016/0004-6981(86)90180-0, 1986.
Barrie, L. A., Hoff, R. M., and Daggupaty, S. M.: The influence of
mid-latitudinal pollution sources on haze in the Canadian arctic, Atmos.
Environ., 15, 1407–1419, https://doi.org/10.1016/0004-6981(81)90347-4, 1981.
Baumgardner, D., Popovicheva, O., Allan, J., Bernardoni, V., Cao, J., Cavalli, F., Cozic, J., Diapouli, E., Eleftheriadis, K., Genberg, P. J., Gonzalez, C., Gysel, M., John, A., Kirchstetter, T. W., Kuhlbusch, T. A. J., Laborde, M., Lack, D., Müller, T., Niessner, R., Petzold, A., Piazzalunga, A., Putaud, J. P., Schwarz, J., Sheridan, P., Subramanian, R., Swietlicki, E., Valli, G., Vecchi, R., and Viana, M.: Soot reference materials for instrument calibration and intercomparisons: a workshop summary with recommendations, Atmos. Meas. Tech., 5, 1869–1887, https://doi.org/10.5194/amt-5-1869-2012, 2012.
Bedjanian, Y., Nguyen, M. L., and Guilloteau, A.: Desorption of Polycyclic
Aromatic Hydrocarbons from Soot Surface: Five- and Six-Ring (C22,
C24) PAHs, J. Phys. Chem. A, 114, 3533–3539, https://doi.org/10.1021/jp912110b, 2010.
Bernardoni, V., Calzolai, G., Chiari, M., Fedi, M., Lucarelli, F., Nava, S.,
Piazzalunga, A., Riccobono, F., Taccetti, F., Valli, G., and Vecchi, R.:
Radiocarbon analysis on organic and elemental carbon in aerosol samples and
source apportionment at an urban site in Northern Italy, J. Aerosol Sci.,
56, 88–99, https://doi.org/10.1016/j.jaerosci.2012.06.001, 2013.
Birch, M. E. and Cary, R. A.: Elemental Carbon-Based Method for Monitoring
Occupational Exposures to Particulate Diesel Exhaust, Aerosol Sci. Tech.,
25, 221–241, https://doi.org/10.1080/02786829608965393, 1996.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
Deangelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171, 2013.
Boparai, P., Lee, J., and Bond, T. C.: Revisiting thermal-optical analyses
of carbonaceous aerosol using a physical model, Aerosol Sci. Tech., 42, 930–948, https://doi.org/10.1080/02786820802360690, 2008.
Cadle, S. H., Groblicki, P. J., and Stroup, D. P.: Automated Carbon Analyzer
For Particulate Samples, Anal. Chem., 52, 2201–2206, https://doi.org/10.1021/ac50063a047, 1980.
Cavalli, F., Viana, M., Yttri, K. E., Genberg, J., and Putaud, J.-P.: Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol, Atmos. Meas. Tech., 3, 79–89, https://doi.org/10.5194/amt-3-79-2010, 2010.
Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., Allen, J., McPherson, J., Dipert, A., and Borges, B.: shiny: Web Application Framework for R, R package version 1.7.4.9002, https://shiny.rstudio.com/ (last access: 27 January 2023), 2017.
Chow, J. C., Watson, J. G., Pritchett, L. C., Pierson, W. R., Frazier, C.
A., and Purcell, R. G.: The DRI thermal/optical reflectance carbon analysis
system: description, evaluation and applications in U.S. Air quality
studies, Atmos. Environ. A Gen., 27, 1185–1201, https://doi.org/10.1016/0960-1686(93)90245-T, 1993.
Chow, J. C., Watson, J. G., Chen, L. W. A., Arnott, W. P., Moosmüller,
H., and Fung, K.: Equivalence of elemental carbon by thermal/optical
reflectance and transmittance with different temperature protocols, Environ.
Sci. Technol., 38, 4414–4422, https://doi.org/10.1021/es034936u, 2004.
Contini, D., Vecchi, R., and Viana, M.: Carbonaceous Aerosols in the
Atmosphere, Atmosphere (Basel), 9, 181, https://doi.org/10.3390/atmos9050181, 2018.
Daellenbach, K. R., Uzu, G., Jiang, J., Cassagnes, L.-E., Leni, Z., Vlachou,
A., Stefenelli, G., Canonaco, F., Weber, S., Segers, A., Kuenen, J. J. P.,
Schaap, M., Favez, O., Albinet, A., Aksoyoglu, S., Dommen, J., Baltensperger, U., Geiser, M., El Haddad, I., Jaffrezo, J.-L., and Prévôt, A. S. H.: Sources of particulate-matter air pollution and its oxidative potential in Europe, Nature, 587, 414–419, https://doi.org/10.1038/s41586-020-2902-8, 2020.
Dasari, S. and Widory, D.: Radiocarbon (14C) Analysis of Carbonaceous
Aerosols: Revisiting the Existing Analytical Techniques for Isolation of
Black Carbon, Front. Environ. Sci., 10, 907467, https://doi.org/10.3389/fenvs.2022.907467, 2022.
Dusek, U., Monaco, M., Prokopiou, M., Gongriep, F., Hitzenberger, R., Meijer, H. A. J., and Röckmann, T.: Evaluation of a two-step thermal method for separating organic and elemental carbon for radiocarbon analysis, Atmos. Meas. Tech., 7, 1943–1955, https://doi.org/10.5194/amt-7-1943-2014, 2014.
Eller, P. M. and Cassinelli, M. E.: Niosh, Elemental Carbon (Diesel
Particulate): Method 5040, NIOSH Manual of Analytical Methods (NMAM), Natl. Inst. Occup. Saf. Heal. Cincinatti, OH, USA, 2003–2154, https://www.cdc.gov/niosh/docs/2003-154/pdfs/5040f3.pdf (last access: 27 January 2023), 1996.
Engelmann, R., Ansmann, A., Ohneiser, K., Griesche, H., Radenz, M., Hofer, J., Althausen, D., Dahlke, S., Maturilli, M., Veselovskii, I., Jimenez, C., Wiesen, R., Baars, H., Bühl, J., Gebauer, H., Haarig, M., Seifert, P., Wandinger, U., and Macke, A.: Wildfire smoke, Arctic haze, and aerosol effects on mixed-phase and cirrus clouds over the North Pole region during MOSAiC: an introduction, Atmos. Chem. Phys., 21, 13397–13423, https://doi.org/10.5194/acp-21-13397-2021, 2021.
Fahrni, S. M., Wacker, L., Synal, H. A., and Szidat, S.: Improving a gas ion
source for 14C AMS, Nucl. Instrum. Meth. B, 294, 320–327,
https://doi.org/10.1016/j.nimb.2012.03.037, 2013.
GBD 2015 Risk Factors Collaborators: Global,
regional, and national comparative risk assessment of 79 behavioural,
environmental and occupational, and metabolic risks or clusters of risks,
1990–2015: a systematic analysis for the Global Burden of Disease Study
2015, Lancet, 388, 1659–1724, https://doi.org/10.1016/S0140-6736(16)31679-8, 2016.
Gentner, D. R., Jathar, S. H., Gordon, T. D., Bahreini, R., Day, D. A., El
Haddad, I., Hayes, P. L., Pieber, S. M., Platt, S. M., De Gouw, J.,
Goldstein, A. H., Harley, R. A., Jimenez, J. L., Prévôt, A. S. H.,
and Robinson, A. L.: Review of Urban Secondary Organic Aerosol Formation
from Gasoline and Diesel Motor Vehicle Emissions, Environ. Sci. Technol.,
51, 1074–1093, https://doi.org/10.1021/acs.est.6b04509, 2017.
Ghosh, U., Talley, J. W., and Luthy, R. G.: Particle-Scale Investigation of
PAH Desorption Kinetics and Thermodynamics from Sediment, Environ. Sci.
Technol., 35, 3468–3475, https://doi.org/10.1021/es0105820, 2001.
Glatzel, S. and Well, R.: Evaluation of septum-capped vials for storage of
gas samples during air transport, Environ. Monit. Assess., 136, 307–311,
https://doi.org/10.1007/s10661-007-9686-2, 2008.
Gundel, L. A., Dod, R. L., Rosen, H., and Novakov, T.: the Relationship
Between Optical Attenuation and Black Carbon, Sci. Total Environ., 36,
197–202, 1984.
Gustafsson, Ö., Bucheli, T. D., Kukulska, Z., Andersson, M., Largeau,
C., Rouzaud, J. N., Reddy, C. M., and Eglinton, T. I.: Evaluation of a
protocol for the quantification of black carbon in sediments, Global
Biogeochem. Cy., 15, 881–890, https://doi.org/10.1029/2000GB001380, 2001.
Hanke, U. M., Wacker, L., Haghipour, N., Schmidt, M. W. I., Eglinton, T. I.,
and McIntyre, C. P.: Comprehensive radiocarbon analysis of benzene
polycarboxylic acids (BPCAs) derived from pyrogenic carbon in environmental
samples, Radiocarbon, 59, 1103–1116, https://doi.org/10.1017/RDC.2017.44, 2017.
Heidam, N. Z., Christensen, J., Wåhlin, P., and Skov, H.: Arctic
atmospheric contaminants in NE Greenland: Levels, variations, origins,
transport, transformations and trends 1990–2001, Sci. Total Environ., 331,
5–28, https://doi.org/10.1016/j.scitotenv.2004.03.033, 2004.
Hung, H., Kallenborn, R., Breivik, K., Su, Y., Brorström-Lundén, E.,
Olafsdottir, K., Thorlacius, J. M., Leppänen, S., Bossi, R., Skov, H.,
Manø, S., Patton, G. W., Stern, G., Sverko, E., and Fellin, P.:
Atmospheric monitoring of organic pollutants in the Arctic under the Arctic
Monitoring and Assessment Programme (AMAP): 1993–2006, Sci. Total Environ.,
408, 2854–2873, https://doi.org/10.1016/j.scitotenv.2009.10.044, 2010.
Huntzicker, J. J., Johnson, R. L., Shah, J. J., and Cary, R. A.: Analysis of
Organic and Elemental Carbon in Ambient Aerosols by a Thermal-Optical
Method, in: Particulate Carbon: Atmospheric Life Cycle, edited by: Wolff, G.
T. and Klimisch, R. L., Springer US, Boston, MA, 79–88,
https://doi.org/10.1007/978-1-4684-4154-3_6, 1982.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, Cambridge University Press, 2021.
Jenk, T. M., Szidat, S., Schwikowski, M., Gäggeler, H. W., Wacker, L.,
Synal, H.-A., and Saurer, M.: Microgram level radiocarbon (14C)
determination on carbonaceous particles in ice, Nucl. Instrum. Meth. B, 259, 518–525, https://doi.org/10.1016/j.nimb.2007.01.196, 2007.
Jouan, C., Pelon, J., Girard, E., Ancellet, G., Blanchet, J. P., and Delanoë, J.: On the relationship between Arctic ice clouds and polluted air masses over the North Slope of Alaska in April 2008, Atmos. Chem. Phys., 14, 1205–1224, https://doi.org/10.5194/acp-14-1205-2014, 2014.
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053–1123, https://doi.org/10.5194/acp-5-1053-2005, 2005.
Keeling, C. D.: The concentration and isotopic abundances of atmospheric
carbon dioxide in rural areas, Geochim. Cosmochim. Ac., 13, 322–334,
https://doi.org/10.1016/0016-7037(58)90033-4, 1958.
Kim, K. H., Jahan, S. A., Kabir, E., and Brown, R. J. C.: A review of
airborne polycyclic aromatic hydrocarbons (PAHs) and their human health
effects, Environ. Int., 60, 71–80, https://doi.org/10.1016/j.envint.2013.07.019, 2013.
Kim, K. H., Kabir, E., and Kabir, S.: A review on the human health impact of
airborne particulate matter, Environ. Int., 74, 136–143,
https://doi.org/10.1016/j.envint.2014.10.005, 2015.
Kirillova, E. N., Andersson, A., Sheesley, R. J., Kruså, M., Praveen, P.
S., Budhavant, K., Safai, P. D., Rao, P. S. P., and Gustafsson, Ö.:
13C- and 14C-based study of sources and atmospheric processing of
water-soluble organic carbon (WSOC) in South Asian aerosols, J. Geophys.
Res.-Atmos., 118, 614–626, https://doi.org/10.1002/jgrd.50130, 2013.
Landrigan, P. J.: Air pollution and health, Lancet Public Heal., 2, e4–e5,
https://doi.org/10.1016/S2468-2667(16)30023-8, 2017.
Lang, S. Q., Bernasconi, S. M., and Früh-Green, G. L.: Stable isotope
analysis of organic carbon in small (µg C) samples and dissolved
organic matter using a GasBench preparation device, Rapid Commun. Mass Sp., 26, 9–16, https://doi.org/10.1002/rcm.5287, 2012.
Lang, S. Q., Früh-Green, G. L., Bernasconi, S. M., and Wacker, L.:
Isotopic (δ13C, Δ14C) analysis of organic acids in marine samples using wet chemical oxidation, Limnol. Oceanogr.-Meth., 11, 161–175, https://doi.org/10.4319/lom.2013.11.161, 2013.
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The
contribution of outdoor air pollution sources to premature mortality on a
global scale, Nature, 525, 367–371, https://doi.org/10.1038/nature15371, 2015.
Mauderly, J. L. and Chow, J. C.: Health Effects of Organic Aerosols, Inhal. Toxicol., 20, 257–288, https://doi.org/10.1080/08958370701866008, 2008.
McDow, S. R. and Huntzicker, J. J.: Vapor adsorption artifact in the sampling of organic aerosol: Face velocity effects, Atmos. Environ. A Gen., 24, 2563–2571, https://doi.org/10.1016/0960-1686(90)90134-9, 1990.
McNeill, V. F.: Atmospheric Aerosols: Clouds, Chemistry, and Climate, Annu.
Rev. Chem. Biomol., 8, 427–444, https://doi.org/10.1146/annurev-chembioeng-060816-101538, 2017.
Menzel, D. W. and Vaccaro, R. F.: The measurement of dissolved organic and
particulate carbon in seawater, Limnol. Oceanogr., 9, 138–142,
https://doi.org/10.4319/lo.1964.9.1.0138, 1964.
Moschos, V., Gysel-Beer, M., Modini, R. L., Corbin, J. C., Massabò, D., Costa, C., Danelli, S. G., Vlachou, A., Daellenbach, K. R., Szidat, S., Prati, P., Prévôt, A. S. H., Baltensperger, U., and El Haddad, I.: Source-specific light absorption by carbonaceous components in the complex aerosol matrix from yearly filter-based measurements, Atmos. Chem. Phys., 21, 12809–12833, https://doi.org/10.5194/acp-21-12809-2021, 2021.
Moschos, V., Dzepina, K., Bhattu, D., Lamkaddam, H., Casotto, R.,
Daellenbach, K. R., Canonaco, F., Rai, P., Aas, W., Becagli, S., Calzolai,
G., Eleftheriadis, K., Moffett, C. E., Schnelle-Kreis, J., Severi, M.,
Sharma, S., Skov, H., Vestenius, M., Zhang, W., Hakola, H., Hellén, H.,
Huang, L., Jaffrezo, J.-L., Massling, A., Nøjgaard, J. K.,
Petäjä, T., Popovicheva, O., Sheesley, R. J., Traversi, R., Yttri,
K. E., Schmale, J., Prévôt, A. S. H., Baltensperger, U., and El
Haddad, I.: Equal abundance of summertime natural and wintertime
anthropogenic Arctic organic aerosols, Nat. Geosci., 15, 196–202,
https://doi.org/10.1038/s41561-021-00891-1, 2022.
Novakov, T. and Corrigan, C. E.: Mikrochimica Acta Thermal Characterization
of Biomass Smoke Particles, Mikrochim. Acta, 166, 157–166, 1995.
Peleg, M., Normand, M. D., and Corradini, M. G.: The Arrhenius Equation
Revisited, Crit. Rev. Food Sci., 52, 830–851, https://doi.org/10.1080/10408398.2012.667460, 2012.
Peterson, M. R. and Richards, M. H.: Thermal-optical-transmittance analysis for organic, elemental, carbonate, total carbon, and OCX2 in PM2.5 by the EPA/NIOSH method, in: Proceedings, Symposium on Air Quality Measurement
Methods and Technology – 2002, Pittsburgh, PA, 83-1–83-19,
https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/156861 (last access: 27 January 2023), 2002.
Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y.: Recommendations for reporting “black carbon” measurements, Atmos. Chem. Phys., 13, 8365–8379, https://doi.org/10.5194/acp-13-8365-2013, 2013.
Platt, S. M., Hov, Ø., Berg, T., Breivik, K., Eckhardt, S., Eleftheriadis, K., Evangeliou, N., Fiebig, M., Fisher, R., Hansen, G., Hansson, H.-C., Heintzenberg, J., Hermansen, O., Heslin-Rees, D., Holmén, K., Hudson, S., Kallenborn, R., Krejci, R., Krognes, T., Larssen, S., Lowry, D., Lund Myhre, C., Lunder, C., Nisbet, E., Nizzetto, P. B., Park, K.-T., Pedersen, C. A., Aspmo Pfaffhuber, K., Röckmann, T., Schmidbauer, N., Solberg, S., Stohl, A., Ström, J., Svendby, T., Tunved, P., Tørnkvist, K., van der Veen, C., Vratolis, S., Yoon, Y. J., Yttri, K. E., Zieger, P., Aas, W., and Tørseth, K.: Atmospheric composition in the European Arctic and 30 years of the Zeppelin Observatory, Ny-Ålesund, Atmos. Chem. Phys., 22, 3321–3369, https://doi.org/10.5194/acp-22-3321-2022, 2022.
Pope, C. A., Coleman, N., Pond, Z. A., and Burnett, R. T.: Fine particulate
air pollution and human mortality: 25+ years of cohort studies, Environ.
Res., 183, 108924, https://doi.org/10.1016/j.envres.2019.108924, 2020.
Pöschl, U.: Aerosol particle analysis: Challenges and progress, Anal.
Bioanal. Chem., 375, 30–32, https://doi.org/10.1007/s00216-002-1611-5, 2003.
Putaud, J. P., Van Dingenen, R., Alastuey, A., Bauer, H., Birmili, W.,
Cyrys, J., Flentje, H., Fuzzi, S., Gehrig, R., Hansson, H. C., Harrison, R.
M., Herrmann, H., Hitzenberger, R., Hüglin, C., Jones, A. M.,
Kasper-Giebl, A., Kiss, G., Kousa, A., Kuhlbusch, T. A. J., Löschau, G.,
Maenhaut, W., Molnar, A., Moreno, T., Pekkanen, J., Perrino, C., Pitz, M.,
Puxbaum, H., Querol, X., Rodriguez, S., Salma, I., Schwarz, J., Smolik, J.,
Schneider, J., Spindler, G., ten Brink, H., Tursic, J., Viana, M.,
Wiedensohler, A., and Raes, F.: A European aerosol phenomenology – 3: Physical and chemical characteristics of particulate matter from 60 rural,
urban, and kerbside sites across Europe, Atmos. Environ., 44, 1308–1320,
https://doi.org/10.1016/j.atmosenv.2009.12.011, 2010.
Quinn, P. K., Miller, T. L., Bates, T. S., Ogren, J. A., Andrews, E., and
Shaw, G. E.: A 3-year record of simultaneously measured aerosol chemical and
optical properties at Barrow, Alaska, J. Geophys. Res.-Atmos., 107, AAC 8-1–AAC 8-15, https://doi.org/10.1029/2001jd001248, 2002.
Quinn, P. K., Bates, T. S., Baum, E., Doubleday, N., Fiore, A. M., Flanner, M., Fridlind, A., Garrett, T. J., Koch, D., Menon, S., Shindell, D., Stohl, A., and Warren, S. G.: Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies, Atmos. Chem. Phys., 8, 1723–1735, https://doi.org/10.5194/acp-8-1723-2008, 2008.
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria,
https://www.r-project.org/ (last access: 26 January 2023), 2020.
Rauber, M.: Dataset for: An optimised organic carbon/elemental carbon (OC/EC) fraction separation method for radiocarbon source apportionment applied to low-loaded Arctic aerosol filters, Zenodo [data set], https://doi.org/10.5281/zenodo.7612886, 2023.
Rauber, M. and Salazar, G.: COMPYCALC, Version 1.3.0, Zenodo [code], https://doi.org/10.5281/zenodo.7368424, 2022.
Rauber, M. and Straehl, J.: martin-rauber/sunset-calc, Version v1.0.2, Zenodo [code], https://doi.org/10.5281/zenodo.6148364, 2022.
Ruff, M., Wacker, L., Gäggeler, H. W., Suter, M., Synal, H.-A., and
Szidat, S.: A Gas Ion Source for Radiocarbon Measurements at 200 kV,
Radiocarbon, 49, 307–314, https://doi.org/10.1017/S0033822200042235, 2007.
Salazar, G., Zhang, Y. L., Agrios, K., and Szidat, S.: Development of a
method for fast and automatic radiocarbon measurement of aerosol samples by
online coupling of an elemental analyzer with a MICADAS AMS, Nucl. Instrum. Meth. B, 361, 163–167, https://doi.org/10.1016/j.nimb.2015.03.051, 2015.
Schmale, J., Zieger, P., and Ekman, A. M. L.: Aerosols in current and future
Arctic climate, Nat. Clim. Change, 11, 95–105,
https://doi.org/10.1038/s41558-020-00969-5, 2021.
Schmid, H., Laskus, L., Jürgen Abraham, H., Baltensperger, U., Lavanchy,
V., Bizjak, M., Burba, P., Cachier, H., Crow, D., Chow, J., Gnauk, T., Even,
A., Ten Brink, H. M., Giesen, K. P., Hitzenberger, R., Hueglin, C.,
Maenhaut, W., Pio, C., Carvalho, A., Putaud, J. P., Toom-Sauntry, D., and
Puxbaum, H.: Results of the “carbon conference” international aerosol
carbon round robin test stage I, Atmos. Environ., 35, 2111–2121,
https://doi.org/10.1016/S1352-2310(00)00493-3, 2001.
Schwaab, M. and Pinto, J. C.: Optimum reference temperature for
reparameterization of the Arrhenius equation. Part 1: Problems involving one
kinetic constant, Chem. Eng. Sci., 62, 2750–2764,
https://doi.org/10.1016/j.ces.2007.02.020, 2007.
Sharp, J. H.: Total organic carbon in seawater – comparison of measurements
using persulfate oxidation and high temperature combustion, Mar. Chem., 1,
211–229, https://doi.org/10.1016/0304-4203(73)90005-4, 1973.
Smichowski, P., Polla, G., and Gómez, D.: Metal fractionation of
atmospheric aerosols via sequential chemical extraction: A review, Anal.
Bioanal. Chem., 381, 302–316, https://doi.org/10.1007/s00216-004-2849-x, 2005.
Synal, H. A., Stocker, M., and Suter, M.: MICADAS: A new compact radiocarbon
AMS system, Nucl. Instrum. Meth. B, 259, 7–13, https://doi.org/10.1016/j.nimb.2007.01.138, 2007.
Szidat, S., Jenk, T. M., Gäggeler, H. W., Synal, H.-A., Fisseha, R.,
Baltensperger, U., Kalberer, M., Samburova, V., Wacker, L., Saurer, M.,
Schwikowski, M., and Hajdas, I.: Source Apportionment of Aerosols by
14C Measurements in Different Carbonaceous Particle Fractions,
Radiocarbon, 46, 475–484, https://doi.org/10.1017/S0033822200039783, 2004a.
Szidat, S., Jenk, T. M., Gäggeler, H. W., Synal, H.-A., Hajdas, I.,
Bonani, G., and Saurer, M.: THEODORE, a two-step heating system for the
EC/OC determination of radiocarbon (14C) in the environment, Nucl. Instrum. Meth. B, 223–224, 829–836, https://doi.org/10.1016/j.nimb.2004.04.153, 2004b.
Szidat, S., Jenk, T. M., Synal, H.-A., Kalberer, M., Wacker, L., Hajdas, I.,
Kasper-Giebl, A., and Baltensperger, U.: Contributions of fossil fuel,
biomass-burning, and biogenic emissions to carbonaceous aerosols in Zurich
as traced by 14C, J. Geophys. Res., 111, D07206,
https://doi.org/10.1029/2005JD006590, 2006.
Szidat, S., Prévôt, A. S. H., Sandradewi, J., Alfarra, M. R., Synal, H. A., Wacker, L., and Baltensperger, U.: Dominant impact of residential wood burning on particulate matter in Alpine valleys during winter, Geophys. Res. Lett., 34, L05820, https://doi.org/10.1029/2006GL028325, 2007.
Szidat, S., Ruff, M., Perron, N., Wacker, L., Synal, H.-A., Hallquist, M., Shannigrahi, A. S., Yttri, K. E., Dye, C., and Simpson, D.: Fossil and non-fossil sources of organic carbon (OC) and elemental carbon (EC) in Göteborg, Sweden, Atmos. Chem. Phys., 9, 1521–1535, https://doi.org/10.5194/acp-9-1521-2009, 2009.
Szidat, S., Bench, G., Bernardoni, V.; Calzolai, G.; Czimczik, C. I.;
Derendorp, L.; Dusek, U.; Elder, K.; Fedi, M. E.; Genberg, J., Gustafsson,
Ö., Kirillova, E., Kondo, M., McNichol, A. P., Perron, N., Santos, G.
M., Stenström, K., Swietlicki, E., Uchida, M., Vecchi, R., Wacker, L.,
Zhang, Y. L., and Prévôt, A. S. H.: Intercomparison of 14C analysis
of carbonaceous aerosols: Exercise 2009, Radiocarbon, 55, 1496–1509,
https://doi.org/10.1017/S0033822200048426, 2013.
Szidat, S., Salazar, G. A., Vogel, E., Battaglia, M., Wacker, L., Synal,
H.-A., and Türler, A.: 14C Analysis and Sample Preparation at the
new Bern Laboratory for the Analysis of Radiocarbon with AMS (LARA),
Radiocarbon, 56, 561–566, https://doi.org/10.2458/56.17457, 2014.
Tørseth, K., Aas, W., Breivik, K., Fjæraa, A. M., Fiebig, M., Hjellbrekke, A. G., Lund Myhre, C., Solberg, S., and Yttri, K. E.: Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009, Atmos. Chem. Phys., 12, 5447–5481, https://doi.org/10.5194/acp-12-5447-2012, 2012.
Vlachou, A., Daellenbach, K. R., Bozzetti, C., Chazeau, B., Salazar, G. A., Szidat, S., Jaffrezo, J.-L., Hueglin, C., Baltensperger, U., Haddad, I. E., and Prévôt, A. S. H.: Advanced source apportionment of carbonaceous aerosols by coupling offline AMS and radiocarbon size-segregated measurements over a nearly 2-year period, Atmos. Chem. Phys., 18, 6187–6206, https://doi.org/10.5194/acp-18-6187-2018, 2018.
Wacker, L., Christl, M., and Synal, H. A.: Bats: A new tool for AMS data
reduction, Nucl. Instrum. Meth. B, 268, 976–979, https://doi.org/10.1016/j.nimb.2009.10.078, 2010.
Wacker, L., Fahrni, S. M., Hajdas, I., Molnar, M., Synal, H. A., Szidat, S.,
and Zhang, Y. L.: A versatile gas interface for routine radiocarbon analysis
with a gas ion source, Nucl. Instrum. Meth. B, 294, 315–319,
https://doi.org/10.1016/j.nimb.2012.02.009, 2013.
Walker, B. D., Primeau, F. W., Beaupré, S. R., Guilderson, T. P.,
Druffel, E. R. M., and McCarthy, M. D.: Linked changes in marine dissolved
organic carbon molecular size and radiocarbon age, Geophys. Res. Lett., 43,
10385–10393, https://doi.org/10.1002/2016GL070359, 2016.
Weber, R. J., Sullivan, A. P., Peltier, R. E., Russell, A., Yan, B., Zheng,
M., de Grouw, J., Warneke, C., Brock, C., Holloway, J. S., Atlas, E. L., and
Edgerton, E.: A study of secondary organic aerosol formation in the
anthropogenic-influenced southeastern United States, J. Geophys. Res.
Atmos., 112, D13302, https://doi.org/10.1029/2007JD008408, 2007.
Wiedemeier, D. B., Lang, S. Q., Gierga, M., Abiven, S., Bernasconi, S. M.,
Früh-Green, G. L., Hajdas, I., Hanke, U. M., Hilf, M. D., McIntyre, C.
P., Scheider, M. P. W., Smittenberg, R. H., Wacker, L., Wiesenberg, G. L.
B., and Schmidt, M. W. I.: Characterization, Quantification and
Compound-specific Isotopic Analysis of Pyrogenic Carbon Using Benzene
Polycarboxylic Acids (BPCA), J. Vis. Exp., 111, e53922,
https://doi.org/10.3791/53922, 2016.
Winiger, P., Andersson, A., Yttri, K. E., Tunved, P., and Gustafsson, Ö.: Isotope-Based Source Apportionment of EC Aerosol Particles during Winter High-Pollution Events at the Zeppelin Observatory, Svalbard, Environ. Sci. Technol., 49, 11959–11966, https://doi.org/10.1021/acs.est.5b02644, 2015.
Winiger, P., Andersson, A., Eckhardt, S., Stohl, A., and Gustafsson, Ö.:
The sources of atmospheric black carbon at a European gateway to the Arctic,
Nat. Commun., 7, 12776, https://doi.org/10.1038/ncomms12776, 2016.
Winiger, P., Andersson, A., Eckhardt, S., Stohl, A., Semiletov, I. P.,
Dudarev, O. V., Charkin, A., Shakhova, N., Klimont, Z., Heyes, C., and
Gustafsson, Ö.: Siberian Arctic black carbon sources constrained by
model and observation, P. Natl. Acad. Sci. USA, 114, E1054–E1061,
https://doi.org/10.1073/pnas.1613401114, 2017.
Winiger, P., Barrett, T. E., Sheesley, R. J., Huang, L., Sharma, S., Barrie,
L. A., Yttri, K. E., Evangeliou, N., Eckhardt, S., Stohl, A., Klimont, Z.,
Heyes, C., Semiletov, I. P., Dudarev, O. V., Charkin, A., Shakhova, N.,
Holmstrand, H., Andersson, A., and Gustafsson, Ö.: Source apportionment
of circum-Arctic atmospheric black carbon from isotopes and modeling, Sci.
Adv., 5, eaau8052, https://doi.org/10.1126/sciadv.aau8052, 2019.
Yu, J. Z., Xu, J., and Yang, H.: Charring characteristics of atmospheric
organic particulate matter in thermal analysis, Environ. Sci. Technol., 36,
754–761, https://doi.org/10.1021/es015540q, 2002.
Zencak, Z., Elmquist, M., and Gustafsson, Ö.: Quantification and
radiocarbon source apportionment of black carbon in atmospheric aerosols
using the CTO-375 method, Atmos. Environ., 41, 7895–7906,
https://doi.org/10.1016/j.atmosenv.2007.06.006, 2007.
Zenker, K., Vonwiller, M., Szidat, S., Calzolai, G., Giannoni, M., Bernardoni, V., Jedynska, A., Henzing, B., Meijer, H., and Dusek, U.:
Evaluation and Inter-Comparison of Oxygen-Based OC-EC Separation Methods for
Radiocarbon Analysis of Ambient Aerosol Particle Samples, Atmosphere
(Basel), 8, 226, https://doi.org/10.3390/atmos8110226, 2017.
Zhang, Y. L., Liu, D., Shen, C. D., Ding, P., and Zhang, G.: Development of
a preparation system for the radiocarbon analysis of organic carbon in
carbonaceous aerosols in China, Nucl. Instrum. Meth. B, 268, 2831–2834,
https://doi.org/10.1016/j.nimb.2010.06.032, 2010.
Zhang, Y. L., Perron, N., Ciobanu, V. G., Zotter, P., Minguillón, M. C., Wacker, L., Prévôt, A. S. H., Baltensperger, U., and Szidat, S.: On the isolation of OC and EC and the optimal strategy of radiocarbon-based source apportionment of carbonaceous aerosols, Atmos. Chem. Phys., 12, 10841–10856, https://doi.org/10.5194/acp-12-10841-2012, 2012.
Zhang, Y.-L., Liu, J., Salazar, G. A., Li, J., Zotter, P., Zhang, G., Shen, R.,
Schäfer, K., Schnelle-Kreis, J., Prévôt, A. S. H., and Szidat,
S.: Micro-scale (µg) radiocarbon analysis of water-soluble organic
carbon in aerosol samples, Atmos. Environ., 97, 1–5, https://doi.org/10.1016/j.atmosenv.2014.07.059, 2014a.
Zhang, Y. L., Li, J., Zhang, G., Zotter, P., Huang, R. J., Tang, J. H., Wacker, L., Prévôt, A. S. H., and Szidat, S.: Radiocarbon-based source apportionment of carbonaceous aerosols at a regional background site on Hainan Island, South China, Environ. Sci. Technol., 48, 2651–2659, https://doi.org/10.1021/es4050852, 2014b.
Zhang, Y.-L., Huang, R.-J., El Haddad, I., Ho, K.-F., Cao, J.-J., Han, Y., Zotter, P., Bozzetti, C., Daellenbach, K. R., Canonaco, F., Slowik, J. G., Salazar, G., Schwikowski, M., Schnelle-Kreis, J., Abbaszade, G., Zimmermann, R., Baltensperger, U., Prévôt, A. S. H., and Szidat, S.: Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013, Atmos. Chem. Phys., 15, 1299–1312, https://doi.org/10.5194/acp-15-1299-2015, 2015.
Zhao, C. and Garrett, T. J.: Effects of Arctic haze on surface cloud
radiative forcing, Geophys. Res. Lett., 42, 557–564, https://doi.org/10.1002/2014GL062015, 2015.
Zotter, P., Ciobanu, V. G., Zhang, Y. L., El-Haddad, I., Macchia, M., Daellenbach, K. R., Salazar, G. A., Huang, R.-J., Wacker, L., Hueglin, C., Piazzalunga, A., Fermo, P., Schwikowski, M., Baltensperger, U., Szidat, S., and Prévôt, A. S. H.: Radiocarbon analysis of elemental and organic carbon in Switzerland during winter-smog episodes from 2008 to 2012 – Part 1: Source apportionment and spatial variability, Atmos. Chem. Phys., 14, 13551–13570, https://doi.org/10.5194/acp-14-13551-2014, 2014.
Short summary
Carbon-containing aerosols from ambient air are analysed for radioactive isotope radiocarbon to determine the contribution from fossil-fuel emissions. Light-absorbing soot-like aerosols are isolated by water extraction and thermal separation. This separation is affected by artefacts, for which we developed a new correction method. The investigation of aerosols from the Arctic shows that our approach works well for such samples, where many artefacts are expected.
Carbon-containing aerosols from ambient air are analysed for radioactive isotope radiocarbon to...