Articles | Volume 18, issue 6
https://doi.org/10.5194/amt-18-1519-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-1519-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Accuracy and sensitivity of NH3 measurements using the Dräger Tube method
Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences – Agrosphere (IBG-3), 52428 Jülich, Germany
Matthias Claß
Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences – Agrosphere (IBG-3), 52428 Jülich, Germany
Nicolas Brüggemann
Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences – Agrosphere (IBG-3), 52428 Jülich, Germany
Related authors
No articles found.
Junwei Song, Georgios I. Gkatzelis, Ralf Tillmann, Nicolas Brüggemann, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 13199–13217, https://doi.org/10.5194/acp-24-13199-2024, https://doi.org/10.5194/acp-24-13199-2024, 2024
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) and organic aerosol (OA) particles were measured online in a stressed spruce-dominated forest. OA was mainly attributed to the monoterpene oxidation products. The mixing ratios of BVOCs were higher than the values previously measured in other temperate forests. The results demonstrate that BVOCs are influenced not only by meteorology and biogenic emissions but also by local anthropogenic emissions and subsequent chemical transformation processes.
Ingeborg Bussmann, Eric P. Achterberg, Holger Brix, Nicolas Brüggemann, Götz Flöser, Claudia Schütze, and Philipp Fischer
Biogeosciences, 21, 3819–3838, https://doi.org/10.5194/bg-21-3819-2024, https://doi.org/10.5194/bg-21-3819-2024, 2024
Short summary
Short summary
Methane (CH4) is an important greenhouse gas and contributes to climate warming. However, the input of CH4 from coastal areas to the atmosphere is not well defined. Dissolved and atmospheric CH4 was determined at high spatial resolution in or above the North Sea. The atmospheric CH4 concentration was mainly influenced by wind direction. With our detailed study on the spatial distribution of CH4 fluxes we were able to provide a detailed and more realistic estimation of coastal CH4 fluxes.
Joschka Neumann, Nicolas Brüggemann, Patrick Chaumet, Normen Hermes, Jan Huwer, Peter Kirchner, Werner Lesmeister, Wilhelm August Mertens, Thomas Pütz, Jörg Wolters, Harry Vereecken, and Ghaleb Natour
EGUsphere, https://doi.org/10.5194/egusphere-2024-1598, https://doi.org/10.5194/egusphere-2024-1598, 2024
Short summary
Short summary
Climate change in combination with a steadily growing world population and a simultaneous decrease in agricultural land is one of the greatest global challenges facing mankind. In this context, Forschungszentrum Jülich established an "agricultural simulator" (AgraSim), which enables research into the effects of climate change on agricultural ecosystems and the optimization of agricultural cultivation and management strategies with the aid of combined experimental and numerical simulation.
Youri Rothfuss, Maria Quade, Nicolas Brüggemann, Alexander Graf, Harry Vereecken, and Maren Dubbert
Biogeosciences, 18, 3701–3732, https://doi.org/10.5194/bg-18-3701-2021, https://doi.org/10.5194/bg-18-3701-2021, 2021
Short summary
Short summary
The partitioning of evapotranspiration into evaporation from soil and transpiration from plants is crucial for a wide range of parties, from farmers to policymakers. In this work, we focus on a particular partitioning method, based on the stable isotopic analysis of water. In particular, we aim at highlighting the challenges that this method is currently facing and, in light of recent methodological developments, propose ways forward for the isotopic-partitioning community.
Cited articles
Behera, S. N., Sharma, M., Aneja, V. P., and Balasubramanian, R.: Ammonia in the Atmosphere: A Review on Emission Sources, Atmospheric Chemistry and Deposition on Terrestrial Bodies, Environ. Sci. Pollut. R., 20, 8092–8131, https://doi.org/10.1007/s11356-013-2051-9, 2013. a, b, c
Cameron, K., Di, H., and Moir, J.: Nitrogen losses from the soil/plant system: A review, Ann. Appl. Biol., 162, 145–173, https://doi.org/10.1111/aab.12014, 2013. a
Carozzi, M., Loubet, B., Acutis, M., Rana, G., and Ferrara, R. M.: Inverse Dispersion Modelling Highlights the Efficiency of Slurry Injection to Reduce Ammonia Losses by Agriculture in the Po Valley (Italy), Agr. Forest Meteorol., 171–172, 306–318, https://doi.org/10.1016/j.agrformet.2012.12.012, 2013. a
Dammers, E., McLinden, C. A., Griffin, D., Shephard, M. W., Van Der Graaf, S., Lutsch, E., Schaap, M., Gainairu-Matz, Y., Fioletov, V., Van Damme, M., Whitburn, S., Clarisse, L., Cady-Pereira, K., Clerbaux, C., Coheur, P. F., and Erisman, J. W.: NH3 emissions from large point sources derived from CrIS and IASI satellite observations, Atmos. Chem. Phys., 19, 12261–12293, https://doi.org/10.5194/acp-19-12261-2019, 2019. a
Di Perta, S. E., Fiorentino, N., Carozzi, M., Cervelli, E., and Pindozzi, S.: A Review of Chamber and Micrometeorological Methods to Quantify NH3 Emissions from Fertilisers Field Application, Int. J. Agron., 2020, 1–16, https://doi.org/10.1155/2020/8909784, 2020. a, b, c
EU Directive: Directive (EU) 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the reduction of national emissions of certain atmospheric pollutants, Publications Office of the European Union, https://eur-lex.europa.eu/eli/dir/2016/2284/oj (last access: 25 June 2024), 2016. a
European Environment Agency: European Union emission inventory report 1990–2021 under the UNECE convention on long-range transboundary air pollution (air convention), Tech. rep., Publications Office of the European Union, https://doi.org/10.2800/68478, 2023. a, b
Fogg, P. C.: Solubility of gases in liquids : A critical evaluation of gas/liquid systems in theory and practice, 1st edn., Wiley, ISBN 0471929255, 1991. a
Gericke, D., Pacholski, A., and Kage, H.: Measurement of Ammonia Emissions in Multi-Plot Field Experiments, Biosyst. Eng., 108, 164–173, https://doi.org/10.1016/j.biosystemseng.2010.11.009, 2011. a
Harper, C. A.: Modern plastics handbook, 1st edn., McGraw Hill Professional, ISBN 0070267146, 2000. a
Kamp, J. N., Hafner, S. D., Huijsmans, J., van Boheemen, K., Götze, H., Pacholski, A., and Pedersen, J.: Comparison of two micrometeorological and three enclosure methods for measuring ammonia emission after slurry application in two field experiments, Agr. Forest Meteorol., 354, 110077, https://doi.org/10.1016/j.agrformet.2024.110077, 2024. a, b, c
Kelsch, A.: Replication Data for: Accuracy and sensitivity of NH3 measurements using the Dräger Tube Method, V2, Jülich DATA [data set], https://doi.org/10.26165/JUELICH-DATA/0LAIFH, 2024. a
Lee, J. H., Chen, Y., and Tang, I. N.: Heterogeneous Loss of Gaseous H2O2 in an Atmospheric Air Sampling System, Environ. Sci. Technol., 25, 339–342, https://doi.org/10.1021/es00014a019, 1991. a
Lelieveld, J., Evans, J., Fnais, M., Giannadaki, D., and Pozzer, A.: The contribution of outdoor air pollution sources to premature mortality on a global scale, Nature, 525, 367–371, https://doi.org/10.1038/nature15371, 2015. a
Lim, S. S., Vos, T., Flaxman, A. D., Danaei, G., Shibuya, K., Adair-Rohani, H., AlMazroa, M. A., Amann, M., Anderson, H. R., Andrews, K. G., Aryee, M., Atkinson, C., Bacchus, L. J., Bahalim, A. N., Balakrishnan, K., Balmes, J., Barker-Collo, S., Baxter, A., Bell, M. L., Blore, J. D., Blyth, F., Bonner, C., Borges, G., Bourne, R., Boussinesq, M., Brauer, M., Brooks, P., Bruce, N. G., Brunekreef, B., Bryan-Hancock, C., Bucello, C., Buchbinder, R., Bull, F., Burnett, R. T., Byers, T. E., Calabria, B., Carapetis, J., Carnahan, E., Chafe, Z., Charlson, F., Chen, H., Chen, J. S., Cheng, A. T.-A., Child, J. C., Cohen, A., Colson, K. E., Cowie, B. C., Darby, S., Darling, S., Davis, A., Degenhardt, L., Dentener, F., Des Jarlais, D. C., Devries, K., Dherani, M., Ding, E. L., Dorsey, E. R., Driscoll, T., Edmond, K., Ali, S. E., Engell, R. E., Erwin, P. J., Fahimi, S., Falder, G., Farzadfar, F., Ferrari, A., Finucane, M. M., Flaxman, S., Fowkes, F. G. R., Freedman, G., Freeman, M. K., Gakidou, E., Ghosh, S., Giovannucci, E., Gmel, G., Graham, K., Grainger, R., Grant, B., Gunnell, D., Gutierrez, H. R., Hall, W., Hoek, H. W., Hogan, A., Hosgood III, H. D., Hoy, D., Hu, H., Hubbell, B. J., Hutchings, S. J., Ibeanusi, S. E., Jacklyn, G. L., Jasrasaria, R., Jonas, J. B., Kan, H., Kanis, J. A., Kassebaum, N., Kawakami, N., Khang, Y.-H., Khatibzadeh, S., Khoo, J.-P., Kok, C., Laden, F., Lalloo, R., Lan, Q., Lathlean, T., Leasher, J. L., Leigh, J., Li, Y., Lin, J. K., Lipshultz, S. E., London, S., Lozano, R., Lu, Y., Mak, J., Malekzadeh, R., Mallinger, L., Marcenes, W., March, L., Marks, R., Martin, R., McGale, P., McGrath, J., Mehta, S., Memish, Z. A., Mensah, G. A., Merriman, T. R., Micha, R., Michaud, C., Mishra, V., Hanafiah, K. M., Mokdad, A. A., Morawska, L., Mozaffarian, D., Murphy, T., Naghavi, M., Neal, B., Nelson, P. K., Nolla, J. M., Norman, R., Olives, C., Omer, S. B., Orchard, J., Osborne, R., Ostro, B., Page, A., Pandey, K. D., Parry, C. D. H., Passmore, E., Patra, J., Pearce, N., Pelizzari, P. M., Petzold, M., Phillips, M. R., Pope, D., Pope III, C. A., Powles, J., Rao, M., Razavi, H., Rehfuess, E. A., Rehm, J. T., Ritz, B., Rivara, F. P., Roberts, T., Robinson, C., Rodriguez-Portales, J. A., Romieu, I., Room, R., Rosenfeld, L. C., Roy, A., Rushton, L., Salomon, J. A., Sampson, U., Sanchez-Riera, L., Sanman, E., Sapkota, A., Seedat, S., Shi, P., Shield, K., Shivakoti, R., Singh, G. M., Sleet, D. A., Smith, E., Smith, K. R., Stapelberg, N. J. C., Steenland, K., Stöckl, H., Stovner, L. J., Straif, K., Straney, L., Thurston, G. D., Tran, J. H., Van Dingenen, R., van Donkelaar, A., Veerman, J. L., Vijayakumar, L., Weintraub, R., Weissman, M. M., White, R. A., Whiteford, H., Wiersma, S. T., Wilkinson, J. D., Williams, H. C., Williams, W., Wilson, N., Woolf, A. D., Yip, P., Zielinski, J. M., Lopez, A. D., Murray, C. J. L., and Ezzati, M.: A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010, Lancet, 380, 2224–2260, https://doi.org/10.1016/S0140-6736(12)61766-8, 2012. a
Luo, Z., Zhang, Y., Chen, W., Van Damme, M., Coheur, P.-F., and Clarisse, L.: Estimating global ammonia (NH3) emissions based on IASI observations from 2008 to 2018, Atmos. Chem. Phys., 22, 10375–10388, https://doi.org/10.5194/acp-22-10375-2022, 2022. a
Martin, N., Ferracci, V., Cassidy, N., and Hoffnagle, J.: The application of a cavity ring-down spectrometer to measurements of ambient ammonia using traceable primary standard gas mixtures, Appl. Phys. B-Lasers O., 122, 1–11, https://doi.org/10.17863/CAM.1182, 2016. a
MIRO Analytical: Single Device for Monitoring of All Greenhouse Gases & Pollutants, Comparison with Other Methods, Tech. rep., MIRO Analytical AG, https://miro-analytical.com/resources/casestudies/case-studies-3/ (last access: 26 March 2025), 2021. a
Ni, K., Köster, J. R., Seidel, A., and Pacholski, A.: Field Measurement of Ammonia Emissions after Nitrogen Fertilization – A Comparison between Micrometeorological and Chamber Methods, Eur. J. Agron., 71, 115–122, https://doi.org/10.1016/j.eja.2015.09.004, 2015. a
Pacholski, A.: Calibrated passive sampling - Multi-plot field measurements of NH3 emissions with a combination of dynamic tube method and passive samplers, J. Vis. Exp., 109, 1–15, https://doi.org/10.3791/53273, 2016. a, b, c, d
Pacholski, A., Cai, G., Nieder, R., Richter, J., Fan, X., Zhu, Z., and Roelcke, M.: Calibration of a simple method for determining ammonia volatilization in the field – Comparative measurements in Henan Province, China, Nutr. Cycl. Agroecosys., 74, 259–273, https://doi.org/10.1007/s10705-006-9003-4, 2006. a, b, c, d, e, f, g, h, i, j, k
Pedersen, S., di Perta, E., Hafner, S., Pacholski, A., and Sommer, S.: Evaluation of a Simple, Small-Plot Meteorological Technique for Measurement of Ammonia Emission: Feasibility, Costs, and Recommendations, T. ASABE, 61, 103–115, https://doi.org/10.13031/trans.12445, 2018. a
Quakernack, R., Pacholski, A., Techow, A., Herrmann, A., Taube, F., and Kage, H.: Ammonia volatilization and yield response of energy crops after fertilization with biogas residues in a coastal marsh of Northern Germany, Agr. Ecosyst. Environ., 160, 66–74, https://doi.org/10.1016/j.agee.2011.05.030, 2012. a
Rees, R., Roelcke, M., Li, S., Wang, X., Li, S., Stockdale, E., McTaggart, I., Smith, K., and Richter, J.: The effect of fertilizer placement on nitrogen uptake and yield of wheat and maize in Chinese loess soils, Nutr. Cycl. Agroecosys., 47, 81–91, https://doi.org/10.1007/BF01985721, 1996. a
Rella, C. W.: SI2103 and SI2306: Traceable calibration of Ammonia (NH3), Tech. rep., Picarro, Inc., https://www.picarro.com/sites/default/files/2017-05/Traceable%20Calibration%20of%20Ammonia%20%28NH3%29_0.pdf (last access: 26 March 2025), 2017. a
Richter, J.: Zur Methodik des Bodengashaushaltes. II. Ergebnisse und Diskussion, Z. Pflanzenernähr. Bodenkd., 132, 220–239, https://doi.org/10.1002/jpln.19721320306, 1972. a
Roelcke, M.: Die Ammoniak-Volatilisation nach Ausbringung von Mineraldünger-Stickstoff in carbonatreichen chinesischen Löss-Ackerböden, PhD thesis, Institut für Pflanzenbau und Tierhygiene in den Tropen und Subtropen, University of Göttingen, ISBN 3884527487, 1994. a
Roscioli, J. R., Zahniser, M. S., Nelson, D. D., Herndon, S. C., and Kolb, C. E.: New Approaches to Measuring Sticky Molecules: Improvement of Instrumental Response Times Using Active Passivation, J. Phys. Chem. A, 120, 1347–1357, https://doi.org/10.1021/acs.jpca.5b04395, 2016. a
Rothman, L., Gordon, I., Babikov, Y., Barbe, A., Chris Benner, D., Bernath, P., Birk, M., Bizzocchi, L., Boudon, V., Brown, L., Campargue, A., Chance, K., Cohen, E., Coudert, L., Devi, V., Drouin, B., Fayt, A., Flaud, J.-M., Gamache, R., Harrison, J., Hartmann, J.-M., Hill, C., Hodges, J., Jacquemart, D., Jolly, A., Lamouroux, J., Le Roy, R., Li, G., Long, D., Lyulin, O., Mackie, C., Massie, S., Mikhailenko, S., Müller, H., Naumenko, O., Nikitin, A., Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E., Richard, C., Smith, M., Starikova, E., Sung, K., Tashkun, S., Tennyson, J., Toon, G., Tyuterev, V., and Wagner, G.: The HITRAN2012 molecular spectroscopic database, J. Quant. Spectosc. Ra., 130, 4–50, https://doi.org/10.1016/j.jqsrt.2013.07.002, 2013. a
Sintermann, J., Neftel, A., Ammann, C., Häni, C., Hensen, A., Loubet, B., and Flechard, C. R.: Are ammonia emissions from field-applied slurry substantially over-estimated in European emission inventories?, Biogeosciences, 9, 1611–1632, https://doi.org/10.5194/bg-9-1611-2012, 2012. a
Svensson, L. and Ferm, M.: Mass Transfer Coefficient and Equilibrium Concentration as Key Factors in a New Approach to Estimate Ammonia Emission from Livestock Manure, J. Agr. Eng. Res., 56, 1–11, https://doi.org/10.1006/jaer.1993.1056, 1993. a
van Andel, M., Warland, J., Zwart, P., Van Heyst, B., and Lauzon, J.: Development of a simple and affordable method of measuring ammonia volatilization from land applied manures, Can. J. Soil Sci., 97, 541–551, https://doi.org/10.1139/cjss-2016-0103, 2017. a
Wang, J., Yin, Q., Tong, S., Ren, Z., Hu, M., and Zhang, H.: Prolonged continuous exposure to high fine particulate matter associated with cardiovascular and respiratory disease mortality in Beijing, China, Atmos. Environ., 168, 1–7, https://doi.org/10.1016/j.atmosenv.2017.08.060, 2017. a
Wang, Z.-H., Liu, X.-J., Ju, X.-T., Zhang, F.-S., and Malhi, S.: Ammonia volatilization loss from surface-broadcast urea: comparison of vented-and closed-chamber methods and loss in winter wheat–summer maize rotation in North China Plain, Commun. Soil Sci. Plan., 35, 2917–2939, 2004. a
Whitehead, J. D., Twigg, M., Famulari, D., Nemitz, E., Sutton, M. A., Gallagher, M. W., and Fowler, D.: Evaluation of laser absorption spectroscopic techniques for eddy covariance flux measurements of ammonia, Environ. Sci. Technol., 42, 2041–2046, https://doi.org/10.1021/es071596u, 2008. a, b
Yang, Y., Ni, X., Liu, B., Tao, L., Yu, L., Wang, Q., Yang, Y., Liu, J., and Wu, Y.: Measuring field ammonia emissions and canopy ammonia fluxes in agriculture using portable ammonia detector method, J. Clean. Prod., 216, 542–551, https://doi.org/10.1016/j.jclepro.2018.12.109, 2019. a
Yokelson, R. J., Christian, T. J., Bertschi, I. T., and Hao, W. M.: Evaluation of adsorption effects on measurements of ammonia, acetic acid, and methanol, J. Geophys. Res.-Atmos., 108, 1–9, https://doi.org/10.1029/2003JD003549, 2003. a, b
Yver Kwok, C., Laurent, O., Guemri, A., Philippon, C., Wastine, B., Rella, C. W., Vuillemin, C., Truong, F., Delmotte, M., Kazan, V., Darding, M., Lebègue, B., Kaiser, C., Xueref-Rémy, I., and Ramonet, M.: Comprehensive laboratory and field testing of cavity ring-down spectroscopy analyzers measuring H2O, CO2, CH4 and CO, Atmos. Meas. Tech., 8, 3867–3892, https://doi.org/10.5194/amt-8-3867-2015, 2015. a
Zhang, X., Gu, B., van Grinsven, H., Lam, S. K., Liang, X., Bai, M., and Chen, D.: Societal benefits of halving agricultural ammonia emissions in China far exceed the abatement costs, Nat. Commun., 11, 1–10, https://doi.org/10.1038/s41467-020-18196-z, 2020. a
Short summary
We wanted to know how well the Dräger Tube method (DTM) is able to measure ammonia in agricultural experiments on small plots. We therefore compared the accuracy and sensitivity of Dräger Tubes in laboratory tests with more advanced analyzers. Dräger Tubes had a detection limit 3 to 4 times higher than expected. Since there are areas where the use of advanced analyzers is not feasible, the DTM should be improved, or simple and cost-effective measuring methods should be developed.
We wanted to know how well the Dräger Tube method (DTM) is able to measure ammonia in...