Articles | Volume 18, issue 4
https://doi.org/10.5194/amt-18-1063-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-1063-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Determining optimal sampling conditions in the TSI Nanometer Aerosol Sampler 3089
Behnaz Alinaghipour
International Laboratory for Air Quality and Health (ILAQH), School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, 4000, Australia
Sadegh Niazi
International Laboratory for Air Quality and Health (ILAQH), School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, 4000, Australia
now at: School of Science, Western Sydney University, Penrith, 2751, Australia
Robert Groth
International Laboratory for Air Quality and Health (ILAQH), School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, 4000, Australia
Branka Miljevic
International Laboratory for Air Quality and Health (ILAQH), School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, 4000, Australia
International Laboratory for Air Quality and Health (ILAQH), School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, 4000, Australia
Related authors
No articles found.
Yik-Sze Lau, Zoran Ristovski, and Branka Miljevic
Atmos. Meas. Tech., 18, 3945–3958, https://doi.org/10.5194/amt-18-3945-2025, https://doi.org/10.5194/amt-18-3945-2025, 2025
Short summary
Short summary
The chemical properties of aerosols in the atmosphere significantly influence their impact on global climate and human health. The current study constructed an instrumental system (HEAC (high-efficiency aerosol collector)/ESI (electrospray ionisation)-Orbitrap-MS (mass spectrometer)) for the real-time chemical analysis of aerosol samples. The combined system successfully identified over 30 chemical compounds in aerosol samples in real time, showing the robustness of the technique for the chemical characterisation of aerosols under atmospherically relevant conditions.
E. Johanna Horchler, Joel Alroe, Luke Harrison, Luke Cravigan, Daniel P. Harrison, and Zoran D. Ristovski
EGUsphere, https://doi.org/10.5194/egusphere-2025-465, https://doi.org/10.5194/egusphere-2025-465, 2025
Short summary
Short summary
Aerosols play a role in global climate by interacting with incoming solar radiation and by taking up water vapour from the atmosphere to form clouds. Enhancing local-scale cloud cover can reduce sea surface temperatures. Coral bleaching events increased in the Great Barrier Reef (GBR) as sea surface temperatures rise. Our study found that the number of aerosols and the cloud forming ability over the GBR increased if the aerosols were transported from inland Australia rather than the ocean.
Matthew Boyer, Diego Aliaga, Lauriane L. J. Quéléver, Silvia Bucci, Hélène Angot, Lubna Dada, Benjamin Heutte, Lisa Beck, Marina Duetsch, Andreas Stohl, Ivo Beck, Tiia Laurila, Nina Sarnela, Roseline C. Thakur, Branka Miljevic, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 24, 12595–12621, https://doi.org/10.5194/acp-24-12595-2024, https://doi.org/10.5194/acp-24-12595-2024, 2024
Short summary
Short summary
We analyze the seasonal cycle and sources of gases that are relevant for the formation of aerosol particles in the central Arctic. Since theses gases can form new particles, they can influence Arctic climate. We show that the sources of these gases are associated with changes in the Arctic environment during the year, especially with respect to sea ice. Therefore, the concentration of these gases will likely change in the future as the Arctic continues to warm.
Sonya L. Fiddes, Matthew T. Woodhouse, Marc D. Mallet, Liam Lamprey, Ruhi S. Humphries, Alain Protat, Simon P. Alexander, Hakase Hayashida, Samuel G. Putland, Branka Miljevic, and Robyn Schofield
EGUsphere, https://doi.org/10.5194/egusphere-2024-3125, https://doi.org/10.5194/egusphere-2024-3125, 2024
Short summary
Short summary
The interaction between natural marine aerosols, clouds and radiation in the Southern Ocean is a major source of uncertainty in climate models. We evaluate the Australian climate model using aerosol observations and find it underestimates aerosol number often by over 50 %. Model changes were tested to improve aerosol concentrations, but some of our changes had severe negative effects on the larger climate system, highlighting issues in aerosol-cloud interaction modelling.
Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, James Harnwell, Simon P. Alexander, Andrew R. Klekociuk, Keiichiro Hara, Ian M. McRobert, Alain Protat, Joel Alroe, Luke T. Cravigan, Branka Miljevic, Zoran D. Ristovski, Robyn Schofield, Stephen R. Wilson, Connor J. Flynn, Gourihar R. Kulkarni, Gerald G. Mace, Greg M. McFarquhar, Scott D. Chambers, Alastair G. Williams, and Alan D. Griffiths
Atmos. Chem. Phys., 23, 3749–3777, https://doi.org/10.5194/acp-23-3749-2023, https://doi.org/10.5194/acp-23-3749-2023, 2023
Short summary
Short summary
Observations of aerosols in pristine regions are rare but are vital to constraining the natural baseline from which climate simulations are calculated. Here we present recent seasonal observations of aerosols from the Southern Ocean and contrast them with measurements from Antarctica, Australia and regionally relevant voyages. Strong seasonal cycles persist, but striking differences occur at different latitudes. This study highlights the need for more long-term observations in remote regions.
Sonya L. Fiddes, Matthew T. Woodhouse, Steve Utembe, Robyn Schofield, Simon P. Alexander, Joel Alroe, Scott D. Chambers, Zhenyi Chen, Luke Cravigan, Erin Dunne, Ruhi S. Humphries, Graham Johnson, Melita D. Keywood, Todd P. Lane, Branka Miljevic, Yuko Omori, Alain Protat, Zoran Ristovski, Paul Selleck, Hilton B. Swan, Hiroshi Tanimoto, Jason P. Ward, and Alastair G. Williams
Atmos. Chem. Phys., 22, 2419–2445, https://doi.org/10.5194/acp-22-2419-2022, https://doi.org/10.5194/acp-22-2419-2022, 2022
Short summary
Short summary
Coral reefs have been found to produce the climatically relevant chemical compound dimethyl sulfide (DMS). It has been suggested that corals can modify their environment via the production of DMS. We use an atmospheric chemistry model to test this theory at a regional scale for the first time. We find that it is unlikely that coral-reef-derived DMS has an influence over local climate, in part due to the proximity to terrestrial and anthropogenic aerosol sources.
Cited articles
Almeida, J. d., Alves, A. M. H., Melo, R. F. d., Felippe, M. C. S., Bortoluzzi, E. A., Teixeira, C. d. S., and Felippe, W. T.: The sealing ability of MTA apical plugs exposed to a phosphate-buffered saline, J. Appl. Oral Sci., 21, 341–345, 2013.
Baker, A., Jickells, T., Witt, M., and Linge, K.: Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean, Mar. Chem., 98, 43–58, 2006.
Barone, T. L. and Zhu, Y.: The morphology of ultrafine particles on and near major freeways, Atmos. Environ., 42, 6749–6758, 2008.
Bauer, P. S., Amenitsch, H., Baumgartner, B., Köberl, G., Rentenberger, C., and Winkler, P.: In-situ aerosol nanoparticle characterization by small angle X-ray scattering at ultra-low volume fraction, Nat. Commun., 10, 1122, https://doi.org/10.1038/s41467-019-09066-4, 2019.
Bel'skaya, L. V., Sarf, E. A., and Solonenko, A. P.: Morphology of dried drop patterns of saliva from a healthy individual depending on the dynamics of its surface tension, Surfaces, 2, 395–414, 2019.
Buckley, A., Warren, J., Hodgson, A., Marczylo, T., Ignatyev, K., Guo, C., and Smith, R.: Slow lung clearance and limited translocation of four sizes of inhaled iridium nanoparticles, Part. Fibre Toxicol., 14, 1–15, 2017.
Capannelli, G., Castello, E., Comite, A., Costa, C., and Mamolini, G.: Electron microscopy characterization of airborne micro-and nanoparticulate matter, J. Electron Microsc., 60, 117–131, 2011.
Dallmann, T. R., Onasch, T. B., Kirchstetter, T. W., Worton, D. R., Fortner, E. C., Herndon, S. C., Wood, E. C., Franklin, J. P., Worsnop, D. R., Goldstein, A. H., and Harley, R. A.: Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer, Atmos. Chem. Phys., 14, 7585–7599, https://doi.org/10.5194/acp-14-7585-2014, 2014.
Dixkens, J. and Fissan, H.: Development of an electrostatic precipitator for off-line particle analysis, Aerosol Sci. Tech., 30, 438–453, 1999.
Facchini, M. C., Decesari, S., Rinaldi, M., Carbone, C., Finessi, E., Mircea, M., Fuzzi, S., Moretti, F., Tagliavini, E., and Ceburnis, D.: Important source of marine secondary organic aerosol from biogenic amines, Environ. Sci. Technol., 42, 9116–9121, 2008.
Groth, R., Cravigan, L. T., Niazi, S., Ristovski, Z., and Johnson, G. R.: In situ measurements of human cough aerosol hygroscopicity, J. Roy. Soc. Interface, 18, 20210209, https://doi.org/10.1098/rsif.2021.0209, 2021.
Groth, R., Niazi, S., Johnson, G. R., and Ristovski, Z.: Nanomechanics and morphology of simulated respiratory particles, Environ. Sci. Technol., 56, 10879–10890, 2022.
Groth, R., Niazi, S., Spann, K., Johnson, G. R., and Ristovski, Z.: Physicochemical characterization of porcine respiratory aerosol and considerations for future aerovirology, PNAS nexus, 2, pgad087, https://doi.org/10.1093/pnasnexus/pgad087, 2023.
Hering, S. V., Appel, B. R., Cheng, W., Salaymeh, F., Cadle, S. H., Mulawa, P. A., Cahill, T. A., Eldred, R. A., Surovik, M., and Fitz, D.: Comparison of sampling methods for carbonaceous aerosols in ambient air, Aerosol Sci. Tech., 12, 200–213, 1990.
Hinkley, J., Bridgman, H., Buhre, B., Gupta, R., Nelson, P., and Wall, T.: Semi-quantitative characterisation of ambient ultrafine aerosols resulting from emissions of coal fired power stations, Sci. Total Environ., 391, 104–113, 2008.
Johnson, G. R., Knibbs, L. D., Kidd, T. J., Wainwright, C. E., Wood, M. E., Ramsay, K. A., Bell, S. C., and Morawska, L.: A novel method and its application to measuring pathogen decay in bioaerosols from patients with respiratory disease, PLoS One, 11, e0158763, https://doi.org/10.1371/journal.pone.0158763, 2016.
Kettleson, E. M., Ramaswami, B., Hogan Jr., C. J., Lee, M.-H., Statyukha, G. A., Biswas, P., and Angenent, L. T.: Airborne virus capture and inactivation by an electrostatic particle collector, Environ. Sci. Technol., 43, 5940–5946, 2009.
Laskina, O., Morris, H. S., Grandquist, J. R., Estillore, A. D., Stone, E. A., Grassian, V. H., and Tivanski, A. V.: Substrate-deposited sea spray aerosol particles: Influence of analytical method, substrate, and storage conditions on particle size, phase, and morphology, Environ. Sci. Technol., 49, 13447–13453, 2015.
Li, C., Liu, S., and Zhu, Y.: Determining ultrafine particle collection efficiency in a nanometer aerosol sampler, Aerosol Sci. Tech., 44, 1027–1041, 2010.
Lyu, Y., Varriale, F., Malmborg, V., Ek, M., Pagels, J., and Wahlström, J.: Tribology and airborne particle emissions from grey cast iron and WC reinforced laser cladded brake discs, Wear, 556–557, 205512, https://doi.org/10.1016/j.wear.2024.205512, 2024.
Mirhoseini, S. H., Nikaeen, M., Satoh, K., and Makimur, K.: Assessment of airborne particles in indoor environments: Applicability of particle counting for prediction of bioaerosol concentrations, Aerosol Air Qual. Res., 16, 1903–1910, 2016.
Moskal, A. and Payatakes, A.: Estimation of the diffusion coefficient of aerosol particle aggregates using Brownian simulation in the continuum regime, J. Aerosol Sci., 37, 1081–1101, 2006.
Müller, T., Henzing, J. S., de Leeuw, G., Wiedensohler, A., Alastuey, A., Angelov, H., Bizjak, M., Collaud Coen, M., Engström, J. E., Gruening, C., Hillamo, R., Hoffer, A., Imre, K., Ivanow, P., Jennings, G., Sun, J. Y., Kalivitis, N., Karlsson, H., Komppula, M., Laj, P., Li, S.-M., Lunder, C., Marinoni, A., Martins dos Santos, S., Moerman, M., Nowak, A., Ogren, J. A., Petzold, A., Pichon, J. M., Rodriquez, S., Sharma, S., Sheridan, P. J., Teinilä, K., Tuch, T., Viana, M., Virkkula, A., Weingartner, E., Wilhelm, R., and Wang, Y. Q.: Characterization and intercomparison of aerosol absorption photometers: result of two intercomparison workshops, Atmos. Meas. Tech., 4, 245–268, https://doi.org/10.5194/amt-4-245-2011, 2011.
Nanometer Aerosol Sampler 3089: https://tsi.com/discontinued-products/nanometer-aerosol-sampler-3089/, last access: 10 July 2024.
Nenes, A., Krom, M. D., Mihalopoulos, N., Van Cappellen, P., Shi, Z., Bougiatioti, A., Zarmpas, P., and Herut, B.: Atmospheric acidification of mineral aerosols: a source of bioavailable phosphorus for the oceans, Atmos. Chem. Phys., 11, 6265–6272, https://doi.org/10.5194/acp-11-6265-2011, 2011.
Niazi, S., Philp, L. K., Spann, K., and Johnson, G. R.: Utility of three nebulizers in investigating the infectivity of airborne viruses, Appl. Environ. Microb., 87, e0049721, https://doi.org/10.1128/AEM.00497-21, 2021.
Park, J.-H. and Chun, C.-H.: An improved modelling for prediction of grade efficiency of electrostatic precipitators with negative corona, J. Aerosol Sci., 33, 673–694, 2002.
Pöhlker, C., Huffman, J. A., and Pöschl, U.: Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences, Atmos. Meas. Tech., 5, 37–71, https://doi.org/10.5194/amt-5-37-2012, 2012.
Pöhlker, M. L., Pöhlker, C., Krüger, O. O., Förster, J.-D., Berkemeier, T., Elbert, W., Fröhlich-Nowoisky, J., Pöschl, U., Bagheri, G., and Bodenschatz, E.: Respiratory aerosols and droplets in the transmission of infectious diseases, Rev. Mod. Phys., 95, 045001, https://doi.org/10.1103/RevModPhys.95.045001, 2023.
Pöschl, U.: Atmospheric aerosols: composition, transformation, climate and health effects, Angew. Chem. Int. Edit., 44, 7520–7540, 2005.
Savage, N. J., Krentz, C. E., Könemann, T., Han, T. T., Mainelis, G., Pöhlker, C., and Huffman, J. A.: Systematic characterization and fluorescence threshold strategies for the wideband integrated bioaerosol sensor (WIBS) using size-resolved biological and interfering particles, Atmos. Meas. Tech., 10, 4279–4302, https://doi.org/10.5194/amt-10-4279-2017, 2017.
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W.: NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, 9, 671–675, https://doi.org/10.1038/nmeth.2089, 2012.
Sharma, S., Gillespie, B. M., Palanisamy, V., and Gimzewski, J. K.: Quantitative nanostructural and single-molecule force spectroscopy biomolecular analysis of human-saliva-derived exosomes, Langmuir, 27, 14394–14400, 2011.
Sobanska, S., Falgayrac, G., Rimetz-Planchon, J., Perdrix, E., Brémard, C., and Barbillat, J.: Resolving the internal structure of individual atmospheric aerosol particle by the combination of Atomic Force Microscopy, ESEM–EDX, Raman and ToF–SIMS imaging, Microchem. J., 114, 89–98, 2014.
Tervahattu, H., Hartonen, K., Kerminen, V. M., Kupiainen, K., Aarnio, P., Koskentalo, T., Tuck, A. F., and Vaida, V.: New evidence of an organic layer on marine aerosols, J. Geophys. Res.-Atmos., 107, AAC 1-1–AAC 1-8, 2002.
Verma, P., Pickering, E., Jafari, M., Guo, Y., Stevanovic, S., Fernando, J. F., Golberg, D., Brooks, P., Brown, R., and Ristovski, Z.: Influence of fuel-oxygen content on morphology and nanostructure of soot particles, Combust. Flame, 205, 206–219, 2019.
Vestlund, A. T., Al-Ashaab, R., Tyrrel, S. F., Longhurst, P. J., Pollard, S. J., and Drew, G. H.: Morphological classification of bioaerosols from composting using scanning electron microscopy, Waste Manage., 34, 1101–1108, 2014.
Wasmund, E. B., Coley, K., Shaubel, R. M., Reynolds, K. O., and Benedik, J.: A new technique to derive particle size distributions and aerosol number concentrations directly from thermophoretic data, Chem. Eng. Sci., 65, 4271–4284, 2010.
Wittmaack, K., Wehnes, H., Heinzmann, U., and Agerer, R.: An overview on bioaerosols viewed by scanning electron microscopy, Sci. Total Environ., 346, 244–255, 2005.
Yao, T. and Asayama, Y.: Animal-cell culture media: History, characteristics, and current issues, Reproductive Medicine and Biology, 16, 99–117, 2017.
Short summary
Airborne particles are crucial in environmental and health studies, requiring precise sampling for accurate characterisation. Our study examines the optimal sampling time for the TSI Nanometer Aerosol Sampler 3089 at different input concentrations. Aerosols from low-, medium-, and high-concentration environments were sampled over 1, 3, and 6 h. A linear relationship was observed using a regression model between the deposition densities and the product of input concentration and sampling time.
Airborne particles are crucial in environmental and health studies, requiring precise sampling...