Articles | Volume 17, issue 12
https://doi.org/10.5194/amt-17-3697-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-17-3697-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cost-effective off-grid automatic precipitation samplers for pollutant and biogeochemical atmospheric deposition
Alessia A. Colussi
Department of Chemistry, York University, Toronto, ON, Canada
Daniel Persaud
Department of Chemistry, York University, Toronto, ON, Canada
Melodie Lao
Department of Chemistry, York University, Toronto, ON, Canada
Bryan K. Place
Department of Chemistry, Memorial University, St. John's, NL, Canada
now at: SciGlob Instruments & Services LLC, Columbia, MD, USA
Rachel F. Hems
Department of Chemistry, Memorial University, St. John's, NL, Canada
now at: Department of Chemistry and Biochemistry, Oberlin College and Conservatory, OH, USA
Susan E. Ziegler
Department of Earth Science, Memorial University, St. John's, NL, Canada
Kate A. Edwards
Canadian Forest Service, Natural Resources Canada, Corner Brook, NL, Canada
now at: Climate Change Impacts and Adaptation Division, Lands and Minerals Sector, Natural Resources Canada, Ottawa, ON, Canada
Cora J. Young
Department of Chemistry, York University, Toronto, ON, Canada
Department of Chemistry, Memorial University, St. John's, NL, Canada
Department of Chemistry, York University, Toronto, ON, Canada
Department of Earth Science, Memorial University, St. John's, NL, Canada
Related authors
No articles found.
Brian L. Boys, Randall V. Martin, and Trevor C. VandenBoer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2994, https://doi.org/10.5194/egusphere-2024-2994, 2024
Short summary
Short summary
A widely used dry deposition parameterization for NO2 is updated by including a well-known heterogeneous hydrolysis reaction on deposition surfaces. This mechanistic update eliminates a large low bias of -80 % in simulated NO2 nocturnal deposition velocities evaluated against long-term eddy covariance flux observations over Harvard Forest. We highlight the importance of canopy surface area effects as well as soil NO emission in formulating and evaluating NO2 dry deposition parameterizations.
Lisa Azzarello, Rebecca A. Washenfelder, Michael A. Robinson, Alessandro Franchin, Caroline C. Womack, Christopher D. Holmes, Steven S. Brown, Ann Middlebrook, Tim Newberger, Colm Sweeney, and Cora J. Young
Atmos. Chem. Phys., 23, 15643–15654, https://doi.org/10.5194/acp-23-15643-2023, https://doi.org/10.5194/acp-23-15643-2023, 2023
Short summary
Short summary
We present a molecular size-resolved offline analysis of water-soluble brown carbon collected on an aircraft during FIREX-AQ. The smoke plumes were aged 0 to 5 h, where absorption was dominated by small molecular weight molecules, brown carbon absorption downwind did not consistently decrease, and the measurements differed from online absorption measurements of the same samples. We show how differences between online and offline absorption could be related to different measurement conditions.
Keri L. Bowering, Kate A. Edwards, and Susan E. Ziegler
Biogeosciences, 20, 2189–2206, https://doi.org/10.5194/bg-20-2189-2023, https://doi.org/10.5194/bg-20-2189-2023, 2023
Short summary
Short summary
Dissolved organic matter (DOM) mobilized from surface soils is a source of carbon (C) for deeper mineral horizons but also a mechanism of C loss. Composition of DOM mobilized in boreal forests varied more by season than as a result of forest harvesting. Results suggest reduced snowmelt and increased fall precipitation enhance DOM properties promoting mineral soil C stores. These findings, coupled with hydrology, can inform on soil C fate and boreal forest C balance in response to climate change.
Allison N. Myers-Pigg, Karl Kaiser, Ronald Benner, and Susan E. Ziegler
Biogeosciences, 20, 489–503, https://doi.org/10.5194/bg-20-489-2023, https://doi.org/10.5194/bg-20-489-2023, 2023
Short summary
Short summary
Boreal forests, historically a global sink for atmospheric CO2, store carbon in vast soil reservoirs. To predict how such stores will respond to climate warming we need to understand climate–ecosystem feedbacks. We find boreal forest soil carbon stores are maintained through enhanced nitrogen cycling with climate warming, providing direct evidence for a key feedback. Further application of the approach demonstrated here will improve our understanding of the limits of climate–ecosystem feedbacks.
Christopher E. Lawrence, Paul Casson, Richard Brandt, James J. Schwab, James E. Dukett, Phil Snyder, Elizabeth Yerger, Daniel Kelting, Trevor C. VandenBoer, and Sara Lance
Atmos. Chem. Phys., 23, 1619–1639, https://doi.org/10.5194/acp-23-1619-2023, https://doi.org/10.5194/acp-23-1619-2023, 2023
Short summary
Short summary
Atmospheric aqueous chemistry can have profound effects on our environment, as illustrated by historical data from Whiteface Mountain (WFM) that were critical for uncovering the process of acid rain. The current study updates the long-term trends in cloud water composition at WFM for the period 1994 to 2021. We highlight the emergence of a new chemical regime at WFM dominated by organics and ammonium, quite different from the highly acidic regime observed in the past but not necessarily
clean.
Teles C. Furlani, RenXi Ye, Jordan Stewart, Leigh R. Crilley, Peter M. Edwards, Tara F. Kahan, and Cora J. Young
Atmos. Meas. Tech., 16, 181–193, https://doi.org/10.5194/amt-16-181-2023, https://doi.org/10.5194/amt-16-181-2023, 2023
Short summary
Short summary
This study describes a new technique to measure total gaseous chlorine, which is the sum of gas-phase chlorine-containing chemicals. The method converts any chlorine-containing molecule to hydrogen chloride that can be detected in real time using a cavity ring-down spectrometer. The new method was validated through laboratory experiments, as well as by making measurements of ambient outdoor air and indoor air during cleaning with a chlorine-based cleaner.
Teles C. Furlani, Patrick R. Veres, Kathryn E. R. Dawe, J. Andrew Neuman, Steven S. Brown, Trevor C. VandenBoer, and Cora J. Young
Atmos. Meas. Tech., 14, 5859–5871, https://doi.org/10.5194/amt-14-5859-2021, https://doi.org/10.5194/amt-14-5859-2021, 2021
Short summary
Short summary
This study characterized and validated a commercial spectroscopic instrument for the measurement of hydrogen chloride (HCl) in the atmosphere. Near the Earth’s surface, HCl acts as the dominant reservoir for other chlorine-containing reactive chemicals that play an important role in atmospheric chemistry. The properties of HCl make it challenging to measure. This instrument can overcome many of these challenges, enabling reliable HCl measurements.
Frances A. Podrebarac, Sharon A. Billings, Kate A. Edwards, Jérôme Laganière, Matthew J. Norwood, and Susan E. Ziegler
Biogeosciences, 18, 4755–4772, https://doi.org/10.5194/bg-18-4755-2021, https://doi.org/10.5194/bg-18-4755-2021, 2021
Short summary
Short summary
Soil respiration is a large and temperature-responsive flux in the global carbon cycle. We found increases in microbial use of easy to degrade substrates enhanced the temperature response of respiration in soils layered as they are in situ. This enhanced response is consistent with soil composition differences in warm relative to cold climate forests. These results highlight the importance of the intact nature of soils rarely studied in regulating responses of CO2 fluxes to changing temperature.
Melodie Lao, Leigh R. Crilley, Leyla Salehpoor, Teles C. Furlani, Ilann Bourgeois, J. Andrew Neuman, Andrew W. Rollins, Patrick R. Veres, Rebecca A. Washenfelder, Caroline C. Womack, Cora J. Young, and Trevor C. VandenBoer
Atmos. Meas. Tech., 13, 5873–5890, https://doi.org/10.5194/amt-13-5873-2020, https://doi.org/10.5194/amt-13-5873-2020, 2020
Short summary
Short summary
Nitrous acid (HONO) is a key intermediate in the generation of oxidants and fate of nitrogen oxides in the atmosphere. High-purity calibration sources that produce stable atmospherically relevant levels under field conditions have not been made to date, reducing measurement accuracy. In this study a simple salt-coated tube humidified with water vapor is demonstrated to produce pure stable low levels of HONO, with modifications allowing the generation of higher amounts.
Kate M. Buckeridge, Kate A. Edwards, Kyungjin Min, Susan E. Ziegler, and Sharon A. Billings
SOIL, 6, 399–412, https://doi.org/10.5194/soil-6-399-2020, https://doi.org/10.5194/soil-6-399-2020, 2020
Short summary
Short summary
We do not understand the short- and long-term temperature response of soil denitrifiers, which produce and consume N2O. Boreal forest soils from a long-term climate gradient were incubated in short-term warming experiments. We found stronger N2O consumption at depth, inconsistent microbial gene abundance and function, and consistent higher N2O emissions from warmer-climate soils at warmer temperatures. Consideration of our results in models will contribute to improved climate projections.
Keri L. Bowering, Kate A. Edwards, Karen Prestegaard, Xinbiao Zhu, and Susan E. Ziegler
Biogeosciences, 17, 581–595, https://doi.org/10.5194/bg-17-581-2020, https://doi.org/10.5194/bg-17-581-2020, 2020
Short summary
Short summary
We examined the effects of season and tree harvesting on the flow of water and the organic carbon (OC) it carries from boreal forest soils. We found that more OC was lost from the harvested forest because more precipitation reached the soil surface but that during periods of flushing in autumn and snowmelt a limit on the amount of water-extractable OC is reached. These results contribute to an increased understanding of carbon loss from boreal forest soils.
Michael Philben, Sara Butler, Sharon A. Billings, Ronald Benner, Kate A. Edwards, and Susan E. Ziegler
Biogeosciences, 15, 6731–6746, https://doi.org/10.5194/bg-15-6731-2018, https://doi.org/10.5194/bg-15-6731-2018, 2018
Short summary
Short summary
We explored the relationship between chemical composition and the temperature sensitivity of moss decomposition using 959-day lab incubations. Mass loss was low despite the predominance of carbohydrates, indicating the persistence of labile C. Scanning electron microscopy revealed little change in the moss cell-wall structure. These results suggest that the moss cell-wall matrix protects labile C from decomposition, contributing to the globally important stocks of moss-derived C.
Heidi M. Pickard, Alison S. Criscitiello, Christine Spencer, Martin J. Sharp, Derek C. G. Muir, Amila O. De Silva, and Cora J. Young
Atmos. Chem. Phys., 18, 5045–5058, https://doi.org/10.5194/acp-18-5045-2018, https://doi.org/10.5194/acp-18-5045-2018, 2018
Short summary
Short summary
Perfluoroalkyl acids (PFAAs) are persistent, bioaccumulative compounds found in the environment far from source regions, including the remote Arctic. We collected a 15 m ice core from the Canadian High Arctic to measure a 38-year deposition record of PFAAs, proving information about major pollutant sources and production changes over time. Our results demonstrate that PFAAs have continuous and increasing deposition, despite recent North American regulations and phase-outs.
Bryan K. Place, Aleya T. Quilty, Robert A. Di Lorenzo, Susan E. Ziegler, and Trevor C. VandenBoer
Atmos. Meas. Tech., 10, 1061–1078, https://doi.org/10.5194/amt-10-1061-2017, https://doi.org/10.5194/amt-10-1061-2017, 2017
Short summary
Short summary
Amines are important drivers in particle formation and growth, which has implications for Earth’s climate. We developed a novel ion chromatographic method for separating and quantifying the 11 most abundant atmospheric alkyl amines, including three sets of structural isomers and two diamines. The detection limits are in the picogram per injection range. We quantified these analytes in two Canadian biomass burning aerosol samples with ammonium ratios of 1 : 2 up to 1000 : 1.
Chantelle R. Lonsdale, Jennifer D. Hegarty, Karen E. Cady-Pereira, Matthew J. Alvarado, Daven K. Henze, Matthew D. Turner, Shannon L. Capps, John B. Nowak, J. Andy Neuman, Ann M. Middlebrook, Roya Bahreini, Jennifer G. Murphy, Milos Z. Markovic, Trevor C. VandenBoer, Lynn M. Russell, and Amy Jo Scarino
Atmos. Chem. Phys., 17, 2721–2739, https://doi.org/10.5194/acp-17-2721-2017, https://doi.org/10.5194/acp-17-2721-2017, 2017
Short summary
Short summary
This study takes advantage of the high-resolution observations of NH3(g) made by the TES satellite instrument over Bakersfield during the CalNex campaign, along with campaign measurements, to compare CMAQ model results in the San Joaquin Valley, California. Additionally we evaluate the CMAQ bi-directional ammonia flux results using the CARB emissions inventory against these satellite and campaign measurements, not previously explored in combination.
R. J. Wild, P. M. Edwards, T. S. Bates, R. C. Cohen, J. A. de Gouw, W. P. Dubé, J. B. Gilman, J. Holloway, J. Kercher, A. R. Koss, L. Lee, B. M. Lerner, R. McLaren, P. K. Quinn, J. M. Roberts, J. Stutz, J. A. Thornton, P. R. Veres, C. Warneke, E. Williams, C. J. Young, B. Yuan, K. J. Zarzana, and S. S. Brown
Atmos. Chem. Phys., 16, 573–583, https://doi.org/10.5194/acp-16-573-2016, https://doi.org/10.5194/acp-16-573-2016, 2016
Short summary
Short summary
High wintertime ozone levels have been observed in the Uintah Basin, Utah, a sparsely populated rural region with intensive oil and gas operations. The reactive nitrogen budget plays an important role in tropospheric ozone formation, and we find that nighttime chemistry has a large effect on its partitioning. Much of the oxidation of reactive nitrogen during a high-ozone year occurred via heterogeneous uptake onto aerosol at night, keeping NOx at concentrations comparable to a low-ozone year.
C. J. Young, R. A. Washenfelder, P. M. Edwards, D. D. Parrish, J. B. Gilman, W. C. Kuster, L. H. Mielke, H. D. Osthoff, C. Tsai, O. Pikelnaya, J. Stutz, P. R. Veres, J. M. Roberts, S. Griffith, S. Dusanter, P. S. Stevens, J. Flynn, N. Grossberg, B. Lefer, J. S. Holloway, J. Peischl, T. B. Ryerson, E. L. Atlas, D. R. Blake, and S. S. Brown
Atmos. Chem. Phys., 14, 3427–3440, https://doi.org/10.5194/acp-14-3427-2014, https://doi.org/10.5194/acp-14-3427-2014, 2014
P. M. Edwards, C. J. Young, K. Aikin, J. deGouw, W. P. Dubé, F. Geiger, J. Gilman, D. Helmig, J. S. Holloway, J. Kercher, B. Lerner, R. Martin, R. McLaren, D. D. Parrish, J. Peischl, J. M. Roberts, T. B. Ryerson, J. Thornton, C. Warneke, E. J. Williams, and S. S. Brown
Atmos. Chem. Phys., 13, 8955–8971, https://doi.org/10.5194/acp-13-8955-2013, https://doi.org/10.5194/acp-13-8955-2013, 2013
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Instruments and Platforms
Method development and application for the analysis of chiral organic marker species in ice-cores
High-resolution wind speed measurements with quadcopter uncrewed aerial systems: calibration and verification in a wind tunnel with an active grid
High-altitude balloon-launched uncrewed aircraft system measurements of atmospheric turbulence and qualitative comparison with infrasound microphone response
Evaluation of the hyperspectral radiometer (HSR1) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site
The ratio of transverse to longitudinal turbulent velocity statistics for aircraft measurements
Modelling of cup anemometry and dynamic overspeeding in average wind speed measurements
Introducing the Video In Situ Snowfall Sensor (VISSS)
Quality evaluation for measurements of wind field and turbulent fluxes from a UAV-based eddy covariance system
A new reference-quality precipitation gauge wind shield
Long-term airborne measurements of pollutants over the United Kingdom to support air quality model development and evaluation
Acquiring high-resolution wind measurements by modifying radiosonde sounding procedures
A new accurate low-cost instrument for fast synchronized spatial measurements of light spectra
Drone-based meteorological observations up to the tropopause – a concept study
A new airborne broadband radiometer system and an efficient method to correct dynamic thermal offsets
Toward quantifying turbulent vertical airflow and sensible heat flux in tall forest canopies using fiber-optic distributed temperature sensing
A fiber-optic distributed temperature sensor for continuous in situ profiling up to 2 km beneath constant-altitude scientific balloons
New Absolute Cavity Pyrgeometer equation by application of Kirchhoff's law and adding a convection term
The DataHawk2 uncrewed aircraft system for atmospheric research
The measurement of mean wind, variances, and covariances from an instrumented mobile car in a rural environment
ICE-CAMERA: a flatbed scanner to study inland Antarctic polar precipitation
3D trajectories and velocities of rainfall drops in a multifractal turbulent wind field
Towards vertical wind and turbulent flux estimation with multicopter uncrewed aircraft systems
Instabilities, Dynamics, and Energetics accompanying Atmospheric Layering (IDEAL): high-resolution in situ observations and modeling in and above the nocturnal boundary layer
Infrasound measurement system for real-time in situ tornado measurements
Quantifying the coastal urban surface layer structure using distributed temperature sensing in Helsinki, Finland
On the quality of RS41 radiosonde descent data
Idealized simulation study of the relationship of disdrometer sampling statistics with the precision of precipitation rate measurement
Use of thermal signal for the investigation of near-surface turbulence
Drone measurements of surface-based winter temperature inversions in the High Arctic at Eureka
Ground mobile observation system for measuring multisurface microwave emissivity
A differential emissivity imaging technique for measuring hydrometeor mass and type
Effect of snow-covered ground albedo on the accuracy of air temperature measurements
Distributed wind measurements with multiple quadrotor unmanned aerial vehicles in the atmospheric boundary layer
The INFRA-EAR: a low-cost mobile multidisciplinary measurement platform for monitoring geophysical parameters
A dedicated robust instrument for water vapor generation at low humidity for use with a laser water isotope analyzer in cold and dry polar regions
Arctic observations and numerical simulations of surface wind effects on Multi-Angle Snowflake Camera measurements
The development of the “Storm Tracker” and its applications for atmospheric high-resolution upper-air observations
Use of automatic radiosonde launchers to measure temperature and humidity profiles from the GRUAN perspective
Using global reanalysis data to quantify and correct airflow distortion bias in shipborne wind speed measurements
The CopterSonde: an insight into the development of a smart unmanned aircraft system for atmospheric boundary layer research
Microphysical properties and fall speed measurements of snow ice crystals using the Dual Ice Crystal Imager (D-ICI)
The Disdrometer Verification Network (DiVeN): a UK network of laser precipitation instruments
The new BELUGA setup for collocated turbulence and radiation measurements using a tethered balloon: first applications in the cloudy Arctic boundary layer
Identification of platform exhaust on the RV Investigator
Evaluation of Windsond S1H2 performance in Kumasi during the 2016 DACCIWA field campaign
Recovery of the three-dimensional wind and sonic temperature data from a physically deformed sonic anemometer
Considerations for temperature sensor placement on rotary-wing unmanned aircraft systems
New calibration procedures for airborne turbulence measurements and accuracy of the methane fluxes during the AirMeth campaigns
Is it feasible to estimate radiosonde biases from interlaced measurements?
Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol–cloud interactions
Johanna Schäfer, Anja Beschnitt, François Burgay, Thomas Singer, Margit Schwikowski, and Thorsten Hoffmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2243, https://doi.org/10.5194/egusphere-2024-2243, 2024
Short summary
Short summary
Glaciers preserve organic compounds from atmospheric aerosols, which can serve as markers for emission sources. Most studies overlook the enantiomers of chiral compounds. We developed a 2-dimensional liquid chromatography method to determine the chiral ratios of monoterpene oxidation products cis-pinic acid and cis-pinonic acid in ice-core samples. Applied to samples from the Belukha glacier (1870–1970 CE), the method revealed fluctuating chiral ratios for the analytes.
Johannes Kistner, Lars Neuhaus, and Norman Wildmann
Atmos. Meas. Tech., 17, 4941–4955, https://doi.org/10.5194/amt-17-4941-2024, https://doi.org/10.5194/amt-17-4941-2024, 2024
Short summary
Short summary
We use a fleet of multicopter drones to measure wind. To improve the accuracy of this wind measurement and to evaluate this improvement, we conducted experiments with the drones in a wind tunnel under various conditions. This wind tunnel can generate different kinds and intensities of wind. Here we measured with the drones and with other sensors as a reference and compared the results. We were able to improve our wind measurement and show how accurately it works in different situations.
Anisa N. Haghighi, Ryan D. Nolin, Gary D. Pundsack, Nick Craine, Aliaksei Stratsilatau, and Sean C. C. Bailey
Atmos. Meas. Tech., 17, 4863–4889, https://doi.org/10.5194/amt-17-4863-2024, https://doi.org/10.5194/amt-17-4863-2024, 2024
Short summary
Short summary
This work summarizes measurements conducted in June 2021 using a small, uncrewed, stratospheric glider that was launched from a weather balloon to altitudes up to 30 km above sea level. The aircraft conducted measurements of wind speed and direction, pressure, temperature, and humidity during its descent as well as measurements of infrasonic sound levels. These data were used to evaluate the atmospheric turbulence observed during the descent phase of the flight.
Kelly A. Balmes, Laura D. Riihimaki, John Wood, Connor Flynn, Adam Theisen, Michael Ritsche, Lynn Ma, Gary B. Hodges, and Christian Herrera
Atmos. Meas. Tech., 17, 3783–3807, https://doi.org/10.5194/amt-17-3783-2024, https://doi.org/10.5194/amt-17-3783-2024, 2024
Short summary
Short summary
A new hyperspectral radiometer (HSR1) was deployed and evaluated in the central United States (northern Oklahoma). The HSR1 total spectral irradiance agreed well with nearby existing instruments, but the diffuse spectral irradiance was slightly smaller. The HSR1-retrieved aerosol optical depth (AOD) also agreed well with other retrieved AODs. The HSR1 performance is encouraging: new hyperspectral knowledge is possible that could inform atmospheric process understanding and weather forecasting.
Jakub L. Nowak, Marie Lothon, Donald H. Lenschow, and Szymon P. Malinowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-1366, https://doi.org/10.5194/egusphere-2024-1366, 2024
Short summary
Short summary
According to a classical theory, the ratio of turbulence statistics corresponding to transverse and longitudinal wind velocity components equals 4/3 in the inertial range of scales. We analyze large amount of measurements obtained with three research aircraft during four field experiments in different locations and show the observed ratios are almost always significantly smaller. We discuss potential reasons of this disagreement but actual explanation remains to be determined.
Troels Friis Pedersen and Jan-Åke Dahlberg
Atmos. Meas. Tech., 17, 1441–1461, https://doi.org/10.5194/amt-17-1441-2024, https://doi.org/10.5194/amt-17-1441-2024, 2024
Short summary
Short summary
Accuracy is important in wind speed measurements with cup anemometers. Dynamic overspeeding is historically considered an inherent and significant error, supported by a two-cup drag model. But lower (and even zero) overspeeding might be present for low-to-medium turbulence intensities for conical cups with short arms. A parabolic torque model reveals various dynamic overspeeding characteristics of cup anemometers, but modelling of actual cup anemometers is best made with tabulated data.
Maximilian Maahn, Dmitri Moisseev, Isabelle Steinke, Nina Maherndl, and Matthew D. Shupe
Atmos. Meas. Tech., 17, 899–919, https://doi.org/10.5194/amt-17-899-2024, https://doi.org/10.5194/amt-17-899-2024, 2024
Short summary
Short summary
The open-source Video In Situ Snowfall Sensor (VISSS) is a novel instrument for characterizing particle shape, size, and sedimentation velocity in snowfall. It combines a large observation volume with relatively high resolution and a design that limits wind perturbations. The open-source nature of the VISSS hardware and software invites the community to contribute to the development of the instrument, which has many potential applications in atmospheric science and beyond.
Yibo Sun, Bilige Sude, Xingwen Lin, Bing Geng, Bo Liu, Shengnan Ji, Junping Jing, Zhiping Zhu, Ziwei Xu, Shaomin Liu, and Zhanjun Quan
Atmos. Meas. Tech., 16, 5659–5679, https://doi.org/10.5194/amt-16-5659-2023, https://doi.org/10.5194/amt-16-5659-2023, 2023
Short summary
Short summary
Unoccupied aerial vehicles (UAVs) provide a versatile platform for eddy covariance (EC) flux measurements at regional scales with low cost, transport, and infrastructural requirements. This study evaluates the measurement performance in the wind field and turbulent flux of a UAV-based EC system based on the data from a set of calibration flights and standard operational flights and concludes that the system can measure the georeferenced wind vector and turbulent flux with sufficient precision.
John Kochendorfer, Tilden P. Meyers, Mark E. Hall, Scott D. Landolt, Justin Lentz, and Howard J. Diamond
Atmos. Meas. Tech., 16, 5647–5657, https://doi.org/10.5194/amt-16-5647-2023, https://doi.org/10.5194/amt-16-5647-2023, 2023
Short summary
Short summary
A new wind shield has been designed to reduce the effects of precipitation gauge undercatch. Tested at three separate sites, it compared well to a well-established refence-quality precipitation wind shield. The new wind shield is smaller and more durable than other reference-quality shields, and it was designed for use in operational weather and climate networks.
Angela Mynard, Joss Kent, Eleanor R. Smith, Andy Wilson, Kirsty Wivell, Noel Nelson, Matthew Hort, James Bowles, David Tiddeman, Justin M. Langridge, Benjamin Drummond, and Steven J. Abel
Atmos. Meas. Tech., 16, 4229–4261, https://doi.org/10.5194/amt-16-4229-2023, https://doi.org/10.5194/amt-16-4229-2023, 2023
Short summary
Short summary
Air quality models are key in understanding complex air pollution processes and assist in developing strategies to mitigate the impacts of air pollution. The ability of regional air quality models to skilfully represent pollutant distributions aloft is important to enabling their skilful prediction at the surface. To assist in model development and evaluation, a long-term, quality-assured dataset of the 3-D distribution of key pollutants was collected over the United Kingdom (2019–2022).
Jens Faber, Michael Gerding, and Torsten Köpnick
Atmos. Meas. Tech., 16, 4183–4193, https://doi.org/10.5194/amt-16-4183-2023, https://doi.org/10.5194/amt-16-4183-2023, 2023
Short summary
Short summary
Weather forecasters around the world use uncrewed balloons to measure wind and temperature for their weather models. In these measurements, wind is recorded from the shift of the balloon by the moving air. However, the balloons and the measurement devices also move by themselves in still air. This creates artificial wind measurements that are normally removed from the data. We show new techniques to avoid these movements and increase the altitude resolution of the wind measurement by 6 times.
Bert G. Heusinkveld, Wouter B. Mol, and Chiel C. van Heerwaarden
Atmos. Meas. Tech., 16, 3767–3785, https://doi.org/10.5194/amt-16-3767-2023, https://doi.org/10.5194/amt-16-3767-2023, 2023
Short summary
Short summary
This paper presents a new instrument for fast measurements of solar irradiance in 18 wavebands (400–950 nm): GPS perfectly synchronizes 10 Hz measurement speed to universal time, low-cost (< EUR 200) complete standalone solution for realizing dense measurement grids to study cloud-shading dynamics, 940 nm waveband reveals atmospheric moisture column information, 11 wavebands to study photosynthetic active radiation and light interaction with vegetation, and good reflection spectra performance.
Konrad B. Bärfuss, Holger Schmithüsen, and Astrid Lampert
Atmos. Meas. Tech., 16, 3739–3765, https://doi.org/10.5194/amt-16-3739-2023, https://doi.org/10.5194/amt-16-3739-2023, 2023
Short summary
Short summary
The first atmospheric soundings with an electrically powered small uncrewed aircraft system (UAS) up to an altitude of 10 km are presented and assessed for quality, revealing the potential to augment atmospheric observations and fill observation gaps for numerical weather prediction. This is significant because of the need for high-resolution meteorological data, in particular in remote areas with limited in situ measurements, and for reference data for satellite measurement calibration.
André Ehrlich, Martin Zöger, Andreas Giez, Vladyslav Nenakhov, Christian Mallaun, Rolf Maser, Timo Röschenthaler, Anna E. Luebke, Kevin Wolf, Bjorn Stevens, and Manfred Wendisch
Atmos. Meas. Tech., 16, 1563–1581, https://doi.org/10.5194/amt-16-1563-2023, https://doi.org/10.5194/amt-16-1563-2023, 2023
Short summary
Short summary
Measurements of the broadband radiative energy budget from aircraft are needed to study the effect of clouds, aerosol particles, and surface conditions on the Earth's energy budget. However, the moving aircraft introduces challenges to the instrument performance and post-processing of the data. This study introduces a new radiometer package, outlines a greatly simplifying method to correct thermal offsets, and provides exemplary measurements of solar and thermal–infrared irradiance.
Mohammad Abdoli, Karl Lapo, Johann Schneider, Johannes Olesch, and Christoph K. Thomas
Atmos. Meas. Tech., 16, 809–824, https://doi.org/10.5194/amt-16-809-2023, https://doi.org/10.5194/amt-16-809-2023, 2023
Short summary
Short summary
In this study, we compute the distributed sensible heat flux using a distributed temperature sensing technique, whose magnitude, sign, and temporal dynamics compare reasonably well to estimates from classical eddy covariance measurements from sonic anemometry. Despite the remaining uncertainty in computed fluxes, the results demonstrate the potential of the novel method to compute spatially resolving sensible heat flux measurement and encourage further research.
J. Douglas Goetz, Lars E. Kalnajs, Terry Deshler, Sean M. Davis, Martina Bramberger, and M. Joan Alexander
Atmos. Meas. Tech., 16, 791–807, https://doi.org/10.5194/amt-16-791-2023, https://doi.org/10.5194/amt-16-791-2023, 2023
Short summary
Short summary
An instrument for in situ continuous 2 km vertical profiles of temperature below high-altitude balloons was developed for high-temporal-resolution measurements within the upper troposphere and lower stratosphere using fiber-optic distributed temperature sensing. The mechanical, electrical, and temperature calibration systems were validated from a short mid-latitude constant-altitude balloon flight within the lower stratosphere. The instrument observed small-scale and inertial gravity waves.
Bruce W. Forgan, Julian Gröbner, and Ibrahim Reda
Atmos. Meas. Tech., 16, 727–743, https://doi.org/10.5194/amt-16-727-2023, https://doi.org/10.5194/amt-16-727-2023, 2023
Short summary
Short summary
This paper investigates the Absolute Cavity Pyrgeometer (ACP) and its use in measuring atmospheric terrestrial irradiances traceable to the standard system of units (SI). This work fits into the objective of the Expert Team on Radiation References, established by the World Meteorological Organization (WMO), to develop and validate instrumentation that can be used as reference instruments for terrestrial radiation measurements.
Jonathan Hamilton, Gijs de Boer, Abhiram Doddi, and Dale A. Lawrence
Atmos. Meas. Tech., 15, 6789–6806, https://doi.org/10.5194/amt-15-6789-2022, https://doi.org/10.5194/amt-15-6789-2022, 2022
Short summary
Short summary
The DataHawk2 is a small, low-cost, rugged, uncrewed aircraft system (UAS) used to observe the thermodynamic and turbulence structures of the lower atmosphere, supporting an advanced understanding of the physical processes that regulate weather and climate. This paper discusses the development, performance, and sensing capabilities of the DataHawk2 using data collected during several recent field deployments.
Stefan J. Miller and Mark Gordon
Atmos. Meas. Tech., 15, 6563–6584, https://doi.org/10.5194/amt-15-6563-2022, https://doi.org/10.5194/amt-15-6563-2022, 2022
Short summary
Short summary
This research investigates the measurement of atmospheric turbulence using a low-cost instrumented car that travels at near-highway speeds and is impacted by upwind obstructions and other on-road traffic. We show that our car design can successfully measure the mean flow and atmospheric turbulence near the surface. We outline a technique to isolate and remove the effects of sporadic passing traffic from car-measured velocity variances and discuss potential measurement uncertainties.
Massimo Del Guasta
Atmos. Meas. Tech., 15, 6521–6544, https://doi.org/10.5194/amt-15-6521-2022, https://doi.org/10.5194/amt-15-6521-2022, 2022
Short summary
Short summary
Any instrument on the Antarctic plateau must cope with a harsh environment. Concordia station is a special place for testing new instruments. With low temperatures and weak winds, precipitation can be studied by simply collecting it on horizontal surfaces. This is typically done manually. ICE-CAMERA is intended as an automatic alternative. The combined construction of rugged equipment for taking photographs of particles and the adoption of machine learning techniques have served this purpose.
Auguste Gires, Ioulia Tchiguirinskaia, and Daniel Schertzer
Atmos. Meas. Tech., 15, 5861–5875, https://doi.org/10.5194/amt-15-5861-2022, https://doi.org/10.5194/amt-15-5861-2022, 2022
Short summary
Short summary
Weather radars measure rainfall in altitude whereas hydro-meteorologists are mainly interested in rainfall at ground level. During their fall, drops are advected by the wind which affects the location of the measured field. Governing equation linking acceleration, gravity, buoyancy, and drag force is updated to account for oblateness of drops. Then multifractal wind is used as input to explore velocities and trajectories of drops. Finally consequence on radar rainfall estimation is discussed.
Norman Wildmann and Tamino Wetz
Atmos. Meas. Tech., 15, 5465–5477, https://doi.org/10.5194/amt-15-5465-2022, https://doi.org/10.5194/amt-15-5465-2022, 2022
Short summary
Short summary
Multicopter uncrewed aerial systems (UAS, also known as drones) are very easy to use systems for collecting data in the lowest part of the atmosphere. Wind and turbulence are parameters that are particularly important for understanding the dynamics in the atmosphere. Only with three-dimensional measurements of the wind can a full understanding can be achieved. In this study, we show how even the vertical wind through the UAS can be measured with good accuracy.
Abhiram Doddi, Dale Lawrence, David Fritts, Ling Wang, Thomas Lund, William Brown, Dragan Zajic, and Lakshmi Kantha
Atmos. Meas. Tech., 15, 4023–4045, https://doi.org/10.5194/amt-15-4023-2022, https://doi.org/10.5194/amt-15-4023-2022, 2022
Short summary
Short summary
Small-scale turbulent structures are ubiquitous in the atmosphere, yet our understanding of their structure and dynamics is vastly incomplete. IDEAL aimed to improve our understanding of small-scale turbulent flow features in the lower atmosphere. A small, unmanned, fixed-wing aircraft was employed to make targeted observations of atmospheric columns. Measured data were used to guide atmospheric model simulations designed to describe the structure and dynamics of small-scale turbulence.
Brandon C. White, Brian R. Elbing, and Imraan A. Faruque
Atmos. Meas. Tech., 15, 2923–2938, https://doi.org/10.5194/amt-15-2923-2022, https://doi.org/10.5194/amt-15-2923-2022, 2022
Short summary
Short summary
Tornadic storms have been hypothesized to emit sound at frequencies below human hearing which animals and certain microphones can detect. This study covers the design, fabrication, and deployment of a specialized microphone that can be carried by first responders and storm chasers. The study also presents real-time processing methods, analyzes several recorded severe weather events including a tornado, and introduces a real-time web interface to allow for live monitoring of the mobile sensor.
Sasu Karttunen, Ewan O'Connor, Olli Peltola, and Leena Järvi
Atmos. Meas. Tech., 15, 2417–2432, https://doi.org/10.5194/amt-15-2417-2022, https://doi.org/10.5194/amt-15-2417-2022, 2022
Short summary
Short summary
To study the complex structure of the lowest tens of metres of atmosphere in urban areas, measurement methods with great spatial and temporal coverage are needed. In our study, we analyse measurements with a promising and relatively new method, distributed temperature sensing, capable of providing detailed information on the near-surface atmosphere. We present multiple ways to utilise these kinds of measurements, as well as important considerations for planning new studies using the method.
Bruce Ingleby, Martin Motl, Graeme Marlton, David Edwards, Michael Sommer, Christoph von Rohden, Holger Vömel, and Hannu Jauhiainen
Atmos. Meas. Tech., 15, 165–183, https://doi.org/10.5194/amt-15-165-2022, https://doi.org/10.5194/amt-15-165-2022, 2022
Short summary
Short summary
Radiosonde descent data could provide extra profiles of the atmosphere for forecasting and other uses. Descent data from Vaisala RS41 radiosondes have been compared with the ascent profiles and with ECMWF short-range forecasts. The agreement is mostly good. The descent rate is very variable and high descent rates cause temperature biases, especially at upper levels. Ascent winds are affected by pendulum motion; on average, the descent winds are smoother.
Karlie N. Rees and Timothy J. Garrett
Atmos. Meas. Tech., 14, 7681–7691, https://doi.org/10.5194/amt-14-7681-2021, https://doi.org/10.5194/amt-14-7681-2021, 2021
Short summary
Short summary
Monte Carlo simulations are used to establish baseline precipitation measurement uncertainties according to World Meteorological Organization standards. Measurement accuracy depends on instrument sampling area, time interval, and precipitation rate. Simulations are compared with field measurements taken by an emerging hotplate precipitation sensor. We find that the current collection area is sufficient for light rain, but a larger collection area is required to detect moderate to heavy rain.
Matthias Zeeman
Atmos. Meas. Tech., 14, 7475–7493, https://doi.org/10.5194/amt-14-7475-2021, https://doi.org/10.5194/amt-14-7475-2021, 2021
Short summary
Short summary
Understanding turbulence near the surface is important for many applications. In this work, methods for observing and analysing temperature structures in a near-surface volume were explored. Experiments were conducted to identify modes of organised motion. These help explain interactions between the vegetation and the atmosphere that are not currently well understood. Techniques used include fibre-optic sensing, thermal infrared imaging, signal decomposition, and machine learning.
Alexey B. Tikhomirov, Glen Lesins, and James R. Drummond
Atmos. Meas. Tech., 14, 7123–7145, https://doi.org/10.5194/amt-14-7123-2021, https://doi.org/10.5194/amt-14-7123-2021, 2021
Short summary
Short summary
Two commercial quadcopters (DJI Matrice 100 and M210 RTK) were equipped with an air temperature measurement system. They were flown at the Polar Environment Atmospheric Research Laboratory, Eureka, Nunavut, Canada, at 80° N latitude to study surface-based temperature inversion during February–March field campaigns in 2017 and 2020. It was demonstrated that the drones can be effectively used in the High Arctic to measure vertical temperature profiles up to 75 m off the ground.
Wenying He, Hongbin Chen, Yuejian Xuan, Jun Li, Minzheng Duan, and Weidong Nan
Atmos. Meas. Tech., 14, 7069–7078, https://doi.org/10.5194/amt-14-7069-2021, https://doi.org/10.5194/amt-14-7069-2021, 2021
Short summary
Short summary
Large microwave surface emissivities (ε) cause difficulties in widely using satellite microwave data over land. Usually, ground-based radiometers are fixed to a scan field to obtain the temporal evolution of ε over a single land-cover area. To obtain the long-term temporal evolution of ε over different land-cover surfaces simultaneously, we developed a ground mobile observation system to enhance in situ ε observations and presented some preliminary results.
Dhiraj K. Singh, Spencer Donovan, Eric R. Pardyjak, and Timothy J. Garrett
Atmos. Meas. Tech., 14, 6973–6990, https://doi.org/10.5194/amt-14-6973-2021, https://doi.org/10.5194/amt-14-6973-2021, 2021
Short summary
Short summary
This paper describes a new instrument for quantifying the physical characteristics of hydrometeors such as snow and rain. The device can measure the mass, size, density and type of individual hydrometeors as well as their bulk properties. The instrument is called the Differential Emissivity Imaging Disdrometer (DEID) and is composed of a thermal camera and hotplate. The DEID measures hydrometeors at sampling frequencies up to 1 Hz with masses and effective diameters greater than 1 µg and 200 µm.
Chiara Musacchio, Graziano Coppa, Gaber Begeš, Christina Hofstätter-Mohler, Laura Massano, Guido Nigrelli, Francesca Sanna, and Andrea Merlone
Atmos. Meas. Tech., 14, 6195–6212, https://doi.org/10.5194/amt-14-6195-2021, https://doi.org/10.5194/amt-14-6195-2021, 2021
Short summary
Short summary
In the context of the overhaul of the WMO/CIMO guide (no. 8) on instruments and methods of observation, we performed an experiment to quantify uncertainties in air temperature measurements due to reflected solar radiation from a snow-covered surface. Coupled sensors with different radiation shields were put under different ground conditions (grass vs. snow) for a whole winter. Results show that different shields may reduce the influence of backward radiation, which can produce errors up to 3 °C.
Tamino Wetz, Norman Wildmann, and Frank Beyrich
Atmos. Meas. Tech., 14, 3795–3814, https://doi.org/10.5194/amt-14-3795-2021, https://doi.org/10.5194/amt-14-3795-2021, 2021
Short summary
Short summary
A fleet of quadrotors is presented as a system to measure the spatial distribution of atmospheric boundary layer flow. The big advantage of this approach is that multiple and flexible measurement points in space can be sampled synchronously. The algorithm to calculate the horizontal wind is based on the principle of aerodynamic drag and the related quadrotor dynamics. The validation reveals that an average accuracy of < 0.3 m s−1 for the wind speed and < 8° for the wind direction was achieved.
Olivier F. C. den Ouden, Jelle D. Assink, Cornelis D. Oudshoorn, Dominique Filippi, and Läslo G. Evers
Atmos. Meas. Tech., 14, 3301–3317, https://doi.org/10.5194/amt-14-3301-2021, https://doi.org/10.5194/amt-14-3301-2021, 2021
Christophe Leroy-Dos Santos, Mathieu Casado, Frédéric Prié, Olivier Jossoud, Erik Kerstel, Morgane Farradèche, Samir Kassi, Elise Fourré, and Amaëlle Landais
Atmos. Meas. Tech., 14, 2907–2918, https://doi.org/10.5194/amt-14-2907-2021, https://doi.org/10.5194/amt-14-2907-2021, 2021
Short summary
Short summary
We developed an instrument that can generate water vapor at low humidity at a very stable level. This instrument was conceived to calibrate water vapor isotopic records obtained in very dry places such as central Antarctica. Here, we provide details on the instrument as well as results obtained for correcting water isotopic records for diurnal variability during a long field season at the Concordia station in East Antarctica.
Kyle E. Fitch, Chaoxun Hang, Ahmad Talaei, and Timothy J. Garrett
Atmos. Meas. Tech., 14, 1127–1142, https://doi.org/10.5194/amt-14-1127-2021, https://doi.org/10.5194/amt-14-1127-2021, 2021
Short summary
Short summary
Snow measurements are very sensitive to wind. Here, we compare airflow and snowfall simulations to Arctic observations for a Multi-Angle Snowflake Camera to show that measurements of fall speed, orientation, and size are accurate only with a double wind fence and winds below 5 m s−1. In this case, snowflakes tend to fall with a nearly horizontal orientation; the largest flakes are as much as 5 times more likely to be observed. Adjustments are needed for snow falling in naturally turbulent air.
Wei-Chun Hwang, Po-Hsiung Lin, and Hungjui Yu
Atmos. Meas. Tech., 13, 5395–5406, https://doi.org/10.5194/amt-13-5395-2020, https://doi.org/10.5194/amt-13-5395-2020, 2020
Short summary
Short summary
We have developed a small, light-weight (radiosonde of 20 g with battery), low-cost, and easy-to-use upper-air radiosonde system: the Storm Tracker. With the ability to receive multiple radiosondes simultaneously, the system enables high temporal and spatial resolution atmospheric observations. In the 2018 field campaign, the accuracy of the Storm tracker was tested using co-launched data with Vaisala RS41-SGP radiosondes, and the measurements show an overall good agreement.
Fabio Madonna, Rigel Kivi, Jean-Charles Dupont, Bruce Ingleby, Masatomo Fujiwara, Gonzague Romanens, Miguel Hernandez, Xavier Calbet, Marco Rosoldi, Aldo Giunta, Tomi Karppinen, Masami Iwabuchi, Shunsuke Hoshino, Christoph von Rohden, and Peter William Thorne
Atmos. Meas. Tech., 13, 3621–3649, https://doi.org/10.5194/amt-13-3621-2020, https://doi.org/10.5194/amt-13-3621-2020, 2020
Short summary
Short summary
Radiosondes are one of the primary sources of upper-air data for weather and climate monitoring. In the last two decades, technological progress made available automated radiosonde launchers (ARLs), which are able to replace measurements typically performed manually. This work presents a comparative analysis of the technical performance of the ARLs currently available on the market and contribute to define a strategy to achieve the full traceability of the ARL products.
Sebastian Landwehr, Iris Thurnherr, Nicolas Cassar, Martin Gysel-Beer, and Julia Schmale
Atmos. Meas. Tech., 13, 3487–3506, https://doi.org/10.5194/amt-13-3487-2020, https://doi.org/10.5194/amt-13-3487-2020, 2020
Short summary
Short summary
Shipborne wind speed measurements are relevant for field studies of air–sea interaction processes. Distortion of the airflow by the ship’s structure can, however, lead to errors. We estimate the flow distortion bias by comparing the observations to ERA-5 reanalysis data. The underlying assumptions are that the bias depends only on the relative orientation of the ship to the wind direction and that the ERA-5 wind speeds are (on average) representative of the true wind speed.
Antonio R. Segales, Brian R. Greene, Tyler M. Bell, William Doyle, Joshua J. Martin, Elizabeth A. Pillar-Little, and Phillip B. Chilson
Atmos. Meas. Tech., 13, 2833–2848, https://doi.org/10.5194/amt-13-2833-2020, https://doi.org/10.5194/amt-13-2833-2020, 2020
Short summary
Short summary
The CopterSonde is an unmanned aircraft system designed with the purpose of sampling thermodynamic and kinematic parameters of the lower Earth's atmosphere, with a focus on vertical profiles in the planetary boundary layer. By incorporating adaptive sampling techniques and optimizing the sensor placement, our study shows that CopterSonde can provide similar information as a radiosonde, but with more control of its sampling location at much higher temporal and spatial resolution.
Thomas Kuhn and Sandra Vázquez-Martín
Atmos. Meas. Tech., 13, 1273–1285, https://doi.org/10.5194/amt-13-1273-2020, https://doi.org/10.5194/amt-13-1273-2020, 2020
Short summary
Short summary
Directly measured shape and fall speed are two important parameters needed for models and remote sensing. This can be done by the new Dual Ice Crystal Imager (D-ICI) instrument, which takes two high-resolution pictures of falling snow crystals from two different angles. Fall speed is measured by doubly exposing the side-view picture. Size and shape are determined from the second picture providing the top view of the snow crystal. D-ICI has been tested on the ground in Kiruna, northern Sweden.
Ben S. Pickering, Ryan R. Neely III, and Dawn Harrison
Atmos. Meas. Tech., 12, 5845–5861, https://doi.org/10.5194/amt-12-5845-2019, https://doi.org/10.5194/amt-12-5845-2019, 2019
Short summary
Short summary
A new network of precipitation instruments has been established for the UK. The instruments are capable of detecting the fall velocity and diameter of each particle that falls through a laser beam. The particle characteristics are derived from the duration and amount of decrease in beam brightness as perceived by a receiving diode. A total of 14 instruments make up the network and all instruments upload 60 s frequency data in near-real time to a publicly available website with plots.
Ulrike Egerer, Matthias Gottschalk, Holger Siebert, André Ehrlich, and Manfred Wendisch
Atmos. Meas. Tech., 12, 4019–4038, https://doi.org/10.5194/amt-12-4019-2019, https://doi.org/10.5194/amt-12-4019-2019, 2019
Short summary
Short summary
In this study, we introduce the new tethered balloon system BELUGA, which includes different modular instrument packages for measuring turbulence and radiation in the atmospheric boundary layer. BELUGA was deployed in an Arctic field campaign in 2017, providing details of boundary layer processes in combination with low-level clouds. Those processes are still not fully understood and in situ measurements in the Arctic improve our understanding of the Arctic response in terms of global warming.
Ruhi S. Humphries, Ian M. McRobert, Will A. Ponsonby, Jason P. Ward, Melita D. Keywood, Zoe M. Loh, Paul B. Krummel, and James Harnwell
Atmos. Meas. Tech., 12, 3019–3038, https://doi.org/10.5194/amt-12-3019-2019, https://doi.org/10.5194/amt-12-3019-2019, 2019
Short summary
Short summary
Undertaking atmospheric observations from ships provides important data in regions where measurements are impossible by other means. However, making measurements so close to a diesel exhaust plume is difficult. In this paper, we describe an algorithm that utilises ongoing measurements of aerosol number concentrations, black carbon mass concentrations, and mixing ratios of carbon monoxide and carbon dioxide to accurately distinguish between exhaust and background data periods.
Geoffrey Elie Quentin Bessardon, Kwabena Fosu-Amankwah, Anders Petersson, and Barbara Jane Brooks
Atmos. Meas. Tech., 12, 1311–1324, https://doi.org/10.5194/amt-12-1311-2019, https://doi.org/10.5194/amt-12-1311-2019, 2019
Short summary
Short summary
This paper presents the first performance assessment during a field campaign of a new reusable radiosonde: the Windsond S1H2. The reuse feature of the S1H2 requires evaluation of the data alteration due to sonde reuse in addition to performance and reproducibility assessments. A comparison with the Vaisala RS41-SG, a well-proven system, shows the potential of the S1H2, with no major performance degradation arising from S1H2 sonde reuse but shows the need for improving the S1H2 GPS system.
Xinhua Zhou, Qinghua Yang, Xiaojie Zhen, Yubin Li, Guanghua Hao, Hui Shen, Tian Gao, Yirong Sun, and Ning Zheng
Atmos. Meas. Tech., 11, 5981–6002, https://doi.org/10.5194/amt-11-5981-2018, https://doi.org/10.5194/amt-11-5981-2018, 2018
Short summary
Short summary
The three-dimensional wind and sonic temperature data from a physically deformed sonic anemometer was successfully recovered by developing equations, algorithms, and related software. Using two sets of geometry data from production calibration and return re-calibration, this algorithm can recover wind with/without transducer shadow correction and sonic temperature with crosswind correction, and then obtain fluxes at quality as expected. This study is applicable as a reference for related topics.
Brian R. Greene, Antonio R. Segales, Sean Waugh, Simon Duthoit, and Phillip B. Chilson
Atmos. Meas. Tech., 11, 5519–5530, https://doi.org/10.5194/amt-11-5519-2018, https://doi.org/10.5194/amt-11-5519-2018, 2018
Short summary
Short summary
With the recent commercial availability of rotary-wing unmanned aircraft systems (rwUAS), their ability to collect observations in the lower atmosphere is quickly being realized. However, integrating sensors with an rwUAS can introduce errors if not sited properly. This study discusses an objective method of determining some of these error sources in temperature, including improper airflow and rotary motor heating. Errors can be mitigated by mounting thermistors under propellers near the tips.
Jörg Hartmann, Martin Gehrmann, Katrin Kohnert, Stefan Metzger, and Torsten Sachs
Atmos. Meas. Tech., 11, 4567–4581, https://doi.org/10.5194/amt-11-4567-2018, https://doi.org/10.5194/amt-11-4567-2018, 2018
Short summary
Short summary
We present new in-flight calibration procedures for airborne turbulence measurements that exploit suitable regular flight legs without the need for dedicated calibration patterns. Furthermore we estimate the accuracy of the airborne wind measurement and of the turbulent fluxes of the traces gases methane and carbon dioxide.
Stefanie Kremser, Jordis S. Tradowsky, Henning W. Rust, and Greg E. Bodeker
Atmos. Meas. Tech., 11, 3021–3029, https://doi.org/10.5194/amt-11-3021-2018, https://doi.org/10.5194/amt-11-3021-2018, 2018
Short summary
Short summary
We investigate the feasibility of quantifying the difference in biases of two instrument types (i.e. radiosondes) by flying the old and new instruments on alternating days, so-called interlacing, to statistically derive the systematic biases between the instruments. While it is in principle possible to estimate the difference between two instrument biases from interlaced measurements, the number of required interlaced flights is very large for reasonable autocorrelation coefficient values.
Radiance Calmer, Gregory C. Roberts, Jana Preissler, Kevin J. Sanchez, Solène Derrien, and Colin O'Dowd
Atmos. Meas. Tech., 11, 2583–2599, https://doi.org/10.5194/amt-11-2583-2018, https://doi.org/10.5194/amt-11-2583-2018, 2018
Short summary
Short summary
Remotely piloted aircraft systems (RPAS), commonly called UAVs, are used in atmospheric science for in situ measurements. The presented work shows wind measurements from a five-hole probe on an RPAS. Comparisons with other instruments (sonic anemometer and cloud radar) show good agreement, validating the RPAS measurements. In situ vertical wind measurements at cloud base are highlighted because they are a major parameter needed for simulating aerosol–cloud interactions, though rarely collected.
Cited articles
Amodio, M., Catino, S., Dambruoso, P. R., de Gennaro, G., Di Gilio, A., Giungato, P., Laiola, E., Marzocca, A., Mazzone, A., Sardaro, A., and Tutino, M.: Atmospheric Deposition: Sampling Procedures, Analytical Methods, and Main Recent Findings from the Scientific Literature, Adv. Meteorol., 2014, 161730, https://doi.org/10.1155/2014/161730, 2014.
Argentino, C., Kalenitchenko, D., Lindgren, M., and Panieri, G.: HgCl2 addition to pore water samples from cold seeps can affect the geochemistry of dissolved inorganic carbon ([DIC], ä13CDIC), Mar. Chem., 251, 104236, https://doi.org/10.1016/j.marchem.2023.104236, 2023.
Arisci, S., Rogora, M., Marchetto, A., and Dichiaro, F.: The role of forest type in the variability of DOC in atmospheric deposition at forest plots in Italy, Environ. Monit. Assess., 184, 3415–3425, https://doi.org/10.1007/s10661-011-2196-2, 2012.
Audoux, T., Laurent, B., Desboeufs, K., Noyalet, G., Maisonneuve, F., Lauret, O., and Chevaillier, S.: Intra-event evolution of elemental and ionic concentrations in wet deposition in an urban environment, Atmos. Chem. Phys., 23, 13485–13503, https://doi.org/10.5194/acp-23-13485-2023, 2023.
Avery, G. B., Willey, J. D., and Kieber, R. J.: Carbon isotopic characterization of dissolved organic carbon in rainwater: Terrestrial and marine influences, Atmos. Environ., 40, 7539–7545, https://doi.org/10.1016/j.atmosenv.2006.07.014, 2006.
Barber, V. P. and Kroll, J. H.: Chemistry of Functionalized Reactive Organic Intermediates in the Earth's Atmosphere: Impact, Challenges, and Progress, J. Phys. Chem. A, 125, 10264–10279, https://doi.org/10.1021/acs.jpca.1c08221, 2021.
Barrie, L. A. and Hales, J. M.: The spatial distributions of precipitation acidity and major ion wet deposition in North America during 1980, Tellus B, 36, 333–355, https://doi.org/10.3402/tellusb.v36i5.14915, 1984.
Beverland, I. J., Heal, M. R., Crowther, J. M., and Srinivas, M. S. N.: Real-time measurement and interpretation of the conductivity and pH of precipitation samples, Water. Air. Soil Pollut., 98, 325–344, https://doi.org/10.1007/BF02047042, 1997.
Bowering, K. L., Edwards, K. A., Wiersma, Y. F., Billings, S. A., Warren, J., Skinner, A., and Ziegler, S. E.: Dissolved Organic Carbon Mobilization Across a Climate Transect of Mesic Boreal Forests Is Explained by Air Temperature and Snowpack Duration, Ecosystems, 26, 55–71, https://doi.org/10.1007/s10021-022-00741-0, 2022.
Bowering, K. L., Edwards, K. A., and Ziegler, S. E.: Seasonal controls override forest harvesting effects on the composition of dissolved organic matter mobilized from boreal forest soil organic horizons, Biogeosciences, 20, 2189–2206, https://doi.org/10.5194/bg-20-2189-2023, 2023.
Bowyer, P. J. (Ed.): Where the Wind Blows: A Guide to Marine Weather in Atlantic Canada, Breakwater Books Ltd., St John's, Newfoundland, 53 pp., ISBN 1-55081-119-3, 1995.
Boyd, C. E.: Carbon Dioxide, pH, and Alkalinity, in: Water Quality: An Introduction, edited by: Boyd, C. E., Springer International Publishing, Cham, 177–203, https://doi.org/10.1007/978-3-030-23335-8_9, 2020.
Brahney, J., Wetherbee, G., Sexstone, G. A., Youngbull, C., Strong, P., and Heindel, R. C.: A new sampler for the collection and retrieval of dry dust deposition, Aeolian Res., 45, 100600, https://doi.org/10.1016/j.aeolia.2020.100600, 2020.
Burkhardt, J. and Drechsel, P.: The synergism between SO2 oxidation and manganese leaching on spruce needles – A chamber experiment, Environ. Pollut., 95, 1–11, https://doi.org/10.1016/S0269-7491(96)00126-1, 1997.
Canadian Air and Precipitation Monitoring Network: Inspector's reference manual, 1-1–2-14 pp., Cat. No. En56-273/1985E-PDF, 1985.
Cappellato, R., Peters, N. E., and Ragsdale, H. L.: Acidic atmospheric deposition and canopy interactions of adjacent deciduous and coniferous forests in the Georgia Piedmont, Can. J. For. Res., 23, 1114–1124, https://doi.org/10.1139/x93-142, 1993.
Carlson, J., Gough, W. A., Karagatzides, J. D., and Tsuji, L. J. S.: Canopy Interception of Acid Deposition in Southern Ontario, Can. Field-Nat., 117, 523–530, https://doi.org/10.22621/cfn.v117i4.799, 2003.
Casas-Ruiz, J. P., Bodmer, P., Bona, K. A., Butman, D., Couturier, M., Emilson, E. J. S., Finlay, K., Genet, H., Hayes, D., Karlsson, J., Paré, D., Peng, C., Striegl, R., Webb, J., Wei, X., Ziegler, S. E., and del Giorgio, P. A.: Integrating terrestrial and aquatic ecosystems to constrain estimates of land-atmosphere carbon exchange, Nat. Commun., 14, 1571, https://doi.org/10.1038/s41467-023-37232-2, 2023.
Cha, J.-Y., Lee, S.-C., Lee, E.-J., Lee, K., Lee, H., Kim, H. S., Ahn, J., and Oh, N.-H.: Canopy Leaching Rather than Desorption of PM2.5 From Leaves Is the Dominant Source of Throughfall Dissolved Organic Carbon in Forest, Geophys. Res. Lett., 50, e2023GL103731, https://doi.org/10.1029/2023GL103731, 2023.
Chen, H., Tsai, K.-P., Su, Q., Chow, A. T., and Wang, J.-J.: Throughfall Dissolved Organic Matter as a Terrestrial Disinfection Byproduct Precursor, ACS Earth Space Chem., 3, 1603–1613, https://doi.org/10.1021/acsearthspacechem.9b00088, 2019.
Ciruzzi, D. M. and Loheide, S. P.: Monitoring Tree Sway as an Indicator of Interception Dynamics Before, During, and Following a Storm, Geophys. Res. Lett., 48, e2021GL094980, https://doi.org/10.1029/2021GL094980, 2021.
Colli, M., Lanza, L. G., Rasmussen, R., and Thériault, J. M.: The Collection Efficiency of Shielded and Unshielded Precipitation Gauges. Part II: Modeling Particle Trajectories, J. Hydrometeorol., 17, 245–255, https://doi.org/10.1175/JHM-D-15-0011.1, 2016.
Colussi, A. A., Persaud, D., Lao, M. Place, B. K., Hems, R. F., Ziegler, S. E., Edwards, K. A., Young, C. J., and VandenBoer, T. C.: Off-grid automatic precipitation measurements of pH, conductivity, and dissolved organic carbon across the Newfoundland and Labrador Boreal Ecosystem Latitudinal Transect., Federated Research Data Repository [data set], https://doi.org/10.20383/103.0945, 2024.
Coward, E. K., Seech, K., Carter, M. L., Flick, R. E., and Grassian, V. H.: Of Sea and Smoke: Evidence of Marine Dissolved Organic Matter Deposition from 2020 Western United States Wildfires, Environ. Sci. Technol. Lett., 9, 869–876, https://doi.org/10.1021/acs.estlett.2c00383, 2022.
Csavina, J., Field, J., Taylor, M. P., Gao, S., Landázuri, A., Betterton, E. A., and Sáez, A. E.: A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations, Sci. Total Environ., 433, 58–73, https://doi.org/10.1016/j.scitotenv.2012.06.013, 2012.
Dalva, M. and Moore, T. R.: Sources and sinks of dissolved organic carbon in a forested swamp catchment, Biogeochemistry, 15, 1–19, https://doi.org/10.1007/BF00002806, 1991.
Di Lorenzo, R. A., Place, B. K., VandenBoer, T. C., and Young, C. J.: Composition of Size-Resolved Aged Boreal Fire Aerosols: Brown Carbon, Biomass Burning Tracers, and Reduced Nitrogen, ACS Earth Space Chem., 2, 278–285, https://doi.org/10.1021/acsearthspacechem.7b00137, 2018.
Dossett, S. R. and Bowersox, V. C.: National Trends Network Site Operation Manual, Illinois State Water Survey, 2-1–2-2, https://www.arlis.org/docs/vol1/123915417/opman.pdf (last access: 23 March 2021), 1999.
Eaton, J. S., Likens, G. E., and Bormann, F. H.: Throughfall and Stemflow Chemistry in a Northern Hardwood Forest, J. Ecol., 61, 495–508, https://doi.org/10.2307/2259041, 1973.
Environment Canada: Canadian Climate Normals, 1981 to 2010, https://climate.weather.gc.ca/climate_normals/ (last accessed: 14 July 2023), 2023.
Erisman, J. W. and Draaijers, G.: Deposition to forests in Europe: most important factors influencing dry deposition and models used for generalisation, Environ. Pollut., 124, 379–388, https://doi.org/10.1016/S0269-7491(03)00049-6, 2003.
Escarré, A., Carratalá, A., Àvila, A., Bellot, J., Piñol, J., and Milán, M.: Precipitation Chemistry and Air Pollution, in: Ecology of Mediterranean Evergreen Oak Forests, edited by: Rodà, F., Retana, J., Gracia, C. A., and Bellot, J., Springer Berlin Heidelberg, Berlin, Heidelberg, 195–208, https://doi.org/10.1007/978-3-642-58618-7_14, 1999.
Farmer, D. K., Boedicker, E. K., and DeBolt, H. M.: Dry Deposition of Atmospheric Aerosols: Approaches, Observations, and Mechanisms, Annu. Rev. Phys. Chem., 72, 375–397, https://doi.org/10.1146/annurev-physchem-090519-034936, 2021.
Feng, J., Vet, R., Cole, A., Zhang, L., Cheng, I., O'Brien, J., and Macdonald, A.-M.: Inorganic chemical components in precipitation in the eastern U.S. and Eastern Canada during 1989–2016: Temporal and regional trends of wet concentration and wet deposition from the NADP and CAPMoN measurements, Atmos. Environ., 254, 118367, https://doi.org/10.1016/j.atmosenv.2021.118367, 2021.
Fingler, S., Tkalèeviæ, B., Fröbe, Z., and Drevenkar, V.: Analysis of polychlorinated biphenyls, organochlorine pesticides and chlorophenols in rain and snow, Analyst, 119, 1135–1140, https://doi.org/10.1039/AN9941901135, 1994.
Fowler, D.: Wet and Dry Deposition of Sulphur and Nitrogen Compounds from the Atmosphere, Springer, Boston, MA, 9–27, https://doi.org/10.1007/978-1-4613-3033-2_3, 1980.
Galloway, J. N. and Likens, G. E.: The collection of precipitation for chemical analysis, Tellus, 30, 71–82, https://doi.org/10.3402/tellusa.v30i1.10318, 1978.
Gao, S., Hegg, D. A., Hobbs, P. V., Kirchstetter, T. W., Magi, B. I., and Sadilek, M.: Water-soluble organic components in aerosols associated with savanna fires in southern Africa: Identification, evolution, and distribution, J. Geophys. Res.-Atmos., 108, 02324, https://doi.org/10.1029/2002JD002324, 2003.
Gatz, D. F., Selman, R. F., Langs, R. K., and Holtzman, R. B.: An Automatic Sequential Rain Sampler, J. Appl. Meteorol. 1962–1982, 10, 341–344, 1971.
George, C.: Photosensitization is in the air and impacts the multiphase on oxidation capacity, EGU23, the 25th EGU General Assembly, 23–28 April, Vienna, Austria and Online, 2023.
Germer, S., Neill, C., Krusche, A. V., Neto, S. C. G., and Elsenbeer, H.: Seasonal and within-event dynamics of rainfall and throughfall chemistry in an open tropical rainforest in Rondônia, Brazil, Biogeochemistry, 86, 155–174, https://doi.org/10.1007/s10533-007-9152-9, 2007.
Grennfelt, P., Engleryd, A., Forsius, M., Hov, Ø., Rodhe, H., and Cowling, E.: Acid rain and air pollution: 50 years of progress in environmental science and policy, Ambio, 49, 849–864, https://doi.org/10.1007/s13280-019-01244-4, 2020.
Guinotte, J. M. and Fabry, V. J.: Ocean Acidification and Its Potential Effects on Marine Ecosystems, Ann. N. Y. Acad. Sci., 1134, 320–342, https://doi.org/10.1196/annals.1439.013, 2008.
Hadiwijaya, B., Isabelle, P.-E., Nadeau, D. F., and Pepin, S.: Observations of canopy storage capacity and wet canopy evaporation in a humid boreal forest, Hydrol. Process., 35, e14021, https://doi.org/10.1002/hyp.14021, 2021.
Hall, D. J.: Precipitation collector for use in the Secondary National Acid Deposition Network, United States Department of Energy, Report No. PB-87-126181/XAB; LR-561(AP)M, 1985.
Han, G., Song, Z., Tang, Y., Wu, Q., and Wang, Z.: Ca and Sr isotope compositions of rainwater from Guiyang city, Southwest China: Implication for the sources of atmospheric aerosols and their seasonal variations, Atmos. Environ., 214, 116854, https://doi.org/10.1016/j.atmosenv.2019.116854, 2019.
Heald, C. L. and Kroll, J. H.: The fuel of atmospheric chemistry: Toward a complete description of reactive organic carbon, Sci. Adv., 6, eaay8967, https://doi.org/10.1126/sciadv.aay8967, 2020.
Heald, C. L., Gouw, J. de, Goldstein, A. H., Guenther, A. B., Hayes, P. L., Hu, W., Isaacman-VanWertz, G., Jimenez, J. L., Keutsch, F. N., Koss, A. R., Misztal, P. K., Rappenglück, B., Roberts, J. M., Stevens, P. S., Washenfelder, R. A., Warneke, C., and Young, C. J.: Contrasting Reactive Organic Carbon Observations in the Southeast United States (SOAS) and Southern California (CalNex), Environ. Sci. Technol., 54, 14923–14935, https://doi.org/10.1021/acs.est.0c05027, 2020.
Houle, D., Augustin, F., and Couture, S.: Rapid improvement of lake acid–base status in Atlantic Canada following steep decline in precipitation acidity, Can. J. Fish. Aquat. Sci., 79, 2126–2137, https://doi.org/10.1139/cjfas-2021-0349, 2022.
Howard, M., Hathaway, J. M., Tirpak, R. A., Lisenbee, W. A., and Sims, S.: Quantifying urban tree canopy interception in the southeastern United States, Urban For. Urban Green., 77, 127741, https://doi.org/10.1016/j.ufug.2022.127741, 2022.
Iavorivska, L., Boyer, E. W., and DeWalle, D. R.: Atmospheric deposition of organic carbon via precipitation, Acid Rain Its Environ. Eff. Recent Sci. Adv., 146, 153–163, https://doi.org/10.1016/j.atmosenv.2016.06.006, 2016.
Jacob, D. J.: Introduction to Atmospheric Chemistry, Princeton University Press, Princeton, New Jersey, 49 pp., 1999.
Jurado, E., Jaward, F. M., Lohmann, R., Jones, K. C., Simó, R., and Dachs, J.: Atmospheric Dry Deposition of Persistent Organic Pollutants to the Atlantic and Inferences for the Global Oceans, Environ. Sci. Technol., 38, 5505–5513, https://doi.org/10.1021/es049240v, 2004.
Jurado, E., Jaward, F., Lohmann, R., Jones, K. C., Simó, R., and Dachs, J.: Wet Deposition of Persistent Organic Pollutants to the Global Oceans, Environ. Sci. Technol., 39, 2426–2435, https://doi.org/10.1021/es048599g, 2005.
Kattner, G.: Storage of dissolved inorganic nutrients in seawater: poisoning with mercuric chloride, Mar. Chem., 67, 61–66, https://doi.org/10.1016/S0304-4203(99)00049-3, 1999.
Kirkwood, D. S.: Stability of solutions of nutrient salts during storage, Mar. Chem., 38, 151–164, https://doi.org/10.1016/0304-4203(92)90032-6, 1992.
Kochendorfer, J., Meyers, T. P., Hall, M. E., Landolt, S. D., Lentz, J., and Diamond, H. J.: A new reference-quality precipitation gauge wind shield, Atmos. Meas. Tech., 16, 5647–5657, https://doi.org/10.5194/amt-16-5647-2023, 2023.
Kroll, J. H., Donahue, N. M., Jimenez, J. L., Kessler, S. H., Canagaratna, M. R., Wilson, K. R., Altieri, K. E., Mazzoleni, L. R., Wozniak, A. S., Bluhm, H., Mysak, E. R., Smith, J. D., Kolb, C. E., and Worsnop, D. R.: Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol, Nat. Chem., 3, 133–139, https://doi.org/10.1038/nchem.948, 2011.
Kuylenstierna, J. C., Rodhe, H., Cinderby, S., and Hicks, K.: Acidification in developing countries: ecosystem sensitivity and the critical load approach on a global scale, Ambio, 30, 20–28, https://doi.org/10.1579/0044-7447-30.1.20, 2001.
Laquer, F. C.: Sequential precipitation samplers: A literature review, Atmospheric Environ. Part Gen. Top., 24, 2289–2297, https://doi.org/10.1016/0960-1686(90)90322-E, 1990.
Laurent, B., Losno, R., Chevaillier, S., Vincent, J., Roullet, P., Bon Nguyen, E., Ouboulmane, N., Triquet, S., Fornier, M., Raimbault, P., and Bergametti, G.: An automatic collector to monitor insoluble atmospheric deposition: application for mineral dust deposition, Atmos. Meas. Tech., 8, 2801–2811, https://doi.org/10.5194/amt-8-2801-2015, 2015.
Lawrence, C. E., Casson, P., Brandt, R., Schwab, J. J., Dukett, J. E., Snyder, P., Yerger, E., Kelting, D., VandenBoer, T. C., and Lance, S.: Long-term monitoring of cloud water chemistry at Whiteface Mountain: the emergence of a new chemical regime, Atmos. Chem. Phys., 23, 1619–1639, https://doi.org/10.5194/acp-23-1619-2023, 2023.
Likens, G. E. and Butler, T. J.: Atmospheric Acid Deposition, in: The Handbook of Natural Resources, Atmosphere and Climate, Vol. 6, edited by: Wang, Y., CRC Press, ISBN 9781138339675, 2020.
Lin, W.-C., Brondum, K., Monroe, C. W., and Burns, M. A.: Multifunctional Water Sensors for pH, ORP, and Conductivity Using Only Microfabricated Platinum Electrodes, Sensors, 17, 1655, https://doi.org/10.3390/s17071655, 2017.
Lindberg, S. E., Lovett, G. M., Richter, D. D., and Johnson, D. W.: Atmospheric Deposition and Canopy Interactions of Major Ions in a Forest, Science, 231, 141–145, https://doi.org/10.1126/science.231.4734.141, 1986.
Lovett, G. M.: Atmospheric Deposition of Nutrients and Pollutants in North America: An Ecological Perspective, Ecol. Appl., 4, 629–650, https://doi.org/10.2307/1941997, 1994.
Lovett, G. M. and Kinsman, J. D.: Atmospheric pollutant deposition to high-elevation ecosystems, Atmospheric Environ. Part Gen. Top., 24, 2767–2786, https://doi.org/10.1016/0960-1686(90)90164-I, 1990.
Meteorological Service of Canada: 2004 Canadian Acid Deposition Science Assessment, Library and Archives Canada, ISBN 0-662-38754-6, https://publications.gc.ca/collections/Collection/En4-46-2004E.pdf (last access: 28 July 2021), 2005.
Metzger, J. C., Schumacher, J., Lange, M., and Hildebrandt, A.: Neighbourhood and stand structure affect stemflow generation in a heterogeneous deciduous temperate forest, Hydrol. Earth Syst. Sci., 23, 4433–4452, https://doi.org/10.5194/hess-23-4433-2019, 2019.
Michalzik, B. and Matzner, E.: Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosystem, Eur. J. Soil Sci., 50, 579–590, https://doi.org/10.1046/j.1365-2389.1999.00267.x, 1999.
Moore, T. R.: Dissolved organic carbon in a northern boreal landscape, Global Biogeochem. Cy., 17, 1109, https://doi.org/10.1029/2003GB002050, 2003.
Myers-Pigg, A. N., Louchouarn, P., Amon, R. M. W., Prokushkin, A., Pierce, K., and Rubtsov, A.: Labile pyrogenic dissolved organic carbon in major Siberian Arctic rivers: Implications for wildfire-stream metabolic linkages, Geophys. Res. Lett., 42, 377–385, https://doi.org/10.1002/2014GL062762, 2015.
National Atmospheric Deposition Program: NADP Site Selection and Installation Manual, https://nadp.slh.wisc.edu/wp-content/uploads/2022/01/NADP-2010_Site_Selection_and_Installation_Manual_v1.pdf (last access: 1 September 2021),, 2009.
Oka, A., Takahashi, J., Endoh, Y., and Seino, T.: Bark Effects on Stemflow Chemistry in a Japanese Temperate Forest I. The Role of Bark Surface Morphology, Front. For. Glob. Change, 4, https://doi.org/10.3389/ffgc.2021.654375, 2021.
Pacyna, J. M.: Ecological Processes: Atmospheric Deposition, in: Encyclopedia of Ecology, Vol. 1, edited by: Jorgensen, S. E. and Fath, B. D., Elsevier Science, 275–285, 2008.
Pan, Y., Wang, Y., Xin, J., Tang, G., Song, T., Wang, Y., Li, X., and Wu, F.: Study on dissolved organic carbon in precipitation in Northern China, Atmos. Environ., 44, 2350–2357, https://doi.org/10.1016/j.atmosenv.2010.03.033, 2010.
Peden, M. E., Bachman, S. R., Brennan, C. J., Demir, B., James, K. O., Kaiser, B. W., Lockard, J. M., Rothery, J. E., Sauer, J., Skowron, L. M., and Slater, M. J.: Methods for collection and analysis of precipitation, Illinois State Water Survey, ISWS Contract Report CR 381, 1–7 pp., 1986.
Pomeroy, J. W., Granger, R., Pietroniro, J., Elliott, J., Toth, B., and Hedstrom, N.: Classification of the Boreal Forest for Hydrological Processes, in: Proceedings of the Ninth International Boreal Forest Research Association Conference, 21–23 September, 1998, Oslo, Norway, edited by: Woxholtt, S., 49–59 pp., 1999.
Pumpanen, J., Lindén, A., Miettinen, H., Kolari, P., Ilvesniemi, H., Mammarella, I., Hari, P., Nikinmaa, E., Heinonsalo, J., Bäck, J., Ojala, A., Berninger, F., and Vesala, T.: Precipitation and net ecosystem exchange are the most important drivers of DOC flux in upland boreal catchments, J. Geophys. Res.-Biogeosci., 119, 1861–1878, https://doi.org/10.1002/2014JG002705, 2014.
Ramanathan, V. and Carmichael, G.: Global and regional climate changes due to black carbon, Nat. Geosci., 1, 221–227, https://doi.org/10.1038/ngeo156, 2008.
Randall, David: An Introduction to the Global Circulation of the Atmosphere, Princeton University Press, Princeton, New Jersey, 43 pp., ISBN 9780691148960, 2015.
Reddy, M. M., Liebermann, T. D., Jelinski, J. C., and Caine, N.: Variation in pH During Summer Storms Near the Continental Divide in Central Colorado, U.S.A.*, Arct. Alp. Res., 17, 79–88, 1985.
Richter, D. D. and Lindberg, S. E.: Wet Deposition Estimates from Long-Term Bulk and Event Wet-Only Samples of Incident Precipitation and Throughfall, J. Environ. Qual., 17, 619–622, https://doi.org/10.2134/jeq1988.00472425001700040017x, 1988.
Ryan, K. A., Adler, T., Chalmers, A., Perdrial, J., Shanley, J. B., and Stubbins, A.: Event Scale Relationships of DOC and TDN Fluxes in Throughfall and Stemflow Diverge From Stream Exports in a Forested Catchment, J. Geophys. Res.-Biogeosci., 126, e2021JG006281, https://doi.org/10.1029/2021JG006281, 2021.
Safieddine, S. A. and Heald, C. L.: A Global Assessment of Dissolved Organic Carbon in Precipitation, Geophys. Res. Lett., 44, 11672–11681, https://doi.org/10.1002/2017GL075270, 2017.
Saleh, R.: From Measurements to Models: Toward Accurate Representation of Brown Carbon in Climate Calculations, Curr. Pollut. Rep., 6, 90–104, https://doi.org/10.1007/s40726-020-00139-3, 2020.
Sanei, H., Outridge, P. M., Goodarzi, F., Wang, F., Armstrong, D., Warren, K., and Fishback, L.: Wet deposition mercury fluxes in the Canadian sub-Arctic and southern Alberta, measured using an automated precipitation collector adapted to cold regions, Atmos. Environ., 44, 1672–1681, https://doi.org/10.1016/j.atmosenv.2010.01.030, 2010.
Santín, C., Doerr, S. H., Kane, E. S., Masiello, C. A., Ohlson, M., de la Rosa, J. M., Preston, C. M., and Dittmar, T.: Towards a global assessment of pyrogenic carbon from vegetation fires, Glob. Change Biol., 22, 76–91, https://doi.org/10.1111/gcb.12985, 2016.
Siksna, R.: The electrolytical conductivity of precipitation water as an aid to the chemical analysis, Geofis. Pura E Appl., 42, 32–41, https://doi.org/10.1007/BF02113385, 1959.
Sleutel, S., Vandenbruwane, J., De Schrijver, A., Wuyts, K., Moeskops, B., Verheyen, K., and De Neve, S.: Patterns of dissolved organic carbon and nitrogen fluxes in deciduous and coniferous forests under historic high nitrogen deposition, Biogeosciences, 6, 2743–2758, https://doi.org/10.5194/bg-6-2743-2009, 2009.
Smith, W. H.: Air Pollution and Forests: Interactions Between Air Contaminants and Forest Ecosystems, 1st Edn., Springer, New York, NY, 379 pp., 1981.
Stedman, J. R., Heyes, C. J., and Irwin, J. G.: A comparison of bulk and wet-only precipitation collectors at rural sites in the United Kingdom, Water. Air. Soil Pollut., 52, 377–395, https://doi.org/10.1007/BF00229445, 1990.
Stoddard, J. L., Jeffries, D. S., Lükewille, A., Clair, T. A., Dillon, P. J., Driscoll, C. T., Forsius, M., Johannessen, M., Kahl, J. S., Kellogg, J. H., Kemp, A., Mannio, J., Monteith, D. T., Murdoch, P. S., Patrick, S., Rebsdorf, A., Skjelkvåle, B. L., Stainton, M. P., Traaen, T., van Dam, H., Webster, K. E., Wieting, J., and Wilander, A.: Regional trends in aquatic recovery from acidification in North America and Europe, Nature, 401, 575–578, https://doi.org/10.1038/44114, 1999.
Stubbins, A., Silva, L. M., Dittmar, T., and Van Stan, J. T.: Molecular and Optical Properties of Tree-Derived Dissolved Organic Matter in Throughfall and Stemflow from Live Oaks and Eastern Red Cedar, Front. Earth Sci., 5, https://doi.org/10.3389/feart.2017.00022, 2017.
Thornton, M. M., Shrestha, R., Wei, Y., Thornton, P. E., Kao, S.-C., and Wilson, B. E.: Daymet: Monthly Climate Summaries on a 1-km Grid for North America, Version 4 R1, https://doi.org/10.3334/ORNLDAAC/2131, 2022.
Thornton, P. E., Running, S. W., and White, M. A.: Generating surfaces of daily meteorological variables over large regions of complex terrain, Aggreg. Descr. Land-Atmosphere Interact., 190, 214–251, https://doi.org/10.1016/S0022-1694(96)03128-9, 1997.
Thornton, P. E., Shrestha, R., Thornton, M., Kao, S.-C., Wei, Y., and Wilson, B. E.: Gridded daily weather data for North America with comprehensive uncertainty quantification, Sci. Data, 8, 190, https://doi.org/10.1038/s41597-021-00973-0, 2021.
United States Environmental Protection Agency: Integrated Science Assessment (ISA) for Oxides of Nitrogen, Oxides of Sulfur and Particulate Matter Ecological Criteria (Final Report, 2020), U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-20/278, 2020.
Van Stan, J. T. and Stubbins, A.: Tree-DOM: Dissolved organic matter in throughfall and stemflow, Limnol. Oceanogr. Lett., 3, 199–214, https://doi.org/10.1002/lol2.10059, 2018.
Van Stan, J. T., Wagner, S., Guillemette, F., Whitetree, A., Lewis, J., Silva, L., and Stubbins, A.: Temporal Dynamics in the Concentration, Flux, and Optical Properties of Tree-Derived Dissolved Organic Matter in an Epiphyte-Laden Oak-Cedar Forest, J. Geophys. Res.-Biogeosci., 122, 2982–2997, https://doi.org/10.1002/2017JG004111, 2017.
VandenBoer, T. C.: AIM-IC: Applications to Nitrous Acid (HONO) in the Ambient Atmosphere and Precipitation Monitoring, Masters of Science, University of Toronto, 2009.
Vermette, S. J. and Drake, J. J.: Simplified wet-only and sequential fraction rain collector, Atmos. Environ., 1967, 21, 715–716, https://doi.org/10.1016/0004-6981(87)90053-9, 1987.
Vet, R., Artz, R. S., Carou, S., Shaw, M., Ro, C.-U., Aas, W., Baker, A., Bowersox, V. C., Dentener, F., Galy-Lacaux, C., Hou, A., Pienaar, J. J., Gillett, R., Forti, M. C., Gromov, S., Hara, H., Khodzher, T., Mahowald, N. M., Nickovic, S., Rao, P. S. P., and Reid, N. W.: A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus, Glob. Assess. Precip. Chem. Depos. Sulfur Nitrogen Sea Salt Base Cations Org. Acids Acidity PH Phosphorus, 93, 3–100, https://doi.org/10.1016/j.atmosenv.2013.10.060, 2014.
Wang, X., Gemayel, R., Baboomian, V. J., Li, K., Boreave, A., Dubois, C., Tomaz, S., Perrier, S., Nizkorodov, S. A., and George, C.: Naphthalene-Derived Secondary Organic Aerosols Interfacial Photosensitizing Properties, Geophys. Res. Lett., 48, e2021GL093465, https://doi.org/10.1029/2021GL093465, 2021.
Washenfelder, R. A., Azzarello, L., Ball, K., Brown, S. S., Decker, Z. C. J., Franchin, A., Fredrickson, C. D., Hayden, K., Holmes, C. D., Middlebrook, A. M., Palm, B. B., Pierce, R. B., Price, D. J., Roberts, J. M., Robinson, M. A., Thornton, J. A., Womack, C. C., and Young, C. J.: Complexity in the Evolution, Composition, and Spectroscopy of Brown Carbon in Aircraft Measurements of Wildfire Plumes, Geophys. Res. Lett., 49, e2022GL098951, https://doi.org/10.1029/2022GL098951, 2022.
Wetherbee, G. A., Shaw, M. J., Latysh, N. E., Lehmann, C. M. B., and Rothert, J. E.: Comparison of precipitation chemistry measurements obtained by the Canadian Air and Precipitation Monitoring Network and National Atmospheric Deposition Program for the period 1995–2004, Environ. Monit. Assess., 164, 111–132, https://doi.org/10.1007/s10661-009-0879-8, 2010.
Wonaschütz, A., Hersey, S. P., Sorooshian, A., Craven, J. S., Metcalf, A. R., Flagan, R. C., and Seinfeld, J. H.: Impact of a large wildfire on water-soluble organic aerosol in a major urban area: the 2009 Station Fire in Los Angeles County, Atmos. Chem. Phys., 11, 8257–8270, https://doi.org/10.5194/acp-11-8257-2011, 2011.
Ziegler, S. E., Benner, R., Billings, S. A., Edwards, K. A., Philben, M., Zhu, X., and Laganière, J.: Climate Warming Can Accelerate Carbon Fluxes without Changing Soil Carbon Stocks, Front. Earth Sci., 5, https://doi.org/10.3389/feart.2017.00002, 2017.
Short summary
A new modular and affordable instrument was developed to automatically collect wet deposition continuously with an off-grid solar top-up power package. Monthly collections were performed across the Newfoundland and Labrador Boreal Ecosystem Latitudinal Transect of experimental forest sites from 2015 to 2016. The proof-of-concept systems were validated with baseline measurements of pH and conductivity and then applied to dissolved organic carbon as an analyte of emerging biogeochemical interest.
A new modular and affordable instrument was developed to automatically collect wet deposition...