Articles | Volume 17, issue 4
https://doi.org/10.5194/amt-17-1217-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-17-1217-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A traceable and continuous flow calibration method for gaseous elemental mercury at low ambient concentrations
Teodor D. Andron
Department of Environmental Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
Warren T. Corns
PS Analytical, Orpington, BR5 3HP, UK
Igor Živković
Department of Environmental Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
Saeed Waqar Ali
Department of Environmental Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
Sreekanth Vijayakumaran Nair
Department of Environmental Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
Milena Horvat
CORRESPONDING AUTHOR
Department of Environmental Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
Related authors
No articles found.
Sreekanth Vijayakumaran Nair, Saeed Waqar Ali, Jan Gačnik, Igor Živković, Teodor-Daniel Andron, Oleg Travnikov, and Milena Horvat
EGUsphere, https://doi.org/10.5194/egusphere-2025-2451, https://doi.org/10.5194/egusphere-2025-2451, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We studied how well two widely used methods capture oxidized mercury from the air, a key step for its quantification. Our research showed that denuders can lose a significant amount of mercury during sampling, leading to underestimation, while cation exchange membranes were more reliable in retaining mercury. These results highlight the need for improved measurement techniques to ensure accurate data, which is essential for evaluating mercury pollution and shaping environmental policy.
Jan Gačnik, Igor Živković, Sergio Ribeiro Guevara, Radojko Jaćimović, Jože Kotnik, Gianmarco De Feo, Matthew A. Dexter, Warren T. Corns, and Milena Horvat
Atmos. Meas. Tech., 14, 6619–6631, https://doi.org/10.5194/amt-14-6619-2021, https://doi.org/10.5194/amt-14-6619-2021, 2021
Short summary
Short summary
Atmospheric mercury and knowledge of its transformations and processes are of great importance for lowering its anthropogenic emissions. To ensure that, it is crucial to have a tested and validated measurement procedure. Since this is not always the case, we performed experiments that provided insight into commonly used atmospheric mercury sampling methods. The results showed that some sampling methods are unsuitable, and some are useful if we consider the results obtained from this work.
Iris de Krom, Wijnand Bavius, Ruben Ziel, Elizabeth A. McGhee, Richard J. C. Brown, Igor Živković, Jan Gačnik, Vesna Fajon, Jože Kotnik, Milena Horvat, and Hugo Ent
Atmos. Meas. Tech., 14, 2317–2326, https://doi.org/10.5194/amt-14-2317-2021, https://doi.org/10.5194/amt-14-2317-2021, 2021
Short summary
Short summary
To demonstrate the robustness and comparability of the novel primary mercury gas standard, the results of comparisons are presented with current calibration methods maintained, using the bell jar in combination with the Dumarey equation or NIST liquid standard reference material. The results show that the primary standard and the NIST reference material are comparable, whereas a difference of −8 % exists between results traceable to the primary standard and the Dumarey equation.
Cited articles
Ariya, P. A., Amyot, M., Dastoor, A., Deeds, D., Feinberg, A., Kos, G., Poulain, A., Ryjkov, A., Semeniuk, K., Subir, M., and Toyota, K.: Mercury Physicochemical and Biogeochemical Transformation in the Atmosphere and at Atmospheric Interfaces: A Review and Future Directions, Chem. Rev., 115, 3760–3802, https://doi.org/10.1021/cr500667e, 2015.
Brown, A. S., Brown, R. J. C., Corns, W. T., and Stockwell, P. B.: Establishing SI traceability for measurements of mercury vapour, Analyst, 133, 946, https://doi.org/10.1039/b803724h, 2008.
Brown, A. S., Brown, R. J. C., Dexter, M. A., Corns, W. T., and Stockwell, P. B.: A novel automatic method for the measurement of mercury vapour in ambient air, and comparison of uncertainty with established semi-automatic and manual methods, Anal. Methods-UK, 2, 954, https://doi.org/10.1039/c0ay00058b, 2010.
Burger, J. and Gochfeld, M.: Biomonitoring selenium, mercury, and selenium:mercury molar ratios in selected species in Northeastern US estuaries: risk to biota and humans, Environ. Sci. Pollut. R., 28, 18392–18406, https://doi.org/10.1007/s11356-020-12175-z, 2021.
Cabassi, J., Rimondi, V., Yeqing, Z., Vacca, A., Vaselli, O., Buccianti, A., and Costagliola, P.: 100 years of high GEM concentration in the Central Italian Herbarium and Tropical Herbarium Studies Centre (Florence, Italy), J. Environ. Sci., 87, 377–388, https://doi.org/10.1016/j.jes.2019.07.007, 2020.
Castellini, J. M., Rea, L. D., Avery, J. P., and O'Hara, T. M.: Total Mercury, Total Selenium, and Monomethylmercury Relationships in Multiple Age Cohorts and Tissues of Steller Sea Lions (Eumetopias jubatus), Environ. Toxicol. Chem., 41, 1477–1489, https://doi.org/10.1002/etc.5329, 2022.
de Krom, I., Bavius, W., Ziel, R., Efremov, E., van Meer, D., van Otterloo, P., van Andel, I., van Osselen, D., Heemskerk, M., van der Veen, A. M. H., Dexter, M. A., Corns, W. T., and Ent, H.: Primary mercury gas standard for the calibration of mercury measurements, Measurement, 169, 108351, https://doi.org/10.1016/j.measurement.2020.108351, 2021.
Dumarey, R., Temmerman, E., Adams, R., and Hoste, J.: The accuracy of the vapour-injection calibration method for the determination of mercury by amalgamation/cold-vapour atomic absorption spectrometry, Anal. Chim. Acta, 170, 337–340, https://doi.org/10.1016/S0003-2670(00)81759-6, 1985.
Dumarey, R., Brown, R. J. C., Corns, W. T., Brown, A. S., and Stockwell, P. B.: Elemental mercury vapour in air: the origins and validation of the “Dumarey equation” describing the mass concentration at saturation, Accredit. Qual. Assur., 15, 409–414, https://doi.org/10.1007/s00769-010-0645-1, 2010.
Ebdon, L., Corns, W. T., Stockwell, P. B., and Stockwell, P. M.: Application of a computer-controlled adsorber/desorber system to monitor mercury in air or gas samples: Part 1. Calibration and system description, J. Autom. Chem., 11, 247–253, https://doi.org/10.1155/S1463924689000489, 1989.
El-Feky, A. A., El-Azab, W., Ebiad, M. A., Masod, M. B., and Faramawy, S.: Monitoring of elemental mercury in ambient air around an Egyptian natural gas processing plant, J. Nat. Gas Sci. Eng., 54, 189–201, https://doi.org/10.1016/j.jngse.2018.01.019, 2018.
Enrico, M., Roux, G. L., Marusczak, N., Heimbürger, L.-E., Claustres, A., Fu, X., Sun, R., and Sonke, J. E.: Atmospheric Mercury Transfer to Peat Bogs Dominated by Gaseous Elemental Mercury Dry Deposition, Environ. Sci. Technol., 50, 2405–2412, https://doi.org/10.1021/acs.est.5b06058, 2016.
Ent, H., van Andel, I., Heemskerk, M., van Otterloo, P., Bavius, W., Baldan, A., Horvat, M., Brown, R. J. C., and Quétel, C. R.: A gravimetric approach to providing SI traceability for concentration measurement results of mercury vapor at ambient air levels, Meas. Sci. Technol., 25, 115801, https://doi.org/10.1088/0957-0233/25/11/115801, 2014.
Ellison, S. L. R. and Williams, A. (Eds.): Quantifying Uncertainty in Analytical Measurement, 3rd Edn., Teddington, UK, Eurachem/CITAC, 141 pp., (CITAC Guide Number 4), https://doi.org/10.25607/OBP-952, 2012.
Fantozzi, L., Guerrieri, N., Manca, G., Orrù, A., and Marziali, L.: An Integrated Investigation of Atmospheric Gaseous Elemental Mercury Transport and Dispersion Around a Chlor-Alkali Plant in the Ossola Valley (Italian Central Alps), Toxics, 9, 172, https://doi.org/10.3390/toxics9070172, 2021.
Ganeyev, A. A. and Sholupov, S. E.: New Zeeman atomic absorption spectroscopy approach for mercury isotope analysis, Spectrochim. Acta B, 47, 1325–1338, https://doi.org/10.1016/0584-8547(92)80122-W, 1992.
Gustin, M. S., Huang, J., Miller, M. B., Peterson, C., Jaffe, D. A., Ambrose, J., Finley, B. D., Lyman, S. N., Call, K., Talbot, R., Feddersen, D., Mao, H., and Lindberg, S. E.: Do We Understand What the Mercury Speciation Instruments Are Actually Measuring? Results of RAMIX, Environ. Sci. Technol., 47, 7295–7306, https://doi.org/10.1021/es3039104, 2013.
Jampaiah, D., Chalkidis, A., Sabri, Y. M., Mayes, E. L. H., Reddy, B. M., and Bhargava, S. K.: Low-temperature elemental mercury removal over TiO2 nanorods-supported MnOx-FeOx-CrOx, Catal. Today, 324, 174–182, https://doi.org/10.1016/j.cattod.2018.11.049, 2019.
Kamp, J., Skov, H., Jensen, B., and Sørensen, L. L.: Fluxes of gaseous elemental mercury (GEM) in the High Arctic during atmospheric mercury depletion events (AMDEs), Atmos. Chem. Phys., 18, 6923–6938, https://doi.org/10.5194/acp-18-6923-2018, 2018.
Koenig, A. M., Sonke, J. E., Magand, O., Andrade, M., Moreno, I., Velarde, F., Forno, R., Gutierrez, R., Blacutt, L., Laj, P., Ginot, P., Bieser, J., Zahn, A., Slemr, F., and Dommergue, A.: Evidence for Interhemispheric Mercury Exchange in the Pacific Ocean Upper Troposphere, J. Geophys. Res.-Atmos., 127, 1309–1328, https://doi.org/10.1029/2021JD036283, 2022.
Lian, M., Shang, L., Duan, Z., Li, Y., Zhao, G., Zhu, S., Qiu, G., Meng, B., Sommar, J., Feng, X., and Svanberg, S.: Lidar mapping of atmospheric atomic mercury in the Wanshan area, China, Environ. Pollut., 240, 353–358, https://doi.org/10.1016/j.envpol.2018.04.104, 2018.
Long, S. E., Norris, J. E., Carney, J., Ryan, J. V., Mitchell, G. D., and Dorko, W. D.: Traceability of the output concentration of mercury vapor generators, Atmos. Pollut. Res., 11, 639–645, https://doi.org/10.1016/j.apr.2019.12.012, 2020.
Lopez-Anton, M. A., Yuan, Y., Perry, R., and Maroto-Valer, M. M.: Analysis of mercury species present during coal combustion by thermal desorption, Fuel, 89, 629–634, https://doi.org/10.1016/j.fuel.2009.08.034, 2010.
Lumex Analytics: Calibration certificate Zeeman mercury analyzer RA-915M Serial no. 2244, 6 pp., 2021.
Lumex RA-915M Mercury Analyzer Operation Manual: Mission, Canada, 42 pp., 2015.
Ma, Y.-C., Wang, C.-W., Hung, S.-H., Chang, Y.-Z., Liu, C.-R., and Her, G.-R.: Estimation of the Measurement Uncertainty in Quantitative Determination of Ketamine and Norketamine in Urine Using a One-Point Calibration Method, J. Anal. Toxicol., 36, 515–522, https://doi.org/10.1093/jat/bks062, 2012.
MacSween, K., Stupple, G., Aas, W., Kyllönen, K., Pfaffhuber, K. A., Skov, H., Steffen, A., Berg, T., and Mastromonaco, M. N.: Updated trends for atmospheric mercury in the Arctic: 1995–2018, Sci. Total Environ., 837, 155802, https://doi.org/10.1016/j.scitotenv.2022.155802, 2022.
Mashyanov, N. R., Pogarev, S. E., Ryzhov, V. V., Obolkin, V. A., Khodzher, T. V., Potemkin, V. L., Molozhnikova, E. V., and Kalinchuk, V. V.: Air mercury monitoring in the Baikal area (2011–2021), Limnol. Freshw. Biol., 1315–1318, https://doi.org/10.31951/2658-3518-2022-A-3-1315, 2022.
Outridge, P. M., Mason, R. P., Wang, F., Guerrero, S., and Heimbürger-Boavida, L. E.: Updated Global and Oceanic Mercury Budgets for the United Nations Global Mercury Assessment 2018, Environ. Sci. Technol., 52, 11466–11477, https://doi.org/10.1021/acs.est.8b01246, 2018.
Phu Nguyen, L. S., Zhang, L., Lin, D.-W., Lin, N.-H., and Sheu, G.-R.: Eight-year dry deposition of atmospheric mercury to a tropical high mountain background site downwind of the East Asian continent, Environ. Pollut., 255, 113128, https://doi.org/10.1016/j.envpol.2019.113128, 2019.
Pierce, A. M., Gustin, M. S., Christensen, J. N., and Loría-Salazar, S. M.: Use of multiple tools including lead isotopes to decipher sources of ozone and reactive mercury to urban and rural locations in Nevada, USA, Sci. Total Environ., 615, 1411–1427, https://doi.org/10.1016/j.scitotenv.2017.08.284, 2018.
Rafeen, S., Ramli, R., and Srinivasan, G.: Tackling elemental mercury removal from the wet-gas phase by enhancing the performance of redox-active copper-based adsorbents utilising an operando pre-heating system, React. Chem. Eng., 5, 1647–1657, https://doi.org/10.1039/D0RE00240B, 2020.
Ravindra Babu, S., Nguyen, L. S. P., Sheu, G.-R., Griffith, S. M., Pani, S. K., Huang, H.-Y., and Lin, N.-H.: Long-range transport of La Soufrière volcanic plume to the western North Pacific: Influence on atmospheric mercury and aerosol properties, Atmos. Environ., 268, 118806, https://doi.org/10.1016/j.atmosenv.2021.118806, 2022.
Schroeder, W. H. and Munthe, J.: Atmospheric mercury – An overview, Atmos. Environ., 32, 809–822, https://doi.org/10.1016/S1352-2310(97)00293-8, 1998.
Sholupov, S. E. and Ganeyev, A. A.: Zeeman atomic absorption spectrometry using high frequency modulated light polarization, Spectrochim. Acta B, 50, 1227–1236, https://doi.org/10.1016/0584-8547(95)01316-7, 1995.
Si, L. and Ariya, P.: Recent Advances in Atmospheric Chemistry of Mercury, Atmosphere, 9, 76, https://doi.org/10.3390/atmos9020076, 2018.
Skov, H., Hjorth, J., Nordstrøm, C., Jensen, B., Christoffersen, C., Bech Poulsen, M., Baldtzer Liisberg, J., Beddows, D., Dall'Osto, M., and Christensen, J. H.: Variability in gaseous elemental mercury at Villum Research Station, Station Nord, in North Greenland from 1999 to 2017, Atmos. Chem. Phys., 20, 13253–13265, https://doi.org/10.5194/acp-20-13253-2020, 2020.
Souza, J. S., Kasper, D., da Cunha, L. S. T., Soares, T. A., de Lira Pessoa, A. R., de Carvalho, G. O., Costa, E. S., Niedzielski, P., and Torres, J. P. M.: Biological factors affecting total mercury and methylmercury levels in Antarctic penguins, Chemosphere, 261, 127713, https://doi.org/10.1016/j.chemosphere.2020.127713, 2020.
Srivastava, A. and Hodges, J. T.: Primary Measurement of Gaseous Elemental Mercury Concentration with a Dynamic Range of Six Decades, Anal. Chem., 94, 15818–15826, https://doi.org/10.1021/acs.analchem.2c03622, 2022.
Wang, T., Liu, J., Zhang, Y., Zhang, H., Chen, W.-Y., Norris, P., and Pan, W.-P.: Use of a non-thermal plasma technique to increase the number of chlorine active sites on biochar for improved mercury removal, Chem. Eng. J., 331, 536–544, https://doi.org/10.1016/j.cej.2017.09.017, 2018.
Zhou, H., Zhou, C., Hopke, P. K., and Holsen, T. M.: Mercury wet deposition and speciated mercury air concentrations at rural and urban sites across New York state: Temporal patterns, sources and scavenging coefficients, Sci. Total Environ., 637–638, 943–953, https://doi.org/10.1016/j.scitotenv.2018.05.047, 2018.
Živković, I., Berisha, S., Kotnik, J., Jagodic, M., and Horvat, M.: Traceable Determination of Atmospheric Mercury Using Iodinated Activated Carbon Traps, Atmosphere, 11, 780, https://doi.org/10.3390/atmos11080780, 2020.
Short summary
Atmospheric mercury monitoring is an important activity in order to model the global trajectory of this toxic element and to assess if certain areas are polluted or not in accordance to global guidelines. One of the analysers tested in this work is globally used in this regard due to its practicality compared with other devices. Because it is only calibrated by the manufacturer at very high concentrations, we wanted to see how it performs at ambient mercury concentrations.
Atmospheric mercury monitoring is an important activity in order to model the global trajectory...