Articles | Volume 18, issue 12
https://doi.org/10.5194/amt-18-2803-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-2803-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
In situ volcanic ash sampling and aerosol–gas analysis based on UAS technologies (AeroVolc)
Department of Earth Sciences, University of Geneva, Geneva, Switzerland
Gholamhossein Bagheri
Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
Przemyslaw M. Kornatowski
Institute of Aeronautics and Applied Mechanisms, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Warsaw, Poland
Kornatowski Innovation, Ecublens, Switzerland
Allan Fries
Department of Earth Sciences, University of Geneva, Geneva, Switzerland
Jonathan Lemus
Department of Earth Sciences, University of Geneva, Geneva, Switzerland
Department of Computer Science, University of Geneva, Geneva, Switzerland
Riccardo Simionato
Department of Earth Sciences, University of Geneva, Geneva, Switzerland
Department of Computer Science, University of Geneva, Geneva, Switzerland
Carolina Díaz-Vecino
Department of Earth Sciences, University of Geneva, Geneva, Switzerland
Eduardo Rossi
Department of Earth Sciences, University of Geneva, Geneva, Switzerland
Taishi Yamada
Research Center for Volcano Hazards Mitigation, Disaster Prevention Research Institute, Kyoto University, Kagoshima, Japan
Simona Scollo
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Catania, Italy
Costanza Bonadonna
Department of Earth Sciences, University of Geneva, Geneva, Switzerland
Related authors
No articles found.
Anna Kampouri, Vassilis Amiridis, Thanasis Georgiou, Stavros Solomos, Anna Gialitaki, Maria Tsichla, Michael Rennie, Simona Scollo, and Prodromos Zanis
Atmos. Chem. Phys., 25, 7343–7368, https://doi.org/10.5194/acp-25-7343-2025, https://doi.org/10.5194/acp-25-7343-2025, 2025
Short summary
Short summary
This study proposes a novel inverse modeling framework coupled with remote sensing data for improving volcanic ash dispersion forecasts, essential for aviation safety. By integrating FLEXPART dispersion model outputs with ground-based ACTRIS lidar observations, the approach estimates Etna's volcanic particle emissions and highlights a significant enhancement in the forecast accuracy.
Birte Thiede, Freja Nordsiek, Yewon Kim, Eberhard Bodenschatz, and Gholamhossein Bagheri
EGUsphere, https://doi.org/10.5194/egusphere-2025-1774, https://doi.org/10.5194/egusphere-2025-1774, 2025
Short summary
Short summary
HoloTrack is a fully autonomous system designed to capture detailed data on cloud droplets. It combines holographic imaging with environmental sensors to measure droplet size, movement, and surrounding air conditions. The system records hologram pairs to track droplet motion. While it can be used in the lab, it is mainly designed for in-flight use to measure cloud droplets in-situ. This paper presents the instrument’s design and evaluates its performance through testing.
Luigi Mereu, Manuel Stocchi, Alexander Garcia, Michele Prestifilippo, Laura Sandri, Costanza Bonadonna, and Simona Scollo
Nat. Hazards Earth Syst. Sci., 25, 1943–1962, https://doi.org/10.5194/nhess-25-1943-2025, https://doi.org/10.5194/nhess-25-1943-2025, 2025
Short summary
Short summary
By considering the quantification of tephra mass deposited on roads following an eruption (or a series of explosive volcanic eruptions), in this work we assessed the cumulated tephra mass on the road networks in three selected towns on Mt Etna’s eastern flank during several paroxysms in 2021. This is a first attempt to estimate the amount of tephra that must be removed during a crisis that could be reused, converting in this way a potential problem into an opportunity.
Birte Thiede, Oliver Schlenczek, Katja Stieger, Alexander Ecker, Eberhard Bodenschatz, and Gholamhossein Bagheri
EGUsphere, https://doi.org/10.5194/egusphere-2025-612, https://doi.org/10.5194/egusphere-2025-612, 2025
Short summary
Short summary
Accurate measurement of cloud particles is crucial for cloud research. While holographic imaging enables detailed analysis of cloud droplet size, shape, and distribution, processing errors remain poorly quantified. To address this, we developed CloudTarget, a patterned photomask that can quantify the detection efficiency and uncertainties. Additionally, our AI-based classification enhances both accuracy and speed, achieving over 90 % precision while accelerating analysis 100-fold.
Viet Le, Konstantinos Matthaios Doulgeris, Mika Komppula, John Backman, Gholamhossein Bagheri, Eberhard Bodenschatz, and David Brus
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-148, https://doi.org/10.5194/essd-2025-148, 2025
Preprint withdrawn
Short summary
Short summary
This manuscript presents datasets collected during the Pallas Cloud Experiment in northern Finland during the autumn of 2022. We provide an overview of the payload that measured meteorological, cloud, and aerosol properties, and was deployed on tethered balloon systems across 21 flights. Additionally, we describe the datasets obtained, including details of the instruments on the payload.
Lucia Dominguez, Sébastien Biass, Corine Frischknecht, Alana Weir, Maria Paz Reyes-Hardy, Luigia Sara Di Maio, Nemesio Pérez, and Costanza Bonadonna
EGUsphere, https://doi.org/10.5194/egusphere-2025-986, https://doi.org/10.5194/egusphere-2025-986, 2025
Short summary
Short summary
This study assess the cascading impacts of the 2021 Tajogaite eruption on La Palma, Spain. By combining forensic techniques with network analysis, this research quantifies the effects of physical damage on the road network as well as the cascading loss of functionality and systemic disruptions to emergency services, health centers, agriculture and education. Result show the relevance of redundant infrastructure and landuse on effective risk management and mitigation of future volcanic impacts.
Venecia Chávez-Medina, Hossein Khodamoradi, Oliver Schlenczek, Freja Nordsiek, Claudia E. Brunner, Eberhard Bodenschatz, and Gholamhossein Bagheri
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-111, https://doi.org/10.5194/essd-2025-111, 2025
Preprint under review for ESSD
Short summary
Short summary
During the Pallas Cloud Experiment (PaCE) in Finland (September 15–28, 2022), detailed measurements of clouds and boundary layer turbulence were gathered. Using the Max Planck CloudKite platform, WinDarts, and a ground station, data were collected from ground level up to 1510 m. This paper presents the data collection process, structure, and user guidelines.
Oliver Schlenczek, Freja Nordsiek, Claudia E. Brunner, Venecia Chávez-Medina, Birte Thiede, Eberhard Bodenschatz, and Gholamhossein Bagheri
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-112, https://doi.org/10.5194/essd-2025-112, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
During the Pallas Cloud Experiment (PaCE) in Finland (Sept. 19–26, 2022), the Advanced Max Planck CloudKite instrument (MPCK+) gathered turbulence, wind shear, and cloud data from 0–1200 m. Flights lasted 1.5–3 hours, capturing droplet concentrations and size distributions at high resolution (<10 m spacing). The dataset aids studies of Arctic boundary layer clouds above freezing temperatures. This paper details the data collection, structure, and user guidelines.
Alina Sylvia Waltraud Reininger, Daria Tatsii, Taraprasad Bhowmick, Gholamhossein Bagheri, and Andreas Stohl
EGUsphere, https://doi.org/10.5194/egusphere-2025-605, https://doi.org/10.5194/egusphere-2025-605, 2025
Short summary
Short summary
Microplastics are transported over large distances in the atmosphere, but the shape-dependence of their atmospheric transport lacks investigation. We conducted laboratory experiments and atmospheric transport simulations to study the settling of commercially sold microplastics. We found that films settle up to 74 % slower and travel up to ~ 4x further than volume-equivalent spheres. Our work emphasizes the role of the atmosphere as a transport medium for commercial microplastics such as glitter.
Wolf Knöller, Gholamhossein Bagheri, Philipp von Olshausen, and Michael Wilczek
Atmos. Meas. Tech., 17, 6913–6931, https://doi.org/10.5194/amt-17-6913-2024, https://doi.org/10.5194/amt-17-6913-2024, 2024
Short summary
Short summary
Three-dimensional (3D) wind velocity measurements are of major importance for the characterization of atmospheric turbulence. This paper presents a detailed study of the measurement uncertainty of a three-beam wind lidar designed for mounting on airborne platforms. Considering the geometrical constraints, the analysis provides quantitative estimates for the measurement uncertainty of all components of the 3D wind vector. As a result, we propose optimized post-processing for error reduction.
María-Paz Reyes-Hardy, Luigia Sara Di Maio, Lucia Dominguez, Corine Frischknecht, Sébastien Biass, Leticia Freitas Guimarães, Amiel Nieto-Torres, Manuela Elissondo, Gabriela Pedreros, Rigoberto Aguilar, Álvaro Amigo, Sebastián García, Pablo Forte, and Costanza Bonadonna
Nat. Hazards Earth Syst. Sci., 24, 4267–4291, https://doi.org/10.5194/nhess-24-4267-2024, https://doi.org/10.5194/nhess-24-4267-2024, 2024
Short summary
Short summary
The Central Volcanic Zone of the Andes (CVZA) spans four countries with 59 volcanoes. We identify those with the most intense and frequent eruptions and the highest potential impact that require risk mitigation actions. Using multiple risk factors, we encourage the use of regional volcanic risk assessments to analyse the level of preparedness especially of transboundary volcanoes. We hope that our work will motivate further collaborative studies and promote cooperation between CVZA countries.
Marcel Schröder, Tobias Bätge, Eberhard Bodenschatz, Michael Wilczek, and Gholamhossein Bagheri
Atmos. Meas. Tech., 17, 627–657, https://doi.org/10.5194/amt-17-627-2024, https://doi.org/10.5194/amt-17-627-2024, 2024
Short summary
Short summary
The rate at which energy is dissipated in a turbulent flow is an extremely important quantity. In the atmosphere, it is usually measured by recording a velocity time at a specific location. Our goal is to understand how best to estimate the dissipation rate from such data based on various available methods. Our reference for evaluating the performance of the different methods is data generated with direct numerical simulations and in highly controlled laboratory setups.
Costanza Bonadonna, Ali Asgary, Franco Romerio, Tais Zulemyan, Corine Frischknecht, Chiara Cristiani, Mauro Rosi, Chris E. Gregg, Sebastien Biass, Marco Pistolesi, Scira Menoni, and Antonio Ricciardi
Nat. Hazards Earth Syst. Sci., 22, 1083–1108, https://doi.org/10.5194/nhess-22-1083-2022, https://doi.org/10.5194/nhess-22-1083-2022, 2022
Short summary
Short summary
Evacuation planning and management represent a key aspect of volcanic crises because they can increase people's protection as well as minimize the potential impacts on the economy, properties and infrastructure of the affected area. We present a simulation tool that assesses the effectiveness of different evacuation scenarios as well as a model to assess the economic impact of evacuation as a function of evacuation duration and starting period using the island of Vulcano (Italy) as a case study.
Frances Beckett, Eduardo Rossi, Benjamin Devenish, Claire Witham, and Costanza Bonadonna
Atmos. Chem. Phys., 22, 3409–3431, https://doi.org/10.5194/acp-22-3409-2022, https://doi.org/10.5194/acp-22-3409-2022, 2022
Short summary
Short summary
As volcanic ash is transported through the atmosphere, it may collide and stick together to form aggregates. Neglecting the process of aggregation in atmospheric dispersion models could lead to inaccurate forecasts used by civil aviation for hazard assessment. We developed an aggregation scheme for use with the model NAME, which is used by the London Volcanic Ash Advisory Centre. Using our scheme, we investigate the impact of aggregation on simulations of the 2010 Eyjafjallajökull ash cloud.
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Eduardo Rossi and Costanza Bonadonna
Geosci. Model Dev., 14, 4379–4400, https://doi.org/10.5194/gmd-14-4379-2021, https://doi.org/10.5194/gmd-14-4379-2021, 2021
Short summary
Short summary
SCARLET-1.0 is a MATLAB package that creates virtual aggregates starting from a population of irregular shapes. Shapes are described in terms of the Standard Triangulation Language (STL) format, and this allows importing a great variety of shapes, such as from 3D scanning. The package produces a new STL file as an output and different analytical information about the packing, such as the porosity. It has been specifically designed for use in volcanology and scientific education.
Claudia Christine Stephan, Sabrina Schnitt, Hauke Schulz, Hugo Bellenger, Simon P. de Szoeke, Claudia Acquistapace, Katharina Baier, Thibaut Dauhut, Rémi Laxenaire, Yanmichel Morfa-Avalos, Renaud Person, Estefanía Quiñones Meléndez, Gholamhossein Bagheri, Tobias Böck, Alton Daley, Johannes Güttler, Kevin C. Helfer, Sebastian A. Los, Almuth Neuberger, Johannes Röttenbacher, Andreas Raeke, Maximilian Ringel, Markus Ritschel, Pauline Sadoulet, Imke Schirmacher, M. Katharina Stolla, Ethan Wright, Benjamin Charpentier, Alexis Doerenbecher, Richard Wilson, Friedhelm Jansen, Stefan Kinne, Gilles Reverdin, Sabrina Speich, Sandrine Bony, and Bjorn Stevens
Earth Syst. Sci. Data, 13, 491–514, https://doi.org/10.5194/essd-13-491-2021, https://doi.org/10.5194/essd-13-491-2021, 2021
Short summary
Short summary
The EUREC4A field campaign took place in the western tropical Atlantic during January and February 2020. A total of 811 radiosondes, launched regularly (usually 4-hourly) from Barbados, and 4 ships measured wind, temperature, and relative humidity. They sampled atmospheric variability associated with different ocean surface conditions, synoptic variability, and mesoscale convective organization. The methods of data collection and post-processing for the radiosonde data are described here.
Cited articles
Aiuppa, A., Moretti, R., Federico, C., Giudice, G., Gurrieri, S., Liuzzo, M., Papale, P., Shinohara, H., and Valenza, M.: Forecasting Etna eruptions by real-time observation of volcanic gas composition, Geology, 35, 1115–1118, https://doi.org/10.1130/G24149A.1, 2007. a
Allison, R. S., Johnston, J. M., Craig, G., and Jennings, S.: Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring, Sensors, 16, 1310, https://doi.org/10.3390/s16081310, 2016. a
Andronico, D. and Del Carlo, P.: PM10 measurements in urban settlements after lava fountain episodes at Mt. Etna, Italy: pilot test to assess volcanic ash hazard to human health, Nat. Hazards Earth Syst. Sci., 16, 29–40, https://doi.org/10.5194/nhess-16-29-2016, 2016. a
Andò, B., Baglio, S., Castorina, S., Graziani, S., Claudio, L., Marletta, V., and Trigona, C.: An Embedded Vision Tool for Volcanic Ash Analysis, in: 2021 IEEE Sensors Applications Symposium (SAS), 1–5 pp., https://doi.org/10.1109/SAS51076.2021.9530027, 2021. a
Antoine, R., Lopez, T., Tanguy, M., Lissak, C., Gailler, L., Labazuy, P., and Fauchard, C.: Geoscientists in the Sky: Unmanned Aerial Vehicles Responding to Geohazards, Surv. Geophys., 41, 1285–1321, https://doi.org/10.1007/s10712-020-09611-7, 2020. a
Balangue-Tarriela, M. I. R., Lagmay, A. M. F., Sarmiento, D. M., Vasquez, J., Baldago, M. C., Ybañez, R., Ybañez, A. A., Trinidad, J. R., Thivet, S., Gurioli, L., De Vries, B. V. W., Aurelio, M., Rafael, D. J., Bermas, A., and Escudero, J. A.: Analysis of the 2020 Taal Volcano tephra fall deposits from crowdsourced information and field data, Bull. Volcanol., 84, 35, https://doi.org/10.1007/s00445-022-01534-y, 2022. a
Bellingham, J. G. and Rajan, K.: Robotics in Remote and Hostile Environments, Science, 318, 1098–1102, https://doi.org/10.1126/science.1146230, 2007. a
Boccardo, P., Chiabrando, F., Dutto, F., Tonolo, F. G., and Lingua, A.: UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications, Sensors, 15, 15717–15737, https://doi.org/10.3390/s150715717, 2015. a
Bonadonna, C., Genco, R., Gouhier, M., Pistolesi, M., Cioni, R., Alfano, F., Hoskuldsson, A., and Ripepe, M.: Tephra sedimentation during the 2010 Eyjafjallajökull eruption (Iceland) from deposit, radar, and satellite observations, J. Geophys. Res.-Solid Earth, 116, B12x, https://doi.org/10.1029/2011JB008462, 2011. a
Bonadonna, C., Folch, A., Loughlin, S., and Puempel, H.: Future developments in modelling and monitoring of volcanic ash clouds: outcomes from the first IAVCEI-WMO workshop on Ash Dispersal Forecast and Civil Aviation, Bull. Volcanol., 74, 1–10, https://doi.org/10.1007/s00445-011-0508-6, 2012. a, b
Bonadonna, C., Costa, A., Folch, A., and Koyaguchi, T.: Chapter 33 - Tephra Dispersal and Sedimentation, in: The Encyclopedia of Volcanoes (Second Edition), edited by: Sigurdsson, H., 587–597 pp., Academic Press, Amsterdam, ISBN 978-0-12-385938-9, https://www.sciencedirect.com/science/article/pii/B978012385938900033X (last access: 20 June 2025), 2015. a
Bonadonna, C., Biass, S., Menoni, S., and Gregg, C. E.: Chapter 8 - Assessment of risk associated with tephra-related hazards, in: Forecasting and Planning for Volcanic Hazards, Risks, and Disasters, edited by: Papale, P., Vol. 2 of Hazards and Disasters Series, 329–378 pp., Elsevier, ISBN 978-0-12-818082-2, https://www.sciencedirect.com/science/article/pii/B9780128180822000081 (last access: 20 June 2025), 2021. a
Brosch, E.: Volcanic Ash and Small Uncrewed Aerial Vehicle (sUAV) Interaction: In-situ Observations and Laboratory Experiments on Aircraft Failure, Front. Earth Sci., 10, 810962, https://doi.org/10.3389/feart.2022.810962, 2022. a
Brown, R. J., Bonadonna, C., and Durant, A. J.: A review of volcanic ash aggregation, Phys. Chem. Earth A/B/C, 45–46, 65–78, https://doi.org/10.1016/j.pce.2011.11.001, 2012. a, b, c
Calvari, S., Cannavò, F., Bonaccorso, A., Spampinato, L., and Pellegrino, A. G.: Paroxysmal Explosions, Lava Fountains and Ash Plumes at Etna Volcano: Eruptive Processes and Hazard Implications, Front. Earth Sci., 6, 107–127, https://doi.org/10.3389/feart.2018.00107, 2018. a
Carreño Ruiz, M., Bloise, N., Guglieri, G., and D’Ambrosio, D.: Numerical Analysis and Wind Tunnel Validation of Droplet Distribution in the Wake of an Unmanned Aerial Spraying System in Forward Flight, Drones, 6, 329, https://doi.org/10.3390/drones6110329, 2022. a
Civico, R., Ricci, T., Scarlato, P., Andronico, D., Cantarero, M., Carr, B. B., De Beni, E., Del Bello, E., Johnson, J. B., Kueppers, U., Pizzimenti, L., Schmid, M., Strehlow, K., and Taddeucci, J.: Unoccupied Aircraft Systems (UASs) Reveal the Morphological Changes at Stromboli Volcano (Italy) before, between, and after the 3 July and 28 August 2019 Paroxysmal Eruptions, Remote Sens., 13, 2870, https://doi.org/10.3390/rs13152870, 2021. a
Colombier, M., Mueller, S. B., Kueppers, U., Scheu, B., Delmelle, P., Cimarelli, C., Cronin, S. J., Brown, R. J., Tost, M., and Dingwell, D. B.: Diversity of soluble salt concentrations on volcanic ash aggregates from a variety of eruption types and deposits, Bull. Volcanol., 81, 39, https://doi.org/10.1007/s00445-019-1302-0, 2019. a
Costa, D., Burlando, P., and Priadi, C.: The importance of integrated solutions to flooding and water quality problems in the tropical megacity of Jakarta, Sustain. Cities Soc., 20, 199–209, https://doi.org/10.1016/j.scs.2015.09.009, 2016. a, b
Del Rosso, M. P., Sebastianelli, A., Spiller, D., Mathieu, P. P., and Ullo, S. L.: On-Board Volcanic Eruption Detection through CNNs and Satellite Multispectral Imagery, Remote Sens., 13, 3479, https://doi.org/10.3390/rs13173479, 2021. a
Delmelle, P.: Environmental impacts of tropospheric volcanic gas plumes, in: Volcanic Degassing, edited by: Oppenheimer, C., Pyle, D. M., and Barclay, J., Vol. 213, p. 0, Geological Society of London, ISBN 978-1-86239-136-9, https://doi.org/10.1144/GSL.SP.2003.213.01.23, 2003. a
Delmelle, P., Lambert, M., Dufrêne, Y., Gerin, P., and Óskarsson, N.: Gas/aerosol–ash interaction in volcanic plumes: New insights from surface analyses of fine ash particles, Earth Planet. Sci. Lett., 259, 159–170, https://doi.org/10.1016/j.epsl.2007.04.052, 2007. a
Delmelle, P., Wadsworth, F. B., Maters, E. C., and Ayris, P. M.: High Temperature Reactions Between Gases and Ash Particles in Volcanic Eruption Plumes, Rev. Mineral. Geochem., 84, 285–308, https://doi.org/10.2138/rmg.2018.84.8, 2018. a
de Moor, J. M., Stix, J., Avard, G., Muller, C., Corrales, E., Diaz, J. A., Alan, A., Brenes, J., Pacheco, J., Aiuppa, A., and Fischer, T. P.: Insights on Hydrothermal-Magmatic Interactions and Eruptive Processes at Poás Volcano (Costa Rica) From High-Frequency Gas Monitoring and Drone Measurements, Geophys. Res. Lett., 46, 1293–1302, https://doi.org/10.1029/2018GL080301, 2019. a
Diaz-Vecino, C., Rossi, E., Freret-Lorgeril, V., Fries, A., Gabellini, P., Lemus, J., Pollastri, S., Poulidis, A. P., Iguchi, M., and Bonadonna, C.: Aerodynamic characteristics and genesis of aggregates at Sakurajima Volcano, Japan, Sci. Rep., 12, 2044, https://doi.org/10.1038/s41598-022-05854-z, 2022. a, b, c
Diaz-Vecino, C., Rossi, E., Pollastri, S., Fries, A., Lemus, J., and Bonadonna, C.: Insights into the sticking probability of volcanic ash particles from laboratory experiments, Sci. Rep., 13, 21188, https://doi.org/10.1038/s41598-023-47712-6, 2023. a
Dongarrà, G., Manno, E., Varrica, D., Lombardo, M., and Vultaggio, M.: Study on ambient concentrations of PM10, PM10–2.5, PM2.5 and gaseous pollutants. Trace elements and chemical speciation of atmospheric particulates, Atmos. Environ., 44, 5244–5257, https://doi.org/10.1016/j.atmosenv.2010.08.041, 2010. a
Eliasson, J., Watson, I. M., and Weber, K.: Chapter 5 – In Situ Observations of Airborne Ash From Manned Aircraft, in: Volcanic Ash, edited by: Mackie, S., Cashman, K., Ricketts, H., Rust, A., and Watson, M., 89–98 pp., Elsevier, ISBN 978-0-08-100405-0, https://www.sciencedirect.com/science/article/pii/B9780081004050000094 (last access: 20 June 2025), 2016. a
Ferlito, C., Bruno, V., Salerno, G., Caltabiano, T., Scandura, D., Mattia, M., and Coltorti, M.: Dome-like behaviour at Mt. Etna: The case of the 28 December 2014 South East Crater paroxysm, Sci. Rep., 7, 5361, https://doi.org/10.1038/s41598-017-05318-9, 2017. a
Fernandez Galarreta, J., Kerle, N., and Gerke, M.: UAV-based urban structural damage assessment using object-based image analysis and semantic reasoning, Nat. Hazards Earth Syst. Sci., 15, 1087–1101, https://doi.org/10.5194/nhess-15-1087-2015, 2015. a
Filonchyk, M., Yan, H., Yang, S., and Hurynovich, V.: A study of PM2.5 and PM10 concentrations in the atmosphere of large cities in Gansu Province, China, in summer period, J. Earth Syst. Sci., 125, 1175–1187, https://doi.org/10.1007/s12040-016-0722-x, 2016. a
Flagan, R. C. and Seinfeld, J. H.: Fundamentals of air pollution engineering, Courier Corporation, https://books.google.com/books?hl=fr&lr=&id=-YZHbjUo9lAC&oi=fnd&pg=PP1&dq=Fundamentals+of+air+pollution+engineering&ots=zg8YiNNaQq&sig=7LIMkaIjc-jbI7sZ3awn_yKU6yU (last access: 20 June 2025), 2012. a
Folch, A.: A review of tephra transport and dispersal models: Evolution, current status, and future perspectives, J. Volcanol. Geotherm. Res., 235-236, 96–115, https://doi.org/10.1016/j.jvolgeores.2012.05.020, 2012. a
Freret-Lorgeril, V., Donnadieu, F., Eychenne, J., Soriaux, C., and Latchimy, T.: In situ terminal settling velocity measurements at Stromboli volcano: Input from physical characterization of ash, J. Volcanol. Geotherm. Res., 374, 62–79, https://doi.org/10.1016/j.jvolgeores.2019.02.005, 2019. a
Freret-Lorgeril, V., Gilchrist, J., Donnadieu, F., Jellinek, A., Delanoë, J., Latchimy, T., Vinson, J., Caudoux, C., Peyrin, F., Hervier, C., and Valade, S.: Ash sedimentation by fingering and sediment thermals from wind-affected volcanic plumes, Earth Planet. Sci. Lett., 534, 116072, https://doi.org/10.1016/j.epsl.2020.116072, 2020. a, b
Freret-Lorgeril, V., Bonadonna, C., Rossi, E., Poulidis, A. P., and Iguchi, M.: New insights into real-time detection of tephra grainsize, settling velocity and sedimentation rate, Sci. Rep., 12, 4650, https://doi.org/10.1038/s41598-022-08711-1, 2022. a
Fries, A., Lemus, J., Jarvis, P. A., Clarke, A. B., Phillips, J. C., Manzella, I., and Bonadonna, C.: The Influence of Particle Concentration on the Formation of Settling-Driven Gravitational Instabilities at the Base of Volcanic Clouds, Front. Earth Sci., 9, 640090, https://doi.org/10.3389/feart.2021.640090, 2021. a, b
Fries, A., Dominguez, L., Jarvis, P. A., Pistolesi, M., Manrique, N., Aguilar, R., Valdivia, D., Rossi, E., Pollastri, S., Horwell, C. J., and Bonadonna, C.: The post-2016 long-lasting Vulcanian activity of Sabancaya volcano (Peru) and associated aeolian remobilisation of volcanic ash, J. Volcanol. Geotherm. Res., 441, 107876, https://doi.org/10.1016/j.jvolgeores.2023.107876, 2023. a
Gabellini, P., Cioni, R., Geshi, N., Pistolesi, M., Miwa, T., Lacanna, G., and Ripepe, M.: Eruptive dynamics and fragmentation mechanisms during cyclic Vulcanian activity at Sakurajima volcano (Japan): Insights from ash texture analysis, J. Volcanol. Geotherm. Res., 428, 107582, https://doi.org/10.1016/j.jvolgeores.2022.107582, 2022. a
Gailler, L., Labazuy, P., Régis, E., Bontemps, M., Souriot, T., Bacques, G., and Carton, B.: Validation of a New UAV Magnetic Prospecting Tool for Volcano Monitoring and Geohazard Assessment, Remote Sens., 13, 894, https://doi.org/10.3390/rs13050894, 2021. a
Gailler, L., Labazuy, P., Régis, E., Peltier, A., and Ferrazzini, V.: Active structures and thermal state of the Piton de la Fournaise summit revealed by combined UAV magnetic and thermal infrared measurements, Volcanica, 5, 61–74, https://doi.org/10.30909/vol.05.01.6174, 2022. a
Gao, M., Hugenholtz, C. H., Fox, T. A., Kucharczyk, M., Barchyn, T. E., and Nesbit, P. R.: Weather constraints on global drone flyability, Sci. Rep., 11, 12092, https://doi.org/10.1038/s41598-021-91325-w, 2021. a
Gilbert, J. S., Lane, S. J., Sparks, R. S. J., and Koyaguchi, T.: Charge measurements on particle fallout from a volcanic plume, Nature, 349, 598–600, https://doi.org/10.1038/349598a0, 1991. a
Giordan, D., Manconi, A., Facello, A., Baldo, M., dell'Anese, F., Allasia, P., and Dutto, F.: Brief Communication: The use of an unmanned aerial vehicle in a rockfall emergency scenario, Nat. Hazards Earth Syst. Sci., 15, 163–169, https://doi.org/10.5194/nhess-15-163-2015, 2015. a
Giordan, D., Hayakawa, Y., Nex, F., Remondino, F., and Tarolli, P.: Review article: the use of remotely piloted aircraft systems (RPASs) for natural hazards monitoring and management, Nat. Hazards Earth Syst. Sci., 18, 1079–1096, https://doi.org/10.5194/nhess-18-1079-2018, 2018. a
Godfrey, I., Brenes, J. P. S., Cruz, M. M., Avard, G., and Meghraoui, K.: Launching the SnifferV and Sniffer4D multigas detectors into the active crater of the Poás Volcano in Costa Rica using unmanned aerial systems, Advanced UAV, 3, 153–176, https://publish.mersin.edu.tr/index.php/uav/article/view/1210 (last access: 20 June 2025), 2023. a
Guéhenneux, Y. and Gouhier, M.: HOTVOLC: the official French satellite-based service for operational monitoring and early warning of volcanic ash plumes, Bull. Volcanol., 86, 29, https://doi.org/10.1007/s00445-024-01716-w, 2024. a
Hansell, A. and Oppenheimer, C.: Health Hazards from Volcanic Gases: A Systematic Literature Review, Arch. Environ. Health: An Int. J., 59, 628–639, https://doi.org/10.1080/00039890409602947, 2004. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., and Rozum, I.: ERA5 hourly data on pressure levels from 1979 to present, Copernicus climate change service (c3s) climate data store (cds), 10, https://doi.org/10.24381/cds.bd0915c6, 2023. a
Hillman, S. E., Horwell, C. J., Densmore, A. L., Damby, D. E., Fubini, B., Ishimine, Y., and Tomatis, M.: Sakurajima volcano: a physico-chemical study of the health consequences of long-term exposure to volcanic ash, Bull. Volcanol., 74, 913–930, https://doi.org/10.1007/s00445-012-0575-3, 2012. a
Hirose, M., Xiao, Y., Zuo, Z., Kamat, V. R., Zekkos, D., and Lynch, J.: Implementation of UAV localization methods for a mobile post-earthquake monitoring system, in: 2015 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS) Proceedings, 66–71 pp., https://doi.org/10.1109/EESMS.2015.7175854, 2015. a
Horwell, C. J. and Baxter, P. J.: The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation, Bull. Volcanol., 69, 1–24, https://doi.org/10.1007/s00445-006-0052-y, 2006. a
Hwang, J. Y., Jung, M. K., and Kwon, O. J.: Numerical Study of Aerodynamic Performance of a Multirotor Unmanned-Aerial-Vehicle Configuration, J. Aircraft, 52, 839–846, https://doi.org/10.2514/1.C032828, 2015. a
Iezzi, A. M., Buzard, R. M., Fee, D., Matoza, R. S., Gestrich, J. E., Jolly, A. D., Schmid, M., Cigala, V., Kueppers, U., Vossen, C. E. J., Cimarelli, C., Lacanna, G., and Ripepe, M.: UAS-Based Observations of Infrasound Directionality at Stromboli Volcano, Italy, Geophys. Res. Lett., 50, e2023GL102905, https://doi.org/10.1029/2023GL102905, 2023. a
Iguchi, M., Yamada, T., and Tameguri, T.: Sequence of Volcanic Activity of Sakurajima Volcano, Japan, as Revealed by Non-Eruptive Deflation, Front. Earth Sci., 10, 727909–727923, https://doi.org/10.3389/feart.2022.727909, 2022. a
Izumida, A., Uchiyama, S., and Sugai, T.: Application of UAV-SfM photogrammetry and aerial lidar to a disastrous flood: repeated topographic measurement of a newly formed crevasse splay of the Kinu River, central Japan, Nat. Hazards Earth Syst. Sci., 17, 1505–1519, https://doi.org/10.5194/nhess-17-1505-2017, 2017. a
James, M. R., Carr, B., D'Arcy, F., Diefenbach, A., Dietterich, H., Fornaciai, A., Lev, E., Liu, E., Pieri, D., Rodgers, M., Smets, B., Terada, A., Von Aulock, F., Walter, T., Wood, K., and Zorn, E.: Volcanological applications of unoccupied aircraft systems (UAS): Developments, strategies, and future challenges, Volcanica, 3, 67–114, https://doi.org/10.30909/vol.03.01.67114, 2020. a
Jenkins, S. F., Wilson, T. M., Magill, C., Miller, V., Stewart, C., Blong, R., Marzocchi, W., Boulton, M., Bonadonna, C., and Costa, A.: Volcanic ash fall hazard and risk, Global volcanic hazards and risk, 173–222 pp., https://books.google.com/books?hl=fr&lr=&id=8loZCgAAQBAJ&oi=fnd&pg=PA173&dq=Jenkins+2015+Volcanic+ash+fall+hazard+and+risk,+Global+Volcanic+Hazard+and+Risk&ots=eOo64NrPve&sig=dE1aLhV1pHxu_xF3tgdTLuID8wA (last access: 20 June 2025), 2015. a
Jordan, B. R.: Collecting field data in volcanic landscapes using small UAS (sUAS)/drones, J. Volcanol. Geotherm. Res., 385, 231–241, https://doi.org/10.1016/j.jvolgeores.2019.07.006, 2019. a
Koyama, T., Kanda, W., Utsugi, M., Kaneko, T., Ohminato, T., Watanabe, A., Tsuji, H., Nishimoto, T., Kuvshinov, A., and Honda, Y.: Aeromagnetic survey in Kusatsu-Shirane volcano, central Japan, by using an unmanned helicopter, Earth Planet. Space, 73, 139, https://doi.org/10.1186/s40623-021-01466-5, 2021. a
Lawson, R. P., O’Connor, D., Zmarzly, P., Weaver, K., Baker, B., Mo, Q., and Jonsson, H.: The 2D-S (Stereo) Probe: Design and Preliminary Tests of a New Airborne, High-Speed, High-Resolution Particle Imaging Probe, https://doi.org/10.1175/JTECH1927.1, 2006. a
Le Coz, J., Patalano, A., Collins, D., Guillén, N. F., García, C. M., Smart, G. M., Bind, J., Chiaverini, A., Le Boursicaud, R., Dramais, G., and Braud, I.: Crowdsourced data for flood hydrology: Feedback from recent citizen science projects in Argentina, France and New Zealand, J. Hydrol., 541, 766–777, https://doi.org/10.1016/j.jhydrol.2016.07.036, 2016. a
Lemus, J., Fries, A., Jarvis, P. A., Bonadonna, C., Chopard, B., and Lätt, J.: Modelling Settling-Driven Gravitational Instabilities at the Base of Volcanic Clouds Using the Lattice Boltzmann Method, Front. Earth Sci., 9, 713175, https://doi.org/10.3389/feart.2021.713175, 2021. a, b
Lenton, T.: Earth System Science: A Very Short Introduction, Oxford University Press, ISBN 978-0-19-178833-8, https://academic.oup.com/book/558 (last access: 20 June 2025), 2016. a
Lindner, G., Schraml, K., Mansberger, R., and Hübl, J.: UAV monitoring and documentation of a large landslide, Appl. Geomat., 8, 1–11, https://doi.org/10.1007/s12518-015-0165-0, 2016. a
Liu, C.-C., Chen, P.-L., Matsuo, T., and Chen, C.-Y.: Rapidly responding to landslides and debris flow events using a low-cost unmanned aerial vehicle, J. Appl. Remote Sens., 9, 096016, https://doi.org/10.1117/1.JRS.9.096016, 2015. a
Liu, E. J., Wood, K., Mason, E., Edmonds, M., Aiuppa, A., Giudice, G., Bitetto, M., Francofonte, V., Burrow, S., Richardson, T., Watson, M., Pering, T. D., Wilkes, T. C., McGonigle, A. J. S., Velasquez, G., Melgarejo, C., and Bucarey, C.: Dynamics of Outgassing and Plume Transport Revealed by Proximal Unmanned Aerial System (UAS) Measurements at Volcán Villarrica, Chile, Geochem. Geophys. Geosyst., 20, 730–750, https://doi.org/10.1029/2018GC007692, 2019. a, b
Liu, E. J., Aiuppa, A., Alan, A., Arellano, S., Bitetto, M., Bobrowski, N., Carn, S., Clarke, R., Corrales, E., de Moor, J. M., Diaz, J. A., Edmonds, M., Fischer, T. P., Freer, J., Fricke, G. M., Galle, B., Gerdes, G., Giudice, G., Gutmann, A., Hayer, C., Itikarai, I., Jones, J., Mason, E., McCormick Kilbride, B. T., Mulina, K., Nowicki, S., Rahilly, K., Richardson, T., Rüdiger, J., Schipper, C. I., Watson, I. M., and Wood, K.: Aerial strategies advance volcanic gas measurements at inaccessible, strongly degassing volcanoes, Sci. Adv., 6, eabb9103, https://doi.org/10.1126/sciadv.abb9103, 2020. a, b, c
Marchetti, E., Poggi, P., Donne, D. D., Pistolesi, M., Bonadonna, C., Bagheri, G., Pollastri, S., Thivet, S., Gheri, D., Gurioli, L., Harris, A., Hoskuldsoon, A., and Ripepe, M.: Real-time tephra-fallout accumulation rates and grain-size distributions using ASHER (ASH collector and sizER) disdrometers, J. Volcanol. Geotherm. Res., 429, 107611, https://doi.org/10.1016/j.jvolgeores.2022.107611, 2022. a, b
Martínez-de Dios, J. R., Merino, L., Caballero, F., and Ollero, A.: Automatic Forest-Fire Measuring Using Ground Stations and Unmanned Aerial Systems, Sensors, 11, 6328–6353, https://doi.org/10.3390/s110606328, 2011. a
Marzano, F. S., Picciotti, E., Montopoli, M., and Vulpiani, G.: Inside Volcanic Clouds: Remote Sensing of Volcanic Plumes Using Microwave Weather Radars, B. Am. Meteorol. Soc., 94, 1517–1586, https://doi.org/10.1175/BAMS-D-11-00160.1, 2013. a
Mori, T., Hashimoto, T., Terada, A., Yoshimoto, M., Kazahaya, R., Shinohara, H., and Tanaka, R.: Volcanic plume measurements using a UAV for the 2014 Mt. Ontake eruption, Earth Planet. Space, 68, 49, https://doi.org/10.1186/s40623-016-0418-0, 2016. a, b
Morino, Y., Chatani, S., Tanabe, K., Fujitani, Y., Morikawa, T., Takahashi, K., Sato, K., and Sugata, S.: Contributions of Condensable Particulate Matter to Atmospheric Organic Aerosol over Japan, Environ. Sci. Technol., 52, 8456–8466, https://doi.org/10.1021/acs.est.8b01285, 2018. a
Neal, C. A., Brantley, S. R., Antolik, L., Babb, J. L., Burgess, M., Calles, K., Cappos, M., Chang, J. C., Conway, S., Desmither, L., Dotray, P., Elias, T., Fukunaga, P., Fuke, S., Johanson, I. A., Kamibayashi, K., Kauahikaua, J., Lee, R. L., Pekalib, S., Miklius, A., Million, W., Moniz, C. J., Nadeau, P. A., Okubo, P., Parcheta, C., Patrick, M. R., Shiro, B., Swanson, D. A., Tollett, W., Trusdell, F., Younger, E. F., Zoeller, M. H., Montgomery-Brown, E. K., Anderson, K. R., Poland, M. P., Ball, J. L., Bard, J., Coombs, M., Dietterich, H. R., Kern, C., Thelen, W. A., Cervelli, P. F., Orr, T., Houghton, B. F., Gansecki, C., Hazlett, R., Lundgren, P., Diefenbach, A. K., Lerner, A. H., Waite, G., Kelly, P., Clor, L., Werner, C., Mulliken, K., Fisher, G., and Damby, D.: The 2018 rift eruption and summit collapse of Kīlauea Volcano, Science, 363, 367–374, https://doi.org/10.1126/science.aav7046, 2019. a
Paredes-Mariño, J., Forte, P., Alois, S., Chan, K. L., Cigala, V., Mueller, S. B., Poret, M., Spanu, A., Tomašek, I., Tournigand, P.-Y., Perugini, D., and Kueppers, U.: The lifecycle of volcanic ash: advances and ongoing challenges, Bull. Volcanol., 84, 51, https://doi.org/10.1007/s00445-022-01557-5, 2022. a
Pering, T. D., Liu, E. J., Wood, K., Wilkes, T. C., Aiuppa, A., Tamburello, G., Bitetto, M., Richardson, T., and McGonigle, A. J. S.: Combined ground and aerial measurements resolve vent-specific gas fluxes from a multi-vent volcano, Nat. Commun., 11, 3039, https://doi.org/10.1038/s41467-020-16862-w, 2020. a
Pering, T. D., Wilkes, T. C., Layana, S., Aguilera, F., and Aguilera, M.: The PiGas: A low-cost approach to volcanic gas sampling, J. Volcanol. Geotherm. Res., 449, p. 108063, https://doi.org/10.1016/j.jvolgeores.2024.108063, 2024. a, b, c, d
Poland, M. P., Lopez, T., Wright, R., and Pavolonis, M. J.: Forecasting, Detecting, and Tracking Volcanic Eruptions from Space, Remote Sens. Earth Syst. Sci., 3, 55–94, https://doi.org/10.1007/s41976-020-00034-x, 2020. a
Poulidis, A. P., Takemi, T., Iguchi, M., and Renfrew, I. A.: Orographic effects on the transport and deposition of volcanic ash: A case study of Mount Sakurajima, Japan, J. Geophys. Res.-Atmos., 122, 9332–9350, https://doi.org/10.1002/2017JD026595, 2017. a, b
Poulidis, A. P., Takemi, T., Shimizu, A., Iguchi, M., and Jenkins, S. F.: Statistical analysis of dispersal and deposition patterns of volcanic emissions from Mt. Sakurajima, Japan, Atmos. Environ., 179, 305–320, https://doi.org/10.1016/j.atmosenv.2018.02.021, 2018. a, b
Román, A., Tovar-Sánchez, A., Roque-Atienza, D., Huertas, I. E., Caballero, I., Fraile-Nuez, E., and Navarro, G.: Unmanned aerial vehicles (UAVs) as a tool for hazard assessment: The 2021 eruption of Cumbre Vieja volcano, La Palma Island (Spain), Sci. Total Environ., 843, 157092, https://doi.org/10.1016/j.scitotenv.2022.157092, 2022. a
Rose, W. I. and Durant, A. J.: Fate of volcanic ash: Aggregation and fallout, Geology, 39, 895–896, https://doi.org/10.1130/focus092011.1, 2011. a
Ross, P.-S., Dürig, T., Comida, P. P., Lefebvre, N., White, J., Andronico, D., Thivet, S., Eychenne, J., and Gurioli, L.: Standardized analysis of juvenile pyroclasts in comparative studies of primary magma fragmentation; 1. Overview and workflow, Bull. Volcanol., 84, 1–29, https://doi.org/10.1007/s00445-021-01516-6, 2022. a, b
Rossi, E., Bagheri, G., Beckett, F., and Bonadonna, C.: The fate of volcanic ash: premature or delayed sedimentation?, Nat. Commun., 12, 1303, https://doi.org/10.1038/s41467-021-21568-8, 2021. a
Rüdiger, J., Tirpitz, J.-L., de Moor, J. M., Bobrowski, N., Gutmann, A., Liuzzo, M., Ibarra, M., and Hoffmann, T.: Implementation of electrochemical, optical and denuder-based sensors and sampling techniques on UAV for volcanic gas measurements: examples from Masaya, Turrialba and Stromboli volcanoes, Atmos. Meas. Tech., 11, 2441–2457, https://doi.org/10.5194/amt-11-2441-2018, 2018. a, b
Sasaki, K., Inoue, M., Shimura, T., and Iguchi, M.: In Situ, Rotor-Based Drone Measurement of Wind Vector and Aerosol Concentration in Volcanic Areas, Atmosphere, 12, 376, https://doi.org/10.3390/atmos12030376, 2021. a
Schellenberg, B., Richardson, T., Watson, M., Greatwood, C., Clarke, R., Thomas, R., Wood, K., Freer, J., Thomas, H., Liu, E., Salama, F., and Chigna, G.: Remote sensing and identification of volcanic plumes using fixed-wing UAVs over Volcán de Fuego, Guatemala, J. Field Robot., 36, 1192–1211, https://doi.org/10.1002/rob.21896, 2019. a, b, c
Schmid, M., Kueppers, U., Huber, J., and Dingwell, D. B.: Drone deployed sensors: a tool for multiparametric near-vent measurements of volcanic explosions, Volcanica, 6, 95–106, https://doi.org/10.30909/vol.06.01.95106, 2023. a
Schmidt, A., Leadbetter, S., Theys, N., Carboni, E., Witham, C. S., Stevenson, J. A., Birch, C. E., Thordarson, T., Turnock, S., Barsotti, S., Delaney, L., Feng, W., Grainger, R. G., Hort, M. C., Höskuldsson, A., Ialongo, I., Ilyinskaya, E., Jóhannsson, T., Kenny, P., Mather, T. A., Richards, N. A. D., and Shepherd, J.: Satellite detection, long-range transport, and air quality impacts of volcanic sulfur dioxide from the 2014–2015 flood lava eruption at Bárdarbunga (Iceland), J. Geophys. Res.-Atmos., 120, 9739–9757, https://doi.org/10.1002/2015JD023638, 2015. a
Scollo, S., Coltelli, M., Bonadonna, C., and Del Carlo, P.: Tephra hazard assessment at Mt. Etna (Italy), Nat. Hazards Earth Syst. Sci., 13, 3221–3233, https://doi.org/10.5194/nhess-13-3221-2013, 2013. a
Scollo, S., Prestifilippo, M., Pecora, E., Corradini, S., Merucci, L., Spata, G., and Coltelli, M.: Eruption column height estimation of the 2011-2013 Etna lava fountains, Ann. Geophys., 57, S0214–S0214, https://doi.org/10.4401/ag-6396, 2014. a
Scollo, S., Bonadonna, C., and Manzella, I.: Settling-driven gravitational instabilities associated with volcanic clouds: new insights from experimental investigations, Bull. Volcanol., 79, 39, https://doi.org/10.1007/s00445-017-1124-x, 2017. a
Scollo, S., Prestifilippo, M., Bonadonna, C., Cioni, R., Corradini, S., Degruyter, W., Rossi, E., Silvestri, M., Biale, E., Carparelli, G., Cassisi, C., Merucci, L., Musacchio, M., and Pecora, E.: Near-Real-Time Tephra Fallout Assessment at Mt. Etna, Italy, Remote Sens., 11, 2987, https://doi.org/10.3390/rs11242987, 2019. a
Shingubara, R., Tsunogai, U., Ito, M., Nakagawa, F., Yoshikawa, S., Utsugi, M., and Yokoo, A.: Development of a drone-borne volcanic plume sampler, J. Volcanol. Geotherm. Res., 412, 107197, https://doi.org/10.1016/j.jvolgeores.2021.107197, 2021. a
Shinkura, R., Fujiyama, C., and Akiba, S.: Relationship between ambient sulfur dioxide levels and neonatal mortality near the Mt. Sakurajima volcano in Japan, J. Epidemiol., 9, 344–349, https://www.jstage.jst.go.jp/article/jea1991/9/5/9_5_344/_article/-char/ja/ (last access: 20 June 2025), 1999. a
Shinohara, H., Kazahaya, R., Ohminato, T., Kaneko, T., Tsunogai, U., and Morita, M.: Variation of volcanic gas composition at a poorly accessible volcano: Sakurajima, Japan, J. Volcanol. Geotherm. Res., 407, 107098, https://doi.org/10.1016/j.jvolgeores.2020.107098, 2020. a
Sibaja-Brenes, J. P., Terada, A., Solís, R. A., Luna, M. C., Castro, D. U., Ramírez, D. P., Gutiérrez, R. S., Arroyo, M. M., Godfrey, I., and Cruz, M. M.: Drone monitoring of volcanic lakes in Costa Rica: a new approach, Drone Syst. Appl., 11, 1–14, https://doi.org/10.1139/dsa-2022-0023, 2023. a
Simionato, R., Jarvis, P., Rossi, E., and Bonadonna, C.: PlumeTraP: A New MATLAB-Based Algorithm to Detect and Parametrize Volcanic Plumes from Visible-Wavelength Images, Remote Sens., 14, 1766, https://doi.org/10.3390/rs14071766, 2022. a
Singh, V.: The Environment and Its Components, in: Textbook of Environment and Ecology, edited by: Singh, V., 1–13 pp., Springer Nature, Singapore, ISBN 978-981-9988-46-4, https://doi.org/10.1007/978-981-99-8846-4_1, 2024. a
Snee, E., Jarvis, P., Simionato, R., Scollo, S., Prestifilippo, M., Degruyter, W., and Bonadonna, C.: Image analysis of volcanic plumes: A simple calibration tool to correct for the effect of wind, Volcanica, 6, 447–458, https://doi.org/10.30909/vol.06.02.447458, 2023. a
Sparks, R. S. J.: Forecasting volcanic eruptions, Earth Planet. Sci. Lett., 210, 1–15, https://doi.org/10.1016/S0012-821X(03)00124-9, 2003. a
Suzuki, Y., Costa, A., Cerminara, M., Esposti Ongaro, T., Herzog, M., Van Eaton, A., and Denby, L.: Inter-comparison of three-dimensional models of volcanic plumes, J. Volcanol. Geotherm. Res., 326, 26–42, https://doi.org/10.1016/j.jvolgeores.2016.06.011, 2016. a
Takishita, K., Poulidis, A.-P., and Iguchi, M.: Tephra segregation profiles based on disdrometer observations and tephra dispersal modeling: Vulcanian eruptions of Sakurajima volcano, Japan, Earth Planet. Space, 76, 29, https://doi.org/10.1186/s40623-023-01952-y, 2024. a
Tang, L. and Shao, G.: Drone remote sensing for forestry research and practices, J. Forest. Res., 26, 791–797, https://doi.org/10.1007/s11676-015-0088-y, 2015. a
Thivet, S., Gurioli, L., Di Muro, A., Derrien, A., Ferrazzini, V., Gouhier, M., Coppola, D., Galle, B., and Arellano, S.: Evidences of Plug Pressurization Enhancing Magma Fragmentation During the September 2016 Basaltic Eruption at Piton de la Fournaise (La Réunion Island, France), Geochem. Geophys. Geosyst., 21, e2019GC008 611, https://doi.org/10.1029/2019GC008611, 2020a. a, b
Thivet, S., Gurioli, L., Di Muro, A., Eychenne, J., Besson, P., and Nedelec, J.-M.: Variability of ash deposits at Piton de la Fournaise (La Reunion Island): insights into fragmentation processes at basaltic shield volcanoes, Bull. Volcanol., 82, 63, https://doi.org/10.1007/s00445-020-01398-0, 2020b. a
Thivet, S., Harris, A. J. L., Gurioli, L., Bani, P., Barnie, T., Bombrun, M., and Marchetti, E.: Multi-Parametric Field Experiment Links Explosive Activity and Persistent Degassing at Stromboli, Front. Earth Sci., 9, 669661, https://doi.org/10.3389/feart.2021.669661, 2021. a, b
Thivet, S., Carlier, J., Gurioli, L., Di Muro, A., Besson, P., Smietana, M., Boudon, G., Bachèlery, P., Eychenne, J., and Nedelec, J.-M.: Magmatic and phreatomagmatic contributions on the ash-dominated basaltic eruptions: Insights from the April and November–December 2005 paroxysmal events at Karthala volcano, Comoros, J. Volcanol. Geotherm. Res., 424, 107500, https://doi.org/10.1016/j.jvolgeores.2022.107500, 2022. a
Ventura Diaz, P. and Yoon, S.: High-Fidelity Computational Aerodynamics of Multi-Rotor Unmanned Aerial Vehicles, in: 2018 AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, American Institute of Aeronautics and Astronautics, https://arc.aiaa.org/doi/10.2514/6.2018-1266 (last access: 20 June 2025), 2018. a
Vogel, A., Diplas, S., Durant, A. J., Azar, A. S., Sunding, M. F., Rose, W. I., Sytchkova, A., Bonadonna, C., Krüger, K., and Stohl, A.: Reference data set of volcanic ash physicochemical and optical properties, J. Geophys. Res.-Atmos., 122, 9485–9514, https://doi.org/10.1002/2016JD026328, 2017. a, b
Watts, A. C., Ambrosia, V. G., and Hinkley, E. A.: Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use, Remote Sens., 4, 1671–1692, https://doi.org/10.3390/rs4061671, 2012. a
Wilkes, T. C., Pering, T. D., McGonigle, A. J. S., Tamburello, G., and Willmott, J. R.: A Low-Cost Smartphone Sensor-Based UV Camera for Volcanic SO2 Emission Measurements, Remote Sens., 9, 27, https://doi.org/10.3390/rs9010027, 2017. a
Wood, K., Liu, E. J., Richardson, T., Clarke, R., Freer, J., Aiuppa, A., Giudice, G., Bitetto, M., Mulina, K., and Itikarai, I.: BVLOS UAS Operations in Highly-Turbulent Volcanic Plumes, Front. Robot. AI, 7, p. 549716, https://doi.org/10.3389/frobt.2020.549716, 2020. a
Zorn, E. U., Le Corvec, N., Varley, N. R., Salzer, J. T., Walter, T. R., Navarro-Ochoa, C., Vargas-Bracamontes, D. M., Thiele, S. T., and Arámbula Mendoza, R.: Load Stress Controls on Directional Lava Dome Growth at Volcán de Colima, Mexico, Front. Earth Sci., 7, 84, https://doi.org/10.3389/feart.2019.00084, 2019. a
Short summary
This work presents an innovative way of sampling and analyzing volcanic clouds using an unoccupied aircraft system (UAS). The UAS can reach hazardous environments to sample volcanic particles and measure in situ key parameters, such as the atmospheric concentration of volcanic aerosols and gases. Acquired data bridge the gap between the existing approaches of ground sampling and remote sensing, thereby contributing to the understanding of volcanic cloud dispersion and impact.
This work presents an innovative way of sampling and analyzing volcanic clouds using an...