Articles | Volume 17, issue 18
https://doi.org/10.5194/amt-17-5561-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-17-5561-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Exploring non-soluble particles in hailstones through innovative confocal laser and scanning electron microscopy techniques
Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, WI, USA
Angela K. Rowe
Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, WI, USA
Lucia E. Arena
Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba, Argentina
Observatorio Hidro-Metereológico de Córdoba, Córdoba, Argentina
William O. Nachlas
Department of Geoscience, University of Wisconsin–Madison, Madison, WI, USA
Maria L. Asar
Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba, Argentina
Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
Related authors
Anthony C. Bernal Ayala, Angela K. Rowe, Lucia E. Arena, and William O. Nachlas
EGUsphere, https://doi.org/10.5194/egusphere-2024-3215, https://doi.org/10.5194/egusphere-2024-3215, 2024
Short summary
Short summary
This study analyzed particles in hailstones from Argentina to better understand hail formation and growth. A unique method was used that revealed the particles’ size, composition, and location within the hail, including a variety of particle sizes and compositions linked to local land uses, such as mountainous, agricultural, and urban. The findings highlight the potential impacts of natural and human-related factors on hail formation and provide a new method for studying hail globally.
Anthony C. Bernal Ayala, Angela K. Rowe, Lucia E. Arena, and William O. Nachlas
EGUsphere, https://doi.org/10.5194/egusphere-2024-3215, https://doi.org/10.5194/egusphere-2024-3215, 2024
Short summary
Short summary
This study analyzed particles in hailstones from Argentina to better understand hail formation and growth. A unique method was used that revealed the particles’ size, composition, and location within the hail, including a variety of particle sizes and compositions linked to local land uses, such as mountainous, agricultural, and urban. The findings highlight the potential impacts of natural and human-related factors on hail formation and provide a new method for studying hail globally.
Andrew DeLaFrance, Lynn McMurdie, Angela Rowe, and Andrew Heymsfield
EGUsphere, https://doi.org/10.5194/egusphere-2024-3423, https://doi.org/10.5194/egusphere-2024-3423, 2024
Short summary
Short summary
Numerical modeling simulations are used to investigate ice crystal growth and decay processes within a banded region of enhanced precipitation rates during a prominent winter storm. We identify robust primary ice growth in the upper portion of the cloud but decay exceeding 70 % during fallout through a subsaturated layer. The ice fall characteristics and decay rate are sensitive to the ambient cloud properties which has implications for radar-based measurements and precipitation accumulations.
Andrew DeLaFrance, Lynn A. McMurdie, Angela K. Rowe, and Andrew J. Heymsfield
Atmos. Chem. Phys., 24, 11191–11206, https://doi.org/10.5194/acp-24-11191-2024, https://doi.org/10.5194/acp-24-11191-2024, 2024
Short summary
Short summary
Using a numerical model, the process whereby falling ice crystals accumulate supercooled liquid water droplets is investigated to elucidate its effects on radar-based measurements and surface precipitation. We demonstrate that this process accounted for 55% of the precipitation during a wintertime storm and is uniquely discernable from other ice crystal growth processes in Doppler velocity measurements. These results have implications for measurements from airborne and spaceborne platforms.
Miles Mark Reed, Ken L. Ferrier, William O. Nachlas, Bil Schneider, Chloé Arson, Tingting Xu, Xianda Shen, and Nicole West
EGUsphere, https://doi.org/10.5194/egusphere-2024-1017, https://doi.org/10.5194/egusphere-2024-1017, 2024
This preprint is open for discussion and under review for Geoscientific Instrumentation, Methods and Data Systems (GI).
Short summary
Short summary
We constructed an easy-to-use, open-source method for mapping minerals in rock thin sections. This method is implemented with the geographical information system QGIS and the Orfeo Toolbox plugin using random forest image classification on scanning electron microscope data. We applied the method to 14 rock thin sections. Mineral abundance estimates from our method compare favorably to previously published estimates and agree 96 % in space and mineral type to manually derived mineral maps.
Related subject area
Subject: Aerosols | Technique: Laboratory Measurement | Topic: Instruments and Platforms
Merging holography, fluorescence, and machine learning for in situ continuous characterization and classification of airborne microplastics
Rapid quantitative analysis of semi-volatile organic compounds in indoor surface film using direct analysis in real time mass spectrometry: a case study on phthalates
Determining optimal sampling conditions in the TSI Nanometer Aerosol Sampler 3089
A comprehensive evaluation of enhanced temperature influence on gas and aerosol chemistry in the lamp-enclosed oxidation flow reactor (OFR) system
Direct calibration using atmospheric particles and performance evaluation of PSM 2.0 for sub-10 nm particle measurements
A Novel Methodology for Assessing the Hygroscopicity of Aerosol Filter Samples
An oxidation flow reactor for simulating and accelerating secondary aerosol formation in aerosol liquid water and cloud droplets
Surface equilibrium vapor pressure of organic nanoparticles measured from the dynamic-aerosol-size electrical mobility spectrometer
Quality assurance and quality control of atmospheric organosulfates measured using hydrophilic interaction liquid chromatography (HILIC)
Micro-PINGUIN: microtiter-plate-based instrument for ice nucleation detection in gallium with an infrared camera
Characterization of the Vaporization Inlet for Aerosols (VIA) for online measurements of particulate highly oxygenated organic molecules (HOMs)
Development and characterization of a high-performance single-particle aerosol mass spectrometer (HP-SPAMS)
Characterization of the planar differential mobility analyzer (DMA P5): resolving power, transmission efficiency and its application to atmospheric relevant cluster measurements
Airborne bacteria viability and air quality: a protocol to quantitatively investigate the possible correlation by an atmospheric simulation chamber
The viscosity and surface tension of supercooled levitated droplets determined by excitation of shape oscillations
Acoustic levitation of pollen and visualisation of hygroscopic behaviour
Concept, absolute calibration, and validation of a new benchtop laser imaging polar nephelometer
A new smog chamber system for atmospheric multiphase chemistry study: design and characterization
Stability assessment of organic sulfur and organosulfate compounds in filter samples for quantification by Fourier- transform infrared spectroscopy
Design and evaluation of a thermal precipitation aerosol electrometer (TPAE)
An automated online field instrument to quantify the oxidative potential of aerosol particles via ascorbic acid oxidation
Online measurement of highly oxygenated compounds from organic aerosol
The AERosol and TRACe gas Collector (AERTRACC): an online-measurement-controlled sampler for source-resolved emission analysis
Quantitative chemical assay of nanogram-level particulate matter using aerosol mass spectrometry: characterization of particles collected from uncrewed atmospheric measurement platforms
An optimised organic carbon ∕ elemental carbon (OC ∕ EC) fraction separation method for radiocarbon source apportionment applied to low-loaded Arctic aerosol filters
Investigating the dependence of mineral dust depolarization on complex refractive index and size with a laboratory polarimeter at 180.0° lidar backscattering angle
Evaluation of a low-cost dryer for a low-cost optical particle counter
Effects of temperature and salinity on bubble-bursting aerosol formation simulated with a bubble-generating chamber
A new hot-stage microscopy technique for measuring temperature-dependent viscosities of aerosol particles and its application to farnesene secondary organic aerosol
Characterization of a modified printed optical particle spectrometer for high-frequency and high-precision laboratory and field measurements
Design and fabrication of an electrostatic precipitator for infrared spectroscopy
Combined application of online FIGAERO-CIMS and offline LC-Orbitrap mass spectrometry (MS) to characterize the chemical composition of secondary organic aerosol (SOA) in smog chamber studies
High-frequency gaseous and particulate chemical characterization using extractive electrospray ionization mass spectrometry (Dual-Phase-EESI-TOF)
An evaluation of the heat test for the ice-nucleating ability of minerals and biological material
Development, characterization, and application of an improved online reactive oxygen species analyzer based on the Monitor for AeRosols and Gases in ambient Air (MARGA)
Characterization of soot produced by the mini inverted soot generator with an atmospheric simulation chamber
LED-based solar simulator to study photochemistry over a wide temperature range in the large simulation chamber AIDA
Laboratory evaluation of the scattering matrix of ragweed, ash, birch and pine pollen towards pollen classification
Cloud condensation nuclei (CCN) activity analysis of low-hygroscopicity aerosols using the aerodynamic aerosol classifier (AAC)
Characterisation of the Manchester Aerosol Chamber facility
A study on the fragmentation of sulfuric acid and dimethylamine clusters inside an atmospheric pressure interface time-of-flight mass spectrometer
A semi-automated instrument for cellular oxidative potential evaluation (SCOPE) of water-soluble extracts of ambient particulate matter
Utilizing an electrical low-pressure impactor to indirectly probe water uptake via particle bounce measurements
Calibration and evaluation of a broad supersaturation scanning (BS2) cloud condensation nuclei counter for rapid measurement of particle hygroscopicity and cloud condensation nuclei (CCN) activity
Correcting bias in log-linear instrument calibrations in the context of chemical ionization mass spectrometry
Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization
The nano-scanning electrical mobility spectrometer (nSEMS) and its application to size distribution measurements of 1.5–25 nm particles
A dual-droplet approach for measuring the hygroscopicity of aqueous aerosol
A method for liquid spectrophotometric measurement of total and water-soluble iron and copper in ambient aerosols
Efficacy of a portable, moderate-resolution, fast-scanning differential mobility analyzer for ambient aerosol size distribution measurements
Nicholas D. Beres, Julia Burkart, Elias Graf, Yanick Zeder, Lea Ann Dailey, and Bernadett Weinzierl
Atmos. Meas. Tech., 17, 6945–6964, https://doi.org/10.5194/amt-17-6945-2024, https://doi.org/10.5194/amt-17-6945-2024, 2024
Short summary
Short summary
We tested a method to identify airborne microplastics (MPs), merging imaging, fluorescence, and machine learning of single particles. We examined whether combining imaging and fluorescence data enhances classification accuracy compared to using each method separately and tested these methods with other particle types. The tested MPs have distinct fluorescence, and a combined imaging and fluorescence method improves their detection, making meaningful progress in monitoring MPs in the atmosphere.
Ying Zhou, Longkun He, Jiang Tan, Jiang Zhou, and Yingjun Liu
Atmos. Meas. Tech., 17, 6415–6423, https://doi.org/10.5194/amt-17-6415-2024, https://doi.org/10.5194/amt-17-6415-2024, 2024
Short summary
Short summary
We present a sensitive DART-MS/MS method for the fast and accurate quantification of semi-volatile organic compounds (SVOCs) in organic films without the need for pre-treatment. This method offers greatly improved repeatability in the absence of internal standards. By utilizing MS/MS analysis, the separation of isomeric components within films becomes possible. These developments increase the feasibility of the DART-MS approach for studying the dynamics of SVOCs in indoor surface films.
Behnaz Alinaghipour, Sadegh Niazi, Robert Groth, Branka Miljevic, and Zoran Ristovski
EGUsphere, https://doi.org/10.5194/egusphere-2024-2161, https://doi.org/10.5194/egusphere-2024-2161, 2024
Short summary
Short summary
Airborne particles are crucial in environmental and health studies, requiring precise sampling for accurate characterisation. Our study examines the optimal sampling time for the TSI Nanometer Aerosol Sampler 3089 at different input concentrations. Aerosols from low, medium and high concentration environments were sampled over 1, 3, and 6 hours. A linear relationship was observed using a regression model between the deposition densities and the product of input concentration and sampling time.
Tianle Pan, Andrew T. Lambe, Weiwei Hu, Yicong He, Minghao Hu, Huaishan Zhou, Xinming Wang, Qingqing Hu, Hui Chen, Yue Zhao, Yuanlong Huang, Doug R. Worsnop, Zhe Peng, Melissa A. Morris, Douglas A. Day, Pedro Campuzano-Jost, Jose-Luis Jimenez, and Shantanu H. Jathar
Atmos. Meas. Tech., 17, 4915–4939, https://doi.org/10.5194/amt-17-4915-2024, https://doi.org/10.5194/amt-17-4915-2024, 2024
Short summary
Short summary
This study systematically characterizes the temperature enhancement in the lamp-enclosed oxidation flow reactor (OFR). The enhancement varied multiple dimensional factors, emphasizing the complexity of temperature inside of OFR. The effects of temperature on the flow field and gas- or particle-phase reaction inside OFR were also evaluated with experiments and model simulations. Finally, multiple mitigation strategies were demonstrated to minimize this temperature increase.
Yiliang Liu, Arttu Yli-Kujala, Fabian Schmidt-Ott, Sebastian Holm, Lauri Ahonen, Tommy Chan, Joonas Enroth, Joonas Vanhanen, Runlong Cai, Tuukka Petäjä, Markku Kulmala, Yang Chen, and Juha Kangasluoma
EGUsphere, https://doi.org/10.5194/egusphere-2024-2603, https://doi.org/10.5194/egusphere-2024-2603, 2024
Short summary
Short summary
Accurate measurement of nanoparticles is crucial for understanding their impact on new particle formation and climate change. In our study, we calibrated the Particle Size Magnifier version 2.0, a novel instrument designed for nanoparticle analysis, using both lab-generated and atmospheric particles. Significant differences were observed in the calibration results, with direct calibration using atmospheric particles enhancing measurement accuracy.
Nagendra Raparthi, Anthony S. Wexler, and Ann M. Dillner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2482, https://doi.org/10.5194/egusphere-2024-2482, 2024
Short summary
Short summary
Quantifying the composition-dependent hygroscopicity of aerosol particles is essential for advancing our understanding of atmospheric processes. Existing methods do not integrate chemical composition with hygroscopicity. We developed a novel method to assess the water uptake of particles sampled on aerosol filters at relative humidity levels up to 97 % and link it with their composition. This approach allows for the separation of total water uptake into inorganic and organic components.
Ningjin Xu, Chen Le, David R. Cocker, Kunpeng Chen, Ying-Hsuan Lin, and Don R. Collins
Atmos. Meas. Tech., 17, 4227–4243, https://doi.org/10.5194/amt-17-4227-2024, https://doi.org/10.5194/amt-17-4227-2024, 2024
Short summary
Short summary
A flow-through reactor was developed that exposes known mixtures of gases or ambient air to very high concentrations of the oxidants that are responsible for much of the chemistry that takes place in the atmosphere. Like other reactors of its type, it is primarily used to study the formation of particulate matter from the oxidation of common gases. Unlike other reactors of its type, it can simulate the chemical reactions that occur in liquid water that is present in particles or cloud droplets.
Ella Häkkinen, Huan Yang, Runlong Cai, and Juha Kangasluoma
Atmos. Meas. Tech., 17, 4211–4225, https://doi.org/10.5194/amt-17-4211-2024, https://doi.org/10.5194/amt-17-4211-2024, 2024
Short summary
Short summary
We report measurements of evaporation kinetics and surface equilibrium vapor pressures for various laboratory-generated organic nanoparticles using the dynamic-aerosol-size electrical mobility spectrometer (DEMS), a recent advancement in aerosol process characterization. Our findings align well with literature values, demonstrating DEMS's effectiveness. We suggest future improvements to DEMS and anticipate its potential for probing aerosol-related kinetic processes with unknown mechanisms.
Ping Liu, Xiang Ding, Bo-Xuan Li, Yu-Qing Zhang, Daniel J. Bryant, and Xin-Ming Wang
Atmos. Meas. Tech., 17, 3067–3079, https://doi.org/10.5194/amt-17-3067-2024, https://doi.org/10.5194/amt-17-3067-2024, 2024
Short summary
Short summary
In this paper, we further optimize the measurement of atmospheric organosulfates by hydrophilic interaction liquid chromatography (HILIC), offering an improved method for quantifying and speciating atmospheric organosulfates. These efforts will contribute to a deeper understanding of secondary organic aerosol precursors, formation mechanisms, and the contribution of organosulfate to atmospheric aerosols, ultimately guiding research in the field of air pollution prevention and control.
Corina Wieber, Mads Rosenhøj Jeppesen, Kai Finster, Claus Melvad, and Tina Šantl-Temkiv
Atmos. Meas. Tech., 17, 2707–2719, https://doi.org/10.5194/amt-17-2707-2024, https://doi.org/10.5194/amt-17-2707-2024, 2024
Short summary
Short summary
We developed a novel instrument to determine the quality and number of biological and non-biological particles, with respect to their ice-promoting capacity as a function of temperature. The measurement uncertainty was determined, and the instrument produced reliable results. Further, repeated measurements of the same suspension showed that the instrument had high reproducibility.
Jian Zhao, Valter Mickwitz, Yuanyuan Luo, Ella Häkkinen, Frans Graeffe, Jiangyi Zhang, Hilkka Timonen, Manjula Canagaratna, Jordan E. Krechmer, Qi Zhang, Markku Kulmala, Juha Kangasluoma, Douglas Worsnop, and Mikael Ehn
Atmos. Meas. Tech., 17, 1527–1543, https://doi.org/10.5194/amt-17-1527-2024, https://doi.org/10.5194/amt-17-1527-2024, 2024
Short summary
Short summary
Organic aerosol constitutes a significant portion of atmospheric fine particles but is less characterized due to its vast number of constituents. Recently, we developed a system for online measurements of particle-phase highly oxygenated organic molecules (HOMs). In this work, we systematically characterized the system, developed a new unit to enhance its performance, and demonstrated the essential role of thermograms in inferring volatility and quantifying HOMs in organic aerosols.
Xubing Du, Qinhui Xie, Qing Huang, Xuan Li, Junlin Yang, Zhihui Hou, Jingjing Wang, Xue Li, Zhen Zhou, Zhengxu Huang, Wei Gao, and Lei Li
Atmos. Meas. Tech., 17, 1037–1050, https://doi.org/10.5194/amt-17-1037-2024, https://doi.org/10.5194/amt-17-1037-2024, 2024
Short summary
Short summary
Currently, the limitations of single-particle mass spectrometry detection capabilities render it not yet well suited for analyzing complex aerosol components in low-concentration environments. In this study, a new high-performance single-particle aerosol mass spectrometer (HP-SPAMS) is developed to enhance instrument performance regarding the number of detected particles, transmission efficiency, resolution, and sensitivity, which will help in aerosol science.
Zhengning Xu, Jian Gao, Zhuanghao Xu, Michel Attoui, Xiangyu Pei, Mario Amo-González, Kewei Zhang, and Zhibin Wang
Atmos. Meas. Tech., 16, 5995–6006, https://doi.org/10.5194/amt-16-5995-2023, https://doi.org/10.5194/amt-16-5995-2023, 2023
Short summary
Short summary
Planar differential mobility analyzers (DMAs) have higher ion transmission efficiency and sizing resolution compared to cylindrical DMAs and are more suitable for use with mass spectrometers (MSs). Performance of the latest planar DMA (P5) was characterized. Sizing resolution and ion transmission efficiency were 5–16 times and ∼10 times higher than cylindrical DMAs. Sulfuric acid clusters were measured by DMA(P5)-MSs. This technique can be applied for natural products and biomolecule analysis.
Virginia Vernocchi, Elena Abd El, Marco Brunoldi, Silvia Giulia Danelli, Elena Gatta, Tommaso Isolabella, Federico Mazzei, Franco Parodi, Paolo Prati, and Dario Massabò
Atmos. Meas. Tech., 16, 5479–5493, https://doi.org/10.5194/amt-16-5479-2023, https://doi.org/10.5194/amt-16-5479-2023, 2023
Short summary
Short summary
Bioaerosol are airborne particles or droplets that contain living organisms or biological materials, such as bacteria, viruses, fungi, pollen, or other organic matter. The study of the relationship between bioaerosol viability and air quality or meteorological conditions is an open field, and running experiments of the bioareosol viability in an atmospheric simulation chamber gives the possibility to set up well-defined conditions to evaluate the interaction between bioaerosol and pollutants.
Mohit Singh, Stephanie Helen Jones, Alexei Kiselev, Denis Duft, and Thomas Leisner
Atmos. Meas. Tech., 16, 5205–5215, https://doi.org/10.5194/amt-16-5205-2023, https://doi.org/10.5194/amt-16-5205-2023, 2023
Short summary
Short summary
We introduce a novel method for simultaneous measurement of the viscosity and surface tension of metastable liquids. Our approach is based on the phase analysis of excited shape oscillations in levitated droplets. It is applicable to a wide range of atmospheric conditions and can monitor changes in real time. The technique holds great promise for investigating the effect of atmospheric processing on the viscosity and surface tension of solution droplets in equilibrium with water vapour.
Sophie A. Mills, Adam Milsom, Christian Pfrang, A. Rob MacKenzie, and Francis D. Pope
Atmos. Meas. Tech., 16, 4885–4898, https://doi.org/10.5194/amt-16-4885-2023, https://doi.org/10.5194/amt-16-4885-2023, 2023
Short summary
Short summary
Pollen grains are important components of the atmosphere and have the potential to impact upon cloud processes via their ability to help in the formation of rain droplets. This study investigates the hygroscopicity of two different pollen species using an acoustic levitator. Pollen grains are levitated, and their response to changes in relative humidity is investigated. A key advantage of this method is that it is possible study pollen shape under varying environmental conditions.
Alireza Moallemi, Robin L. Modini, Benjamin T. Brem, Barbara Bertozzi, Philippe Giaccari, and Martin Gysel-Beer
Atmos. Meas. Tech., 16, 3653–3678, https://doi.org/10.5194/amt-16-3653-2023, https://doi.org/10.5194/amt-16-3653-2023, 2023
Short summary
Short summary
Polarimetric data, i.e., the angular and polarization dependence of light scattering by aerosols, contain ample information on optical and microphysical properties. Retrieval of these properties is a central approach in aerosol remote sensing. We present a description, calibration, validation, and a first application of a new benchtop polar nephelometer, which provides in situ polarimetric measurements of an aerosol. Such data facilitate agreement between retrieval results and independent data.
Taomou Zong, Zhijun Wu, Junrui Wang, Kai Bi, Wenxu Fang, Yanrong Yang, Xuena Yu, Zhier Bao, Xiangxinyue Meng, Yuheng Zhang, Song Guo, Yang Chen, Chunshan Liu, Yue Zhang, Shao-Meng Li, and Min Hu
Atmos. Meas. Tech., 16, 3679–3692, https://doi.org/10.5194/amt-16-3679-2023, https://doi.org/10.5194/amt-16-3679-2023, 2023
Short summary
Short summary
This study developed and characterized an indoor chamber system (AIR) to simulate atmospheric multiphase chemistry processes. The AIR chamber can accurately control temperature and relative humidity (RH) over a broad range and simulate diurnal variation of ambient atmospheric RH. The aerosol generation unit can generate organic-coating seed particles with different phase states. The AIR chamber demonstrates high-quality performance in simulating secondary aerosol formation.
Marife B. Anunciado, Miranda De Boskey, Laura Haines, Katarina Lindskog, Tracy Dombek, Satoshi Takahama, and Ann M. Dillner
Atmos. Meas. Tech., 16, 3515–3529, https://doi.org/10.5194/amt-16-3515-2023, https://doi.org/10.5194/amt-16-3515-2023, 2023
Short summary
Short summary
Organic sulfur compounds are used to identify sources and atmospheric processing of aerosol. Our paper evaluates the potential of using a non-destructive measurement technique to measure organic sulfur compounds in filter samples by assessing their chemical stability over time. Some were stable, but some evaporated or changed chemically. Future work includes evaluating the stability and potential interference of multiple organic sulfur compounds in laboratory mixtures and ambient aerosol.
Shipeng Kang, Tongzhu Yu, Yixin Yang, Jiguang Wang, Huaqiao Gui, Jianguo Liu, and Da-Ren Chen
Atmos. Meas. Tech., 16, 3245–3255, https://doi.org/10.5194/amt-16-3245-2023, https://doi.org/10.5194/amt-16-3245-2023, 2023
Short summary
Short summary
A new aerosol electrometer, the thermal precipitation aerosol electrometer (TPAE), was designed for particles in sizes less than 300 nm, and its prototype performance was experimentally evaluated. The TPAE combines the thermal precipitator in the disk-to-disk configuration with a microcurrent measurement circuit board (i.e., pre-amplifier) for measuring the current carried by collected particles. Our performance study shows that the TPAE performance is consistent with the reference.
Battist Utinger, Steven John Campbell, Nicolas Bukowiecki, Alexandre Barth, Benjamin Gfeller, Ray Freshwater, Hans-Rudolf Rüegg, and Markus Kalberer
Atmos. Meas. Tech., 16, 2641–2654, https://doi.org/10.5194/amt-16-2641-2023, https://doi.org/10.5194/amt-16-2641-2023, 2023
Short summary
Short summary
Exposure to atmospheric aerosols can lead to adverse health effect, but particle components responsible for this are unknown. Redox-active compounds, some with very short lifetimes, are considered to be a toxic class of compounds in particles. We developed the first online field instrument to quantify short-lived and stable redox-active compounds with a physiological assay based on ascorbic acid and a high time resolution and detection limits to allow measurements at unpolluted locations.
Ella Häkkinen, Jian Zhao, Frans Graeffe, Nicolas Fauré, Jordan E. Krechmer, Douglas Worsnop, Hilkka Timonen, Mikael Ehn, and Juha Kangasluoma
Atmos. Meas. Tech., 16, 1705–1721, https://doi.org/10.5194/amt-16-1705-2023, https://doi.org/10.5194/amt-16-1705-2023, 2023
Short summary
Short summary
Highly oxygenated compounds contribute to the formation and growth of atmospheric organic aerosol and thus impact the global climate. Knowledge of their transformations and fate after condensing into the particle phase has been limited by the lack of suitable detection techniques. Here, we present an online method for measuring highly oxygenated compounds from organic aerosol. We evaluate the performance of the method and demonstrate that the method is applicable to different organic species.
Julia Pikmann, Lasse Moormann, Frank Drewnick, and Stephan Borrmann
Atmos. Meas. Tech., 16, 1323–1341, https://doi.org/10.5194/amt-16-1323-2023, https://doi.org/10.5194/amt-16-1323-2023, 2023
Short summary
Short summary
Aerosols measured in complex environments are usually a mixture of emissions from different sources. To characterize sources individually, we developed a sampling system for particles and organic trace gases which is coupled to real-time data of physical and chemical aerosol properties, gas concentrations, and meteorological variables. Using suitable sampling conditions for individual aerosols which are compared with the real-time data the desired aerosols are sampled separately from each other.
Christopher R. Niedek, Fan Mei, Maria A. Zawadowicz, Zihua Zhu, Beat Schmid, and Qi Zhang
Atmos. Meas. Tech., 16, 955–968, https://doi.org/10.5194/amt-16-955-2023, https://doi.org/10.5194/amt-16-955-2023, 2023
Short summary
Short summary
This novel micronebulization aerosol mass spectrometry (MS) technique requires a low sample volume (10 μL) and can quantify nanogram levels of organic and inorganic particulate matter (PM) components when used with 34SO4. This technique was successfully applied to PM samples collected from uncrewed atmospheric measurement platforms and provided chemical information that agrees well with real-time data from a co-located aerosol chemical speciation monitor and offline data from secondary ion MS.
Martin Rauber, Gary Salazar, Karl Espen Yttri, and Sönke Szidat
Atmos. Meas. Tech., 16, 825–844, https://doi.org/10.5194/amt-16-825-2023, https://doi.org/10.5194/amt-16-825-2023, 2023
Short summary
Short summary
Carbon-containing aerosols from ambient air are analysed for radioactive isotope radiocarbon to determine the contribution from fossil-fuel emissions. Light-absorbing soot-like aerosols are isolated by water extraction and thermal separation. This separation is affected by artefacts, for which we developed a new correction method. The investigation of aerosols from the Arctic shows that our approach works well for such samples, where many artefacts are expected.
Alain Miffre, Danaël Cholleton, Clément Noël, and Patrick Rairoux
Atmos. Meas. Tech., 16, 403–417, https://doi.org/10.5194/amt-16-403-2023, https://doi.org/10.5194/amt-16-403-2023, 2023
Short summary
Short summary
The depolarization ratio of hematite, silica, Arizona and Asian dust is evaluated in a lab with a π-polarimeter operating at lidar 180 ° and at (355, 532) nm wavelengths. The hematite depolarization equals (10±1) % at 355 nm for coarser particles, while that of silica is (33±1) %. This huge difference is explained by accounting for the high imaginary part of the hematite complex refractive index, thus revealing the key role played by light absorption in mineral dust lidar depolarization.
Miriam Chacón-Mateos, Bernd Laquai, Ulrich Vogt, and Cosima Stubenrauch
Atmos. Meas. Tech., 15, 7395–7410, https://doi.org/10.5194/amt-15-7395-2022, https://doi.org/10.5194/amt-15-7395-2022, 2022
Short summary
Short summary
The study evaluates a low-cost dryer to avoid the negative effect of hygroscopic growth and fog droplets in the particulate matter (PM) concentrations of sensors. The results show a reduction in the overestimation of the PM but also an underestimation compared to reference devices. Special care is needed when designing a dryer as high temperatures change the sampled air by evaporating the most volatile particulate species. Low-cost dryers are very promising for different sensor applications.
Svetlana Sofieva, Eija Asmi, Nina S. Atanasova, Aino E. Heikkinen, Emeline Vidal, Jonathan Duplissy, Martin Romantschuk, Rostislav Kouznetsov, Jaakko Kukkonen, Dennis H. Bamford, Antti-Pekka Hyvärinen, and Mikhail Sofiev
Atmos. Meas. Tech., 15, 6201–6219, https://doi.org/10.5194/amt-15-6201-2022, https://doi.org/10.5194/amt-15-6201-2022, 2022
Short summary
Short summary
A new bubble-generating glass chamber design with an extensive set of aerosol production experiments is presented to re-evaluate bubble-bursting-mediated aerosol production as a function of water parameters: bubbling air flow, water salinity, and temperature. Our main findings suggest modest dependence of aerosol production on the water salinity and a strong dependence on temperature below ~ 10 °C.
Kristian J. Kiland, Kevin L. Marroquin, Natalie R. Smith, Shaun Xu, Sergey A. Nizkorodov, and Allan K. Bertram
Atmos. Meas. Tech., 15, 5545–5561, https://doi.org/10.5194/amt-15-5545-2022, https://doi.org/10.5194/amt-15-5545-2022, 2022
Short summary
Short summary
Information on the viscosity of secondary organic aerosols is needed when making air quality, climate, and atmospheric chemistry predictions. Viscosity depends on temperature, so we developed a new method for measuring the temperature-dependent viscosity of small samples. As an application of the method, we measured the viscosity of farnesene secondary organic aerosol at different temperatures.
Sabin Kasparoglu, Mohammad Maksimul Islam, Nicholas Meskhidze, and Markus D. Petters
Atmos. Meas. Tech., 15, 5007–5018, https://doi.org/10.5194/amt-15-5007-2022, https://doi.org/10.5194/amt-15-5007-2022, 2022
Short summary
Short summary
A modified version of a Handix Scientific printed optical particle spectrometer is introduced. The paper presents characterization experiments, including concentration, size, and time responses. Integration of an external multichannel analyzer card removes counting limitations of the original instrument. It is shown that the high-resolution light-scattering amplitude data can be used to sense particle-phase transitions.
Nikunj Dudani and Satoshi Takahama
Atmos. Meas. Tech., 15, 4693–4707, https://doi.org/10.5194/amt-15-4693-2022, https://doi.org/10.5194/amt-15-4693-2022, 2022
Short summary
Short summary
We designed and fabricated an aerosol collector with high collection efficiency that enables quantitative infrared spectroscopy analysis. By collecting particles on optical windows, typical substrate interferences are eliminated. New methods for fabricating aerosol devices using 3D printing with post-treatment to reduce the time and cost of prototyping are described.
Mao Du, Aristeidis Voliotis, Yunqi Shao, Yu Wang, Thomas J. Bannan, Kelly L. Pereira, Jacqueline F. Hamilton, Carl J. Percival, M. Rami Alfarra, and Gordon McFiggans
Atmos. Meas. Tech., 15, 4385–4406, https://doi.org/10.5194/amt-15-4385-2022, https://doi.org/10.5194/amt-15-4385-2022, 2022
Short summary
Short summary
Atmospheric chemistry plays a key role in the understanding of aerosol formation and air pollution. We designed chamber experiments for the characterization of secondary organic aerosol (SOA) from a biogenic precursor with inorganic seed. Our results highlight the advantages of a combination of online FIGAERO-CIMS and offline LC-Orbitrap MS analytical techniques to characterize the chemical composition of SOA in chamber studies.
Chuan Ping Lee, Mihnea Surdu, David M. Bell, Josef Dommen, Mao Xiao, Xueqin Zhou, Andrea Baccarini, Stamatios Giannoukos, Günther Wehrle, Pascal André Schneider, Andre S. H. Prevot, Jay G. Slowik, Houssni Lamkaddam, Dongyu Wang, Urs Baltensperger, and Imad El Haddad
Atmos. Meas. Tech., 15, 3747–3760, https://doi.org/10.5194/amt-15-3747-2022, https://doi.org/10.5194/amt-15-3747-2022, 2022
Short summary
Short summary
Real-time detection of both the gas and particle phase is needed to elucidate the sources and chemical reaction pathways of organic vapors and particulate matter. The Dual-EESI was developed to measure gas- and particle-phase species to provide new insights into aerosol sources or formation mechanisms. After characterizing the relative gas and particle response factors of EESI via organic aerosol uptake experiments, the Dual-EESI is more sensitive toward gas-phase analyes.
Martin I. Daily, Mark D. Tarn, Thomas F. Whale, and Benjamin J. Murray
Atmos. Meas. Tech., 15, 2635–2665, https://doi.org/10.5194/amt-15-2635-2022, https://doi.org/10.5194/amt-15-2635-2022, 2022
Short summary
Short summary
Mineral dust and particles of biological origin are important types of ice-nucleating particles (INPs) that can trigger ice formation of supercooled cloud droplets. Heat treatments are used to detect the presence of biological INPs in samples collected from the environment as the activity of mineral INPs is assumed unchanged, although not fully assessed. We show that the ice-nucleating ability of some minerals can change after heating and discuss how INP heat tests should be interpreted.
Jiyan Wu, Chi Yang, Chunyan Zhang, Fang Cao, Aiping Wu, and Yanlin Zhang
Atmos. Meas. Tech., 15, 2623–2633, https://doi.org/10.5194/amt-15-2623-2022, https://doi.org/10.5194/amt-15-2623-2022, 2022
Short summary
Short summary
We introduced an online method to simultaneously determine the content of inorganic salt ions and reactive oxygen species (ROS) in PM2.5 hour by hour. We verified the accuracy and precision of the instrument. And we got the daily changes in ROS and the main sources that affect ROS. This breakthrough enables the quantitative assessment of atmospheric particulate matter ROS at the diurnal scale, providing an effective tool to study sources and environmental impacts of ROS.
Virginia Vernocchi, Marco Brunoldi, Silvia G. Danelli, Franco Parodi, Paolo Prati, and Dario Massabò
Atmos. Meas. Tech., 15, 2159–2175, https://doi.org/10.5194/amt-15-2159-2022, https://doi.org/10.5194/amt-15-2159-2022, 2022
Short summary
Short summary
The performance of a mini inverted soot generator was investigated at a simulation chamber facility by studying the soot generated by ethylene and propane combustion, together with the number, size, optical properties, and EC / OC concentrations. Mass absorption coefficients and Ångström absorption exponents are compatible with the literature, with some differences. The characterization of MISG soot particles is fundamental to design and perform experiments in atmospheric simulation chambers.
Magdalena Vallon, Linyu Gao, Feng Jiang, Bianca Krumm, Jens Nadolny, Junwei Song, Thomas Leisner, and Harald Saathoff
Atmos. Meas. Tech., 15, 1795–1810, https://doi.org/10.5194/amt-15-1795-2022, https://doi.org/10.5194/amt-15-1795-2022, 2022
Short summary
Short summary
A LED-based light source has been constructed for the AIDA simulation chamber at the Karlsruhe Institute of Technology. It allows aerosol formation and ageing studies under atmospherically relevant illumination intensities and spectral characteristics at temperatures from –90 °C to 30 °C with the possibility of changing the photon flux and irradiation spectrum at any point. The first results of photolysis experiments with 2,3-pentanedione, iron oxalate and a brown carbon component are shown.
Danaël Cholleton, Émilie Bialic, Antoine Dumas, Pascal Kaluzny, Patrick Rairoux, and Alain Miffre
Atmos. Meas. Tech., 15, 1021–1032, https://doi.org/10.5194/amt-15-1021-2022, https://doi.org/10.5194/amt-15-1021-2022, 2022
Short summary
Short summary
While pollen impacts public health and the Earth’s climate, the identification of each pollen taxon remains challenging. In this context, a laboratory evaluation of the polarimetric light-scattering characteristics of ragweed, ash, birch and pine pollen, when embedded in ambient air, is here performed at two wavelengths. Interestingly, the achieved precision of the retrieved scattering matrix elements allows unequivocal light scattering characteristics of each studied taxon to be identified.
Kanishk Gohil and Akua A. Asa-Awuku
Atmos. Meas. Tech., 15, 1007–1019, https://doi.org/10.5194/amt-15-1007-2022, https://doi.org/10.5194/amt-15-1007-2022, 2022
Short summary
Short summary
This work develops a methodology and software to study and analyze the cloud-droplet-forming ability of aerosols with an aerodynamic aerosol classifier (AAC). This work quantifies the uncertainties in size-resolved measurements and subsequent uncertainties propagated to cloud droplet parameterizations. Lastly, we present the best practices for AAC cloud droplet measurement.
Yunqi Shao, Yu Wang, Mao Du, Aristeidis Voliotis, M. Rami Alfarra, Simon P. O'Meara, S. Fiona Turner, and Gordon McFiggans
Atmos. Meas. Tech., 15, 539–559, https://doi.org/10.5194/amt-15-539-2022, https://doi.org/10.5194/amt-15-539-2022, 2022
Short summary
Short summary
A comprehensive description and characterisation of the Manchester Aerosol Chamber (MAC) was conducted. The MAC has good temperature and relative humidity homogeneity, fast mixing times, and comparable losses of gases and particles with other chambers. The MAC's bespoke control system allows improved duty cycles and repeatable experiments. Moreover, the effect of contamination on performance was also investigated. It is highly recommended to regularly track the chamber's performance.
Dina Alfaouri, Monica Passananti, Tommaso Zanca, Lauri Ahonen, Juha Kangasluoma, Jakub Kubečka, Nanna Myllys, and Hanna Vehkamäki
Atmos. Meas. Tech., 15, 11–19, https://doi.org/10.5194/amt-15-11-2022, https://doi.org/10.5194/amt-15-11-2022, 2022
Short summary
Short summary
To study what is happening in the atmosphere, it is important to be able to measure the molecules and clusters present in it. In our work, we studied an artifact that happens inside a mass spectrometer, in particular the fragmentation of clusters. We were able to quantify the fragmentation and retrieve the correct concentration and composition of the clusters using our dual (experimental and theoretical) approach.
Sudheer Salana, Yixiang Wang, Joseph V. Puthussery, and Vishal Verma
Atmos. Meas. Tech., 14, 7579–7593, https://doi.org/10.5194/amt-14-7579-2021, https://doi.org/10.5194/amt-14-7579-2021, 2021
Short summary
Short summary
Oxidative potential (OP) of particulate matter (PM) is an important indicator of PM toxicity. However, no automated instrument has ever been developed to provide a rapid high-throughput analysis of cell-based OP measurements. Here, we developed a semi-automated instrument, the first of its kind, for measuring oxidative potential using rat alveolar cells. We also developed a dataset on the intrinsic cellular OP of several compounds commonly known to be present in ambient PM.
Kevin B. Fischer and Giuseppe A. Petrucci
Atmos. Meas. Tech., 14, 7565–7577, https://doi.org/10.5194/amt-14-7565-2021, https://doi.org/10.5194/amt-14-7565-2021, 2021
Short summary
Short summary
The viscosity of organic particles in atmospheric aerosol is sometimes correlated to bounce factor. It is generally accepted that more viscous particles will be more likely to bounce following acceleration toward and impaction on a surface. We demonstrate that use of multi-stage low-pressure impactors for this purpose may result in measurement artifacts that depend on chemical composition, particle size, and changing relative humidity. A hypothesis for the observed effect is presented.
Najin Kim, Yafang Cheng, Nan Ma, Mira L. Pöhlker, Thomas Klimach, Thomas F. Mentel, Ovid O. Krüger, Ulrich Pöschl, and Hang Su
Atmos. Meas. Tech., 14, 6991–7005, https://doi.org/10.5194/amt-14-6991-2021, https://doi.org/10.5194/amt-14-6991-2021, 2021
Short summary
Short summary
A broad supersaturation scanning CCN (BS2-CCN) system, in which particles are exposed to a range of supersaturation simultaneously, can measure a broad range of CCN activity distribution with a high time resolution. We describe how the BS2-CCN system can be effectively calibrated and which factors can affect the calibration curve. Intercomparison experiments between typical DMA-CCN and BS2-CCN measurements to evaluate the BS2-CCN system showed high correlation and good agreement.
Chenyang Bi, Jordan E. Krechmer, Manjula R. Canagaratna, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 14, 6551–6560, https://doi.org/10.5194/amt-14-6551-2021, https://doi.org/10.5194/amt-14-6551-2021, 2021
Short summary
Short summary
Calibration techniques have been recently developed to log-linearly correlate analyte sensitivity with CIMS operating conditions particularly for compounds without authentic standards. In this work, we examine the previously ignored bias in the log-linear-based calibration method and estimate an average bias of 30 %, with 1 order of magnitude for less sensitive compounds in some circumstances. A step-by-step guide was provided to reduce and even remove the bias.
Chuan Ping Lee, Mihnea Surdu, David M. Bell, Houssni Lamkaddam, Mingyi Wang, Farnoush Ataei, Victoria Hofbauer, Brandon Lopez, Neil M. Donahue, Josef Dommen, Andre S. H. Prevot, Jay G. Slowik, Dongyu Wang, Urs Baltensperger, and Imad El Haddad
Atmos. Meas. Tech., 14, 5913–5923, https://doi.org/10.5194/amt-14-5913-2021, https://doi.org/10.5194/amt-14-5913-2021, 2021
Short summary
Short summary
Extractive electrospray ionization mass spectrometry (EESI-MS) has been deployed for high throughput online detection of particles with minimal fragmentation. Our study elucidates the extraction mechanism between the particles and electrospray (ES) droplets of different properties. The results show that the extraction rate is likely affected by the coagulation rate between the particles and ES droplets. Once coagulated, the particles undergo complete extraction within the ES droplet.
Weimeng Kong, Stavros Amanatidis, Huajun Mai, Changhyuk Kim, Benjamin C. Schulze, Yuanlong Huang, Gregory S. Lewis, Susanne V. Hering, John H. Seinfeld, and Richard C. Flagan
Atmos. Meas. Tech., 14, 5429–5445, https://doi.org/10.5194/amt-14-5429-2021, https://doi.org/10.5194/amt-14-5429-2021, 2021
Short summary
Short summary
We present the design, modeling, and experimental characterization of the nano-scanning electrical mobility spectrometer (nSEMS), a recently developed instrument that probes particle physical properties in the 1.5–25 nm range. The nSEMS has proven to be extremely powerful in examining atmospheric nucleation and the subsequent growth of nanoparticles in the CERN CLOUD experiment, which provides a valuable asset to study atmospheric nanoparticles and to evaluate their impact on climate.
Jack M. Choczynski, Ravleen Kaur Kohli, Craig S. Sheldon, Chelsea L. Price, and James F. Davies
Atmos. Meas. Tech., 14, 5001–5013, https://doi.org/10.5194/amt-14-5001-2021, https://doi.org/10.5194/amt-14-5001-2021, 2021
Short summary
Short summary
Relative humidity (RH) and hygroscopicity play an important role in regulating the physical, chemical, and optical properties of aerosol. In this work, we develop a new method to characterize hygroscopicity using particle levitation. We levitate two droplets with an electrodynamic balance and measure their size with light-scattering methods using one droplet as a probe of the RH. We demonstrate highly accurate and precise measurements of the RH and hygroscopic growth of a range of samples.
Yuhan Yang, Dong Gao, and Rodney J. Weber
Atmos. Meas. Tech., 14, 4707–4719, https://doi.org/10.5194/amt-14-4707-2021, https://doi.org/10.5194/amt-14-4707-2021, 2021
Short summary
Short summary
Iron and copper are commonly found in ambient aerosols and have been linked to adverse health effects. We describe a relatively simple benchtop instrument that can be used to quantify these metals in aqueous solutions and verify the method by comparison with inductively coupled plasma mass spectrometry. The approach is based on forming light-absorbing metal–ligand complexes that can be measured with high sensitivity utilizing a long-path liquid waveguide capillary cell.
Stavros Amanatidis, Yuanlong Huang, Buddhi Pushpawela, Benjamin C. Schulze, Christopher M. Kenseth, Ryan X. Ward, John H. Seinfeld, Susanne V. Hering, and Richard C. Flagan
Atmos. Meas. Tech., 14, 4507–4516, https://doi.org/10.5194/amt-14-4507-2021, https://doi.org/10.5194/amt-14-4507-2021, 2021
Short summary
Short summary
We assess the performance of a highly portable mobility analyzer, the Spider DMA, in measuring ambient aerosol particle size distributions, with specific attention to its moderate sizing resolution (R=3). Long-term field testing showed excellent correlation with a conventional mobility analyzer (R=10) over the 17–500 nm range, suggesting that moderate resolution may be sufficient to obtain key properties of ambient size distributions, enabling smaller instruments and better counting statistics.
Cited articles
Anderson, S. I.: Characterisation of Cells on Biomaterial Surfaces and Tissue-Engineered Constructs Using Microscopy Techniques, in: Tissue Engineering Using Ceramics and Polymers, 2nd edn., edited by: Boccaccini, A. R. and Ma, P. X., Woodhead Publishing, 196–223, https://doi.org/10.1533/9780857097163.2.196, ISBN 978-0-85709-712-5, 2014. a, b
Arena, L. and Crespo, A.: Recopilación de estudios primarios de caracterización cristalográfica de granizos y de las tormentas que los originan, Repositorio Digital of the Universidad Nacional de Córdoba (RDU), http://hdl.handle.net/11086/14055 (last access: 6 September 2024), 2019 (in Spanish). a
Beal, A., Martins, L. D., Martins, J. A., Rudke, A. P., de Almeida, D. S., Costa, L. M., and Tarley, C. R. T.: Evaluation of the Chemical Composition of Hailstones from Triple Border Paraná, Santa Catarina (Brazil) and Argentina, Atmos. Pollut. Res., 12, 184–192, https://doi.org/10.1016/j.apr.2021.01.009, 2021. a, b
Bern, A. M., Lowers, H. A., Meeker, G. P., and Rosati, J. A.: Method Development for Analysis of Urban Dust Using Scanning Electron Microscopy with Energy Dispersive X-ray Spectrometry to Detect the Possible Presence of World Trade Center Dust Constituents, Environ. Sci. Technol., 43, 1449–1454, https://doi.org/10.1021/es800865n, 2009. a
Bernal Ayala, A. C., Rowe, A. K., Arena, L. E., and Desai, A. R.: Evaluation of Satellite-Derived Signatures for Three Verified Hailstorms in Central Argentina, Meteorology, 1, 183–210, https://doi.org/10.3390/meteorology1020013, 2022. a
Bernal Ayala, A. C., Rowe, A., Arena, L. E., and Nachlas, W. O.: Individual Particle Dataset: Physical-chemical properties of non-soluble particles in a hailstone collected in Argentina, Zenodo [data set], https://doi.org/10.5281/zenodo.13686466, 2024. a
Brostrøm, A., Kling, K. I., Hougaard, K. S., and Mølhave, K.: Complex Aerosol Characterization by Scanning Electron Microscopy Coupled with Energy Dispersive X-ray Spectroscopy, Sci. Rep., 10, 9150, https://doi.org/10.1038/s41598-020-65383-5, 2020. a
Christner, B. C., Mikucki, J. A., Foreman, C. M., Denson, J., and Priscu, J. C.: Glacial Ice Cores: A Model System for Developing Extraterrestrial Decontamination Protocols, Icarus, 174, 572–584, https://doi.org/10.1016/j.icarus.2004.10.027, 2005. a, b
Cintineo, J. L., Pavolonis, M. J., Sieglaff, J. M., Cronce, L., and Brunner, J.: NOAA ProbSevere v2.0 – ProbHail, ProbWind, and ProbTor, Weather Forecast., 35, 1523–1543, https://doi.org/10.1175/WAF-D-19-0242.1, 2020. a
Crespo, A.: Characterization of Two Hailstorms in Argentina, PhD thesis, University of Wisconsin-Madison, Madison, Wisconsin, https://minds.wisconsin.edu/handle/1793/80494 (last access: 6 September 2024), 2020. a
Dahal, S.: The Essential Guide to Raman Microscopy, ThermoFisher Scientific, https://www.thermofisher.com/blog/materials/guide-to-raman-microscopy-raman-spectroscopy/ (last access: 16 August 2023), 2022. a
Demšar, J., Curk, T., Erjavec, A., Gorup, Č., Hočevar, T., Milutinovič, M., Možina, M., Polajnar, M., Toplak, M., Starič, A., Štajdohar, M., Umek, L., Žagar, L., Žbontar, J., Žitnik, M., and Zupan, B.: Orange: Data Mining Toolbox in Python, J. Mach. Learn. Res., 14, 2349–2353, 2013. a
Diep, T., Lata, N. N., Cheng, Z., Mazzola, M., Gilardoni, S., Wilbourn, E., Hurst, J., Ogle, H., Hiranuma, N., and China, S.: Chemical Composition and Immersion Freezing Activities of Aerosol Articles in the European Arctic, in: AGU Fall Meeting 2022, Chicago, IL, 12–16 December 2022, id. A12P-1305, https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1095808 (last access: 6 September 2024), 2022. a
Drouin, D., Couture, A. R., Joly, D., Tastet, X., Aimez, V., and Gauvin, R.: CASINO V2.42: A Fast and Easy-to-Use Modeling Tool for Scanning Electron Microscopy and Microanalysis Users, Scanning, 29, 92–101, https://doi.org/10.1002/sca.20000, 2007. a, b
Fallica, R., Watts, B., Rösner, B., Giustina, G. D., Brigo, L., Brusatin, G., and Ekinci, Y.: Changes in the near Edge X-Ray Absorption Fine Structure of Hybrid Organic–Inorganic Resists upon Exposure, Nanotechnology, 29, 36LT03, https://doi.org/10.1088/1361-6528/aaccd4, 2018. a, b
Farber, L.: Microstructure and Mechanical Properties of Granules Formed in High Shear Wet Granulation, in: Handbook of Pharmaceutical Wet Granulation, edited by: Narang, A. S. and Badawy, S. I. F., Academic Press, ISBN 978-0-12-810460-6, 37–88, https://doi.org/10.1016/B978-0-12-810460-6.00003-8, 2019. a
Filmetrics: Profilmonline, https://www.profilmonline.com/, last access: 5 October 2023. a
Fu, Y.-Z., Li, Y.-D., Su, Y.-T., Cai, C.-Y., and Huang, D.-Y.: Application of Confocal Laser Scanning Microscopy to the Study of Amber Bioinclusions, Palaeoentomology, 4, 266–278, https://doi.org/10.11646/palaeoentomology.4.3.14, 2021. a
Gao, K., Zhou, C.-W., Meier, E. J. B., and Kanji, Z. A.: Laboratory studies of ice nucleation onto bare and internally mixed soot–sulfuric acid particles, Atmos. Chem. Phys., 22, 5331–5364, https://doi.org/10.5194/acp-22-5331-2022, 2022. a, b
Gu, L., Wang, N., Tang, X., and Changela, H. G.: Application of FIB-SEM Techniques for the Advanced Characterization of Earth and Planetary Materials, Scanning, 2020, 8406917, https://doi.org/10.1155/2020/8406917, 2020. a
Higuchi, K.: The Etching of Ice Crystals, Acta Metall. Mater., 6, 636–642, https://doi.org/10.1016/0001-6160(58)90157-3, 1958. a
Higuchi, K. and Muguruma, J.: Etching of Ice Crystals by the Use of Plastic Replica Film, Journal of the Faculty of Science, Hokkaido University, Ser. 7, 1, 81–91, 1958. a
Holden, M. A., Campbell, J. M., Meldrum, F. C., Murray, B. J., and Christenson, H. K.: Active Sites for Ice Nucleation Differ Depending on Nucleation Mode, P. Natl. Acad. Sci. USA, 118, e2022859118, https://doi.org/10.1073/pnas.2022859118, 2021. a
Jeong, J.-H., Fan, J., Homeyer, C. R., and Hou, Z.: Understanding Hailstone Temporal Variability and Contributing Factors over the U.S. Southern Great Plains, J. Climate, 33, 3947–3966, https://doi.org/10.1175/JCLI-D-19-0606.1, 2020. a
Jiang, F., Chen, B., Qiao, F., Wang, R., Wei, C., and Liu, Q.: Effects of Microphysics Parameterizations on Forecasting a Severe Hailstorm of 30 April 2021 in Eastern China, Atmosphere, 14, 526, https://doi.org/10.3390/atmos14030526, 2023. a
Kaye, T. G., Falk, A. R., Pittman, M., Sereno, P. C., Martin, L. D., Burnham, D. A., Gong, E., Xu, X., and Wang, Y.: Laser-Stimulated Fluorescence in Paleontology, PLoS One, 10, e0125923, https://doi.org/10.1371/journal.pone.0125923, 2015. a
Ketterer, M. E.: Geology and Mineralogy Applications of Atomic Spectroscopy, in: Encyclopedia of Spectroscopy and Spectrometry, 2nd edn., edited by: Lindon, J. C., Academic Press, Oxford, ISBN 978-0-12-374413-5, 757–761, https://doi.org/10.1016/B978-0-12-374413-5.00004-X, 2010. a
Koga, D., Kusumi, S., Shibata, M., and Watanabe, T.: Applications of Scanning Electron Microscopy Using Secondary and Backscattered Electron Signals in Neural Structure, Front. Neuroanat., 15, 759804, https://doi.org/10.3389/fnana.2021.759804, 2021. a
Kozjek, M., Vengust, D., Radošević, T., Žitko, G., Koren, S., Toplak, N., Jerman, I., Butala, M., Podlogar, M., and Viršek, M. K.: Dissecting Giant Hailstones: A Glimpse into the Troposphere with Its Diverse Bacterial Communities and Fibrous Microplastics, Sci. Total Environ., 856, 158786, https://doi.org/10.1016/j.scitotenv.2022.158786, 2023. a
Krueger, B. J., Grassian, V. H., Cowin, J. P., and Laskin, A.: Heterogeneous Chemistry of Individual Mineral Dust Particles from Different Dust Source Regions: The Importance of Particle Mineralogy, Atmos. Environ., 38, 6253–6261, https://doi.org/10.1016/j.atmosenv.2004.07.010, 2004. a
Kubota, R., Nakamura, K., Torigoe, S., and Hamachi, I.: The Power of Confocal Laser Scanning Microscopy in Supramolecular Chemistry: In Situ Real-time Imaging of Stimuli-Responsive Multicomponent Supramolecular Hydrogels, ChemistryOpen, 9, 67–79, https://doi.org/10.1002/open.201900328, 2020. a
Kumjian, M. R., Gutierrez, R., Soderholm, J. S., Nesbitt, S. W., Maldonado, P., Luna, L. M., Marquis, J., Bowley, K. A., Imaz, M. A., and Salio, P.: Gargantuan Hail in Argentina, B. Am. Meteorol. Soc., 101, E1241–E1258, https://doi.org/10.1175/BAMS-D-19-0012.1, 2020. a
Laskin, A., Moffet, R. C., Gilles, M. K., Fast, J. D., Zaveri, R. A., Wang, B., Nigge, P., and Shutthanandan, J.: Tropospheric Chemistry of Internally Mixed Sea Salt and Organic Particles: Surprising Reactivity of NaCl with Weak Organic Acids, J. Geophys. Res.-Atmos., 117, D15302, https://doi.org/10.1029/2012JD017743, 2012. a
Lata, N. N., Zhang, B., Schum, S., Mazzoleni, L., Brimberry, R., Marcus, M. A., Cantrell, W. H., Fialho, P., Mazzoleni, C., and China, S.: Aerosol Composition, Mixing State, and Phase State of Free Tropospheric Particles and Their Role in Ice Cloud Formation, ACS Earth Space Chem., 5, 3499–3510, https://doi.org/10.1021/acsearthspacechem.1c00315, 2021. a, b, c
Lehmann, J., Liang, B., Solomon, D., Lerotic, M., Luizão, F., Kinyangi, J., Schäfer, T., Wirick, S., and Jacobsen, C.: Near-Edge X-ray Absorption Fine Structure (NEXAFS) Spectroscopy for Mapping Nano-Scale Distribution of Organic Carbon Forms in Soil: Application to Black Carbon Particles, Global Biogeochem. Cy., 19, GB1013, https://doi.org/10.1029/2004GB002435, 2005. a, b
Li, X., Zhang, Q., Zhu, T., Li, Z., Lin, J., and Zou, T.: Water-Soluble Ions in Hailstones in Northern and Southwestern China, Sci. Bull. (Beijing), 63, 1177–1179, https://doi.org/10.1016/j.scib.2018.07.021, 2018. a
Liu, E., Vega, S., Treiser, M. D., Sung, H. J., and Moghe, P. V.: Fluorescence Imaging of Cell–Biomaterial Interactions, in: Comprehensive Biomaterials, edited by: Ducheyne, P., Elsevier, Oxford, ISBN 978-0-08-055294-1, 291–303, https://doi.org/10.1016/B978-0-08-055294-1.00101-X, 2011. a, b
Malečić, B., Telišman Prtenjak, M., Horvath, K., Jelić, D., Mikuš Jurković, P., Ćorko, K., and Mahović, N. S.: Performance of HAILCAST and the Lightning Potential Index in Simulating Hailstorms in Croatia in a Mesoscale Model – Sensitivity to the PBL and Microphysics Parameterization Schemes, Atmos. Res., 272, 106143, https://doi.org/10.1016/j.atmosres.2022.106143, 2022. a
Mandrioli, P., Puppi, G. L., Bagni, N., and Prodi, F.: Distribution of Microorganisms in Hailstones, Nature, 246, 416–417, https://doi.org/10.1038/246416a0, 1973. a
Mercer, I. P.: PHYSICAL APPLICATIONS OF LASERS, Industrial Applications, in: Encyclopedia of Modern Optics, edited by: Guenther, R. D., Elsevier, Oxford, 169–184, https://doi.org/10.1016/B0-12-369395-0/00947-7, 2005. a, b
Nam, K. Y. and Lee, C. J.: Characterization of Silver Nanoparticles Incorporated Acrylic-Based Tissue Conditioner with Antimicrobial Effect and Cytocompatibility, in: Nanobiomaterials in Clinical Dentistry, edited by: Subramani, K., Ahmed, W., and Hartsfield, J. K., William Andrew Publishing, 283–295, https://doi.org/10.1016/B978-1-4557-3127-5.00014-3, 2013. a
O'Connor, B.: Confocal Laser Scanning Microscopy; a New Technique for Investigating and Illustrating Fossil Radiolaria, Micropaleontology, 42, 395–401, 1996. a
Orlando, A., Franceschini, F., Muscas, C., Pidkova, S., Bartoli, M., Rovere, M., and Tagliaferro, A.: A Comprehensive Review on Raman Spectroscopy Applications, Chemosensors, 9, 262, https://doi.org/10.3390/chemosensors9090262, 2021. a
Patnaude, R. J., Perkins, R. J., Kreidenweis, S. M., and DeMott, P. J.: Is Ice Formation by Sea Spray Particles at Cirrus Temperatures Controlled by Crystalline Salts?, ACS Earth Space Chem., 5, 2196–2211, https://doi.org/10.1021/acsearthspacechem.1c00228, 2021. a
Petrenko, V. F. and Whitworth, R. W.: Physics of Ice, OUP Oxford, ISBN 978-0-19-158134-2, 1999. a
Pruppacher, H. R.: Self-Diffusion Coefficient of Supercooled Water, J. Chem. Phys., 56, 101–107, https://doi.org/10.1063/1.1676831, 1972. a
Raja, P. M. V. and Barron, A. R.: An Introduction to Energy Dispersive X-ray Spectroscopy, OpenStax CNX, https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Physical_Methods_in_Chemistry_and_Nano_Science_(Barron)/01:_Elemental_Analysis/1.12:_An_Introduction_to_Energy_Dispersive_X-ray_Spectroscopy (last access: 3 August 2023), 2016. a
Rausch, J., Jaramillo-Vogel, D., Perseguers, S., Schnidrig, N., Grobéty, B., and Yajan, P.: Automated Identification and Quantification of Tire Wear Particles (TWP) in Airborne Dust: SEM/EDX Single Particle Analysis Coupled to a Machine Learning Classifier, Sci. Total Environ., 803, 149832, https://doi.org/10.1016/j.scitotenv.2021.149832, 2022. a
Raval, N., Maheshwari, R., Kalyane, D., Youngren-Ortiz, S. R., Chougule, M. B., and Tekade, R. K.: Importance of Physicochemical Characterization of Nanoparticles in Pharmaceutical Product Development, in: Basic Fundamentals of Drug Delivery, edited by: Tekade, R. K., Advances in Pharmaceutical Product Development and Research, Academic Press, 369–400, https://doi.org/10.1016/B978-0-12-817909-3.00010-8, 2019. a
Ritchie, N. W. M.: Using DTSA-II to Simulate and Interpret Energy Dispersive Spectra from Particles, Microsc. Microanal., 16, 248–258, https://doi.org/10.1017/S1431927610000243, 2010. a, b
Sanchez-Marroquin, A., Arnalds, O., Baustian-Dorsi, K. J., Browse, J., Dagsson-Waldhauserova, P., Harrison, A. D., Maters, E. C., Pringle, K. J., Vergara-Temprado, J., Burke, I. T., McQuaid, J. B., Carslaw, K. S., and Murray, B. J.: Iceland Is an Episodic Source of Atmospheric Ice-Nucleating Particles Relevant for Mixed-Phase Clouds, Science Advances, 6, eaba8137, https://doi.org/10.1126/sciadv.aba8137, 2020. a
Šantl-Temkiv, T., Finster, K., Dittmar, T., Hansen, B. M., Thyrhaug, R., Nielsen, N. W., and Karlson, U. G.: Hailstones: A Window into the Microbial and Chemical Inventory of a Storm Cloud, PLOS ONE, 8, 1–7, https://doi.org/10.1371/journal.pone.0053550, 2013. a
Schaefer, V. J.: A Method for Making Snowflake Replicas, Science, 93, 239–240, https://doi.org/10.1126/science.93.2410.239, 1941. a
Schnell, G., Staehlke, S., Duenow, U., Nebe, J. B., and Seitz, H.: Femtosecond Laser Nano/Micro Textured Ti6Al4V Surfaces – Effect on Wetting and MG-63 Cell Adhesion, Materials, 12, 2210, https://doi.org/10.3390/ma12132210, 2019. a
Soderholm, J. S. and Kumjian, M. R.: Automating the analysis of hailstone layers, Atmos. Meas. Tech., 16, 695–706, https://doi.org/10.5194/amt-16-695-2023, 2023. a
Turner, J. N., Lasek, S., and Szarowski, D. H.: Confocal Optical Microscopy, in: Encyclopedia of Materials: Science and Technology, edited by: Buschow, K. H. J., Cahn, R. W., Flemings, M. C., Ilschner, B., Kramer, E. J., Mahajan, S., and Veyssière, P., Elsevier, Oxford, ISBN 978-0-08-043152-9, 1504–1509, https://doi.org/10.1016/B0-08-043152-6/00271-0, 2001. a, b
Vander Wood, T. B.: Automated Particle Analysis by Microscopy, A Primer, Microscopy Today, 2, 13–17, https://doi.org/10.1017/S1551929500063008, 1994. a
Vander Wood, T. B.: Particle Sizing in Emissions Samples by Scanning Electron Microscopy, POWER, https://www.powermag.com/particle-sizing-in-emissions-samples-by-scanning-electron-microscopy/ (last access: 17 August 2023), 2017. a
Wagner, J., Wang, Z.-M., Ghosal, S., and Wall, S.: Source Identification on High PM2.5 Days Using SEM/EDS, XRF, Raman, and Windblown Dust Modeling, Aerosol Air Qual. Res., 19, 2578–2530, https://doi.org/10.4209/aaqr.2019.05.0276, 2019. a
Wang, S. and Larina, I. V.: High-Resolution Imaging Techniques in Tissue Engineering, in: Monitoring and Evaluation of Biomaterials and Their Performance In Vivo, edited by: Narayan, R. J., Woodhead Publishing, 151–180, https://doi.org/10.1016/B978-0-08-100603-0.00008-0, 2017. a, b
Wang, X., Ran, L., Qi, Y., Jiang, Z., Yun, T., and Jiao, B.: Analysis of Gravity Wave Characteristics during a Hailstone Event in the Cold Vortex of Northeast China, Atmosphere, 14, 412, https://doi.org/10.3390/atmos14020412, 2023. a
Wu, W., Huang, W., Deng, L., and Wu, C.: Investigation of Maximum Hail-Size Forecasting Using Bulk Microphysics Schemes, Mon. Weather Rev., 150, 2503–2525, https://doi.org/10.1175/MWR-D-21-0312.1, 2022. a
Zhang, Z., Zhou, Y., Zhu, X., Fei, L., Huang, H., and Wang, Y.: Applications of ESEM on Materials Science: Recent Updates and a Look Forward, Small Methods, 4, 1900588, https://doi.org/10.1002/smtd.201900588, 2020. a
Short summary
Hail is a challenging weather phenomenon to forecast due to an incomplete understanding of hailstone formation. Microscopy temperature limitations required previous studies to melt hail for analysis. This paper introduces a unique technique using a plastic cover to preserve particles in their location within the hailstone without melting. Therefore, CLSM and SEM–EDS microscopes can be used to determine individual particle sizes and their chemical composition related to hail-formation processes.
Hail is a challenging weather phenomenon to forecast due to an incomplete understanding of...