Articles | Volume 18, issue 13
https://doi.org/10.5194/amt-18-2919-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-2919-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Justification for high-ascent attainment for balloon radiosonde soundings at GRUAN and other sites
Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
Bomin Sun
I.M. Systems Group, Rockville, Maryland 20852, USA
NOAA NESDIS Center for Satellite Applications and Research (STAR), College Park, Maryland 20740, USA
Anthony Reale
NOAA NESDIS Center for Satellite Applications and Research (STAR), College Park, Maryland 20740, USA
Domenico Cimini
National Research Council of Italy (CNR), Institute of Methodologies for Environmental Analysis (IMAA), Potenza, 85050, Italy
Salvatore Larosa
National Research Council of Italy (CNR), Institute of Methodologies for Environmental Analysis (IMAA), Potenza, 85050, Italy
Lori Borg
Cooperative Institute for Meteorological Satellite Studies (CIMSS), University of Wisconsin-Madison, Madison, WI 53706, USA
Christoph von Rohden
GRUAN Lead Centre, Lindenberg Meteorological Observatory, Deutscher Wetterdienst, Am Observatorium 12, 15848 Tauche, Germany
Michael Sommer
GRUAN Lead Centre, Lindenberg Meteorological Observatory, Deutscher Wetterdienst, Am Observatorium 12, 15848 Tauche, Germany
Ruud Dirksen
GRUAN Lead Centre, Lindenberg Meteorological Observatory, Deutscher Wetterdienst, Am Observatorium 12, 15848 Tauche, Germany
Marion Maturilli
Atmospheric Physics Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Telegrafenberg A45,14473 Potsdam, Germany
Holger Vömel
Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
Rigel Kivi
Space and Earth Observation Centre, Finnish Meteorological Institute, Sodankylä, 99600, Finland
Bruce Ingleby
Research Department, European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, RG2 9AX, UK
Ryan J. Kramer
NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
Belay Demoz
Department of Physics, University of Maryland Baltimore County, Baltimore, MD, USA
Fabio Madonna
Department of Physics, University of Salerno, Salerno, 84084, Italy
National Research Council of Italy (CNR), Institute of Methodologies for Environmental Analysis (IMAA), Potenza, 85050, Italy
Fabien Carminati
Satellite and Surface Assimilation, Met Office, Exeter, EX1 3PB, UK
Owen Lewis
Satellite and Surface Assimilation, Met Office, Exeter, EX1 3PB, UK
Brett Candy
Satellite and Surface Assimilation, Met Office, Exeter, EX1 3PB, UK
Christopher Thomas
Satellite and Surface Assimilation, Met Office, Exeter, EX1 3PB, UK
David Edwards
Upper Air Observations, Met Office, Exeter, EX1 3PB, UK
Noersomadi
Research Center for Climate and Atmosphere, National Research and Innovation Agency (BRIN), Bandung, Indonesia
Kensaku Shimizu
Meteorological & Disaster Prevention System Division, Meisei Electric Co., Ltd., 2223 Naganumamachi, Isesaki, Gunma, 372-8585, Japan
Peter Thorne
ICARUS Climate Research Centre, Maynooth University, Maynooth, Ireland
Related authors
Simone Brunamonti, Harald Saathoff, Albert Hertzog, Glenn Diskin, Masatomo Fujiwara, Karen Rosenlof, Ottmar Möhler, Béla Tuzson, Lukas Emmenegger, Nadir Amarouche, Georges Durry, Fabien Frérot, Jean-Christophe Samake, Claire Cenac, Julio Lopez, Paul Monnier, and Mélanie Ghysels
EGUsphere, https://doi.org/10.5194/egusphere-2025-1029, https://doi.org/10.5194/egusphere-2025-1029, 2025
Short summary
Short summary
Water vapor is a strong greenhouse gas and accurate measurements of its concentration in the upper atmosphere (~8–25 km altitude) are crucial for reliable climate predictions. We investigated the performance of four airborne hygrometers, deployed on aircraft or stratospheric balloon platforms and based on different techniques, in a climate simulation chamber. The results demonstrate the high accuracy and reliability of the involved sensors for atmospheric monitoring and research applications.
Yugo Kanaya, Roberto Sommariva, Alfonso Saiz-Lopez, Andrea Mazzeo, Theodore K. Koenig, Kaori Kawana, James E. Johnson, Aurélie Colomb, Pierre Tulet, Suzie Molloy, Ian E. Galbally, Rainer Volkamer, Anoop Mahajan, John W. Halfacre, Paul B. Shepson, Julia Schmale, Hélène Angot, Byron Blomquist, Matthew D. Shupe, Detlev Helmig, Junsu Gil, Meehye Lee, Sean C. Coburn, Ivan Ortega, Gao Chen, James Lee, Kenneth C. Aikin, David D. Parrish, John S. Holloway, Thomas B. Ryerson, Ilana B. Pollack, Eric J. Williams, Brian M. Lerner, Andrew J. Weinheimer, Teresa Campos, Frank M. Flocke, J. Ryan Spackman, Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Ralf M. Staebler, Amir A. Aliabadi, Wanmin Gong, Roeland Van Malderen, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Juan Carlos Gómez Martin, Masatomo Fujiwara, Katie Read, Matthew Rowlinson, Keiichi Sato, Junichi Kurokawa, Yoko Iwamoto, Fumikazu Taketani, Hisahiro Takashima, Monica Navarro Comas, Marios Panagi, and Martin G. Schultz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-566, https://doi.org/10.5194/essd-2024-566, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
The first comprehensive dataset of tropospheric ozone over oceans/polar regions is presented, including 77 ship/buoy and 48 aircraft campaign observations (1977–2022, 0–5000 m altitude), supplemented by ozonesonde and surface data. Air masses isolated from land for 72+ hours are systematically selected as essentially oceanic. Among the 11 global regions, they show daytime decreases of 10–16% in the tropics, while near-zero depletions are rare, unlike in the Arctic, implying different mechanisms.
Takuji Sugidachi, Masatomo Fujiwara, Kensaku Shimizu, Shin-Ya Ogino, Junko Suzuki, and Ruud J. Dirksen
Atmos. Meas. Tech., 18, 509–531, https://doi.org/10.5194/amt-18-509-2025, https://doi.org/10.5194/amt-18-509-2025, 2025
Short summary
Short summary
A Peltier-based chilled-mirror hygrometer, SKYDEW, has been developed to measure tropospheric and stratospheric water vapor. Continuous accurate measurements of water vapor are essential for climate monitoring. More than 40 soundings with SKYDEW have been conducted since 2011 to evaluate the performance. The result of soundings at tropical and midlatitudes demonstrated that SKYDEW is able to measure up to an altitude of 20–25 km for daytime soundings and above 25 km for nighttime soundings.
Masatomo Fujiwara, Patrick Martineau, Jonathon S. Wright, Marta Abalos, Petr Šácha, Yoshio Kawatani, Sean M. Davis, Thomas Birner, and Beatriz M. Monge-Sanz
Atmos. Chem. Phys., 24, 7873–7898, https://doi.org/10.5194/acp-24-7873-2024, https://doi.org/10.5194/acp-24-7873-2024, 2024
Short summary
Short summary
A climatology of the major variables and terms of the transformed Eulerian-mean (TEM) momentum and thermodynamic equations from four global atmospheric reanalyses is evaluated. The spread among reanalysis TEM momentum balance terms is around 10 % in Northern Hemisphere winter and up to 50 % in Southern Hemisphere winter. The largest uncertainties in the thermodynamic equation (about 50 %) are in the vertical advection, which does not show a structure consistent with the differences in heating.
Shunsuke Hoshino, Takuji Sugidachi, Kensaku Shimizu, Eriko Kobayashi, Masatomo Fujiwara, and Masami Iwabuchi
Atmos. Meas. Tech., 15, 5917–5948, https://doi.org/10.5194/amt-15-5917-2022, https://doi.org/10.5194/amt-15-5917-2022, 2022
Short summary
Short summary
GRUAN data products (GDPs) from Meisei iMS-100 and Vaisala RS92 were compared with 59 dual sounding data. For daytime observations, the iMS-100 temperature is around 0.5 K lower than RS92-GDP in the stratosphere, but for nighttime observations, the difference is around −0.1 K, and data are mostly in agreement. For relative humidity (RH), iMS-100 is around 1–2 % RH higher in the troposphere and 1 % RH smaller in the stratosphere than RS92, but both GDPs are in agreement for most of the profile.
Varaha Ravi Kiran, Madineni Venkat Ratnam, Masatomo Fujiwara, Herman Russchenberg, Frank G. Wienhold, Bomidi Lakshmi Madhavan, Mekalathur Roja Raman, Renju Nandan, Sivan Thankamani Akhil Raj, Alladi Hemanth Kumar, and Saginela Ravindra Babu
Atmos. Meas. Tech., 15, 4709–4734, https://doi.org/10.5194/amt-15-4709-2022, https://doi.org/10.5194/amt-15-4709-2022, 2022
Short summary
Short summary
We proposed and conducted the multi-instrumental BACIS (Balloon-borne Aerosol–Cloud Interaction Studies) field campaigns using balloon-borne in situ measurements and ground-based and space-borne remote sensing instruments. Aerosol-cloud interaction is quantified for liquid clouds by segregating aerosol and cloud information in a balloon profile. Overall, the observational approach proposed here demonstrated its capability for understanding the aerosol–cloud interaction process.
Masatomo Fujiwara, Tetsu Sakai, Tomohiro Nagai, Koichi Shiraishi, Yoichi Inai, Sergey Khaykin, Haosen Xi, Takashi Shibata, Masato Shiotani, and Laura L. Pan
Atmos. Chem. Phys., 21, 3073–3090, https://doi.org/10.5194/acp-21-3073-2021, https://doi.org/10.5194/acp-21-3073-2021, 2021
Short summary
Short summary
Lidar aerosol particle measurements in Japan during the summer of 2018 were found to detect the eastward extension of the Asian tropopause aerosol layer from the Asian summer monsoon anticyclone in the lower stratosphere. Analysis of various other data indicates that the observed enhanced particle levels are due to eastward-shedding vortices from the anticyclone, originating from pollutants emitted in Asian countries and transported vertically by convection in the Asian summer monsoon region.
Yoshio Kawatani, Toshihiko Hirooka, Kevin Hamilton, Anne K. Smith, and Masatomo Fujiwara
Atmos. Chem. Phys., 20, 9115–9133, https://doi.org/10.5194/acp-20-9115-2020, https://doi.org/10.5194/acp-20-9115-2020, 2020
Short summary
Short summary
This paper reports on a project to compare the representation of the semiannual oscillation (SAO) among six major global atmospheric reanalyses and with recent satellite observations. The differences among the zonal mean zonal wind as represented by the various reanalyses display a prominent equatorial maximum that increases with height. It is shown that assimilation of satellite temperature measurements is crucial for the realistic representation of the tropical upper stratospheric circulation.
Fabio Madonna, Rigel Kivi, Jean-Charles Dupont, Bruce Ingleby, Masatomo Fujiwara, Gonzague Romanens, Miguel Hernandez, Xavier Calbet, Marco Rosoldi, Aldo Giunta, Tomi Karppinen, Masami Iwabuchi, Shunsuke Hoshino, Christoph von Rohden, and Peter William Thorne
Atmos. Meas. Tech., 13, 3621–3649, https://doi.org/10.5194/amt-13-3621-2020, https://doi.org/10.5194/amt-13-3621-2020, 2020
Short summary
Short summary
Radiosondes are one of the primary sources of upper-air data for weather and climate monitoring. In the last two decades, technological progress made available automated radiosonde launchers (ARLs), which are able to replace measurements typically performed manually. This work presents a comparative analysis of the technical performance of the ARLs currently available on the market and contribute to define a strategy to achieve the full traceability of the ARL products.
Masatomo Fujiwara, Patrick Martineau, and Jonathon S. Wright
Atmos. Chem. Phys., 20, 345–374, https://doi.org/10.5194/acp-20-345-2020, https://doi.org/10.5194/acp-20-345-2020, 2020
Short summary
Short summary
The global response of surface air temperature (SST) to the eruptions of Mount Agung in 1963, El Chichón in 1982, and Mount Pinatubo in 1991 is investigated using 11 global atmospheric reanalysis data sets. Multiple linear regression is applied, with a set of climatic indices orthogonalized, and the residuals are investigated. It is found that careful treatment of tropical SST variability is necessary to evaluate the surface response to volcanic eruptions in observations and reanalyses.
Young-Ha Kim, George N. Kiladis, John R. Albers, Juliana Dias, Masatomo Fujiwara, James A. Anstey, In-Sun Song, Corwin J. Wright, Yoshio Kawatani, François Lott, and Changhyun Yoo
Atmos. Chem. Phys., 19, 10027–10050, https://doi.org/10.5194/acp-19-10027-2019, https://doi.org/10.5194/acp-19-10027-2019, 2019
Short summary
Short summary
Reanalyses are widely used products of meteorological variables, generated using observational data and assimilation systems. We compare six modern reanalyses, with focus on their representation of equatorial waves which are important in stratospheric variability and stratosphere–troposphere exchange. Agreement/spreads among the reanalyses in the spectral properties and spatial distributions of the waves are examined, and satellite impacts on the wave representation in reanalyses are discussed.
Eriko Kobayashi, Shunsuke Hoshino, Masami Iwabuchi, Takuji Sugidachi, Kensaku Shimizu, and Masatomo Fujiwara
Atmos. Meas. Tech., 12, 3039–3065, https://doi.org/10.5194/amt-12-3039-2019, https://doi.org/10.5194/amt-12-3039-2019, 2019
Short summary
Short summary
The authors carried out dual flights of RS-11G and RS92-SGP radiosondes and investigated the differences in the performance of the radiosondes to help characterize GRUAN data products. A novel aspect of GRUAN data products is that vertically resolved uncertainty estimates and metadata are provided for each sounding and comparison of GRUAN data products is important in securing the temporal homogeneity of climate data records.
Noersomadi, Toshitaka Tsuda, and Masatomo Fujiwara
Atmos. Chem. Phys., 19, 6985–7000, https://doi.org/10.5194/acp-19-6985-2019, https://doi.org/10.5194/acp-19-6985-2019, 2019
Short summary
Short summary
Characteristics of static stability (N2) in the tropical tropopause are analyzed using 0.1 km vertical resolution temperature profiles retrieved from COSMIC GNSS-RO. We define the tropopause inversion layer (TIL) by the sharp increase in N2 across the cold point tropopause (CPT) and the thickness of the enhanced peak in N2 just above the CPT. We investigated the TIL at the intraseasonal to interannual timescales above the Maritime Continent and Pacific Ocean with different land–sea distribution.
Patrick Martineau, Jonathon S. Wright, Nuanliang Zhu, and Masatomo Fujiwara
Earth Syst. Sci. Data, 10, 1925–1941, https://doi.org/10.5194/essd-10-1925-2018, https://doi.org/10.5194/essd-10-1925-2018, 2018
Short summary
Short summary
This data set provides 6-hourly zonal-mean diagnostics derived from global atmospheric reanalyses on pressure levels. Data include basic variables, such as temperature and three-dimensional winds, advanced diagnostics based on the momentum and thermodynamic equations, and model-generated diabatic heating rates. Diagnostics are provided both on latitude–vertical grids corresponding to data as originally obtained from the reanalysis centers and on a standardized grid to facilitate intercomparison.
Takatoshi Sakazaki, Masatomo Fujiwara, and Masato Shiotani
Atmos. Chem. Phys., 18, 1437–1456, https://doi.org/10.5194/acp-18-1437-2018, https://doi.org/10.5194/acp-18-1437-2018, 2018
Short summary
Short summary
Atmospheric solar tides in the stratosphere and lower mesosphere are examined using temperature data from five reanalyses and satellite measurements. The reanalyses agree reasonably well with each other and with the satellite observations, but the agreement among the reanalyses is weaker in the mesosphere. The assimilation of satellite data improves the representation of tides in the reanalyses, while long-term changes are mostly artificial and driven by changes in the input data employed.
Craig S. Long, Masatomo Fujiwara, Sean Davis, Daniel M. Mitchell, and Corwin J. Wright
Atmos. Chem. Phys., 17, 14593–14629, https://doi.org/10.5194/acp-17-14593-2017, https://doi.org/10.5194/acp-17-14593-2017, 2017
Short summary
Short summary
As part of the SPARC Reanalysis Intercomparison Project, we evaluate the temperature and wind structure of all the recent and past reanalyses with 2.5-degree monthly zonal mean data sets from 1979–2014. There is a distinct change in the temperature structure in the stratosphere in 1998. Zonal winds are in greater agreement than temperatures. All reanalyses have issues analysing the tropical stratospheric winds. Caution is advised for using reanalysis temperatures for trend detection.
Sean M. Davis, Michaela I. Hegglin, Masatomo Fujiwara, Rossana Dragani, Yayoi Harada, Chiaki Kobayashi, Craig Long, Gloria L. Manney, Eric R. Nash, Gerald L. Potter, Susann Tegtmeier, Tao Wang, Krzysztof Wargan, and Jonathon S. Wright
Atmos. Chem. Phys., 17, 12743–12778, https://doi.org/10.5194/acp-17-12743-2017, https://doi.org/10.5194/acp-17-12743-2017, 2017
Short summary
Short summary
Ozone and water vapor in the stratosphere are important gases that affect surface climate and absorb incoming solar ultraviolet radiation. These gases are represented in reanalyses, which create a complete picture of the state of Earth's atmosphere using limited observations. We evaluate reanalysis water vapor and ozone fidelity by intercomparing them, and comparing them to independent observations. Generally reanalyses do a good job at representing ozone, but have problems with water vapor.
Guanyu Huang, Xiong Liu, Kelly Chance, Kai Yang, Pawan K. Bhartia, Zhaonan Cai, Marc Allaart, Gérard Ancellet, Bertrand Calpini, Gerrie J. R. Coetzee, Emilio Cuevas-Agulló, Manuel Cupeiro, Hugo De Backer, Manvendra K. Dubey, Henry E. Fuelberg, Masatomo Fujiwara, Sophie Godin-Beekmann, Tristan J. Hall, Bryan Johnson, Everette Joseph, Rigel Kivi, Bogumil Kois, Ninong Komala, Gert König-Langlo, Giovanni Laneve, Thierry Leblanc, Marion Marchand, Kenneth R. Minschwaner, Gary Morris, Michael J. Newchurch, Shin-Ya Ogino, Nozomu Ohkawara, Ankie J. M. Piters, Françoise Posny, Richard Querel, Rinus Scheele, Frank J. Schmidlin, Russell C. Schnell, Otto Schrems, Henry Selkirk, Masato Shiotani, Pavla Skrivánková, René Stübi, Ghassan Taha, David W. Tarasick, Anne M. Thompson, Valérie Thouret, Matthew B. Tully, Roeland Van Malderen, Holger Vömel, Peter von der Gathen, Jacquelyn C. Witte, and Margarita Yela
Atmos. Meas. Tech., 10, 2455–2475, https://doi.org/10.5194/amt-10-2455-2017, https://doi.org/10.5194/amt-10-2455-2017, 2017
Short summary
Short summary
It is essential to understand the data quality of +10-year OMI ozone product and impacts of the “row anomaly” (RA). We validate the OMI Ozone Profile (PROFOZ) product from Oct 2004 to Dec 2014 against ozonesonde observations globally. Generally, OMI has good agreement with ozonesondes. The spatiotemporal variation of retrieval performance suggests the need to improve OMI’s radiometric calibration especially during the post-RA period to maintain the long-term stability.
Masatomo Fujiwara, Jonathon S. Wright, Gloria L. Manney, Lesley J. Gray, James Anstey, Thomas Birner, Sean Davis, Edwin P. Gerber, V. Lynn Harvey, Michaela I. Hegglin, Cameron R. Homeyer, John A. Knox, Kirstin Krüger, Alyn Lambert, Craig S. Long, Patrick Martineau, Andrea Molod, Beatriz M. Monge-Sanz, Michelle L. Santee, Susann Tegtmeier, Simon Chabrillat, David G. H. Tan, David R. Jackson, Saroja Polavarapu, Gilbert P. Compo, Rossana Dragani, Wesley Ebisuzaki, Yayoi Harada, Chiaki Kobayashi, Will McCarty, Kazutoshi Onogi, Steven Pawson, Adrian Simmons, Krzysztof Wargan, Jeffrey S. Whitaker, and Cheng-Zhi Zou
Atmos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-17-1417-2017, https://doi.org/10.5194/acp-17-1417-2017, 2017
Short summary
Short summary
We introduce the SPARC Reanalysis Intercomparison Project (S-RIP), review key concepts and elements of atmospheric reanalysis systems, and summarize the technical details of and differences among 11 of these systems. This work supports scientific studies and intercomparisons of reanalysis products by collecting these background materials and technical details into a single reference. We also address several common misunderstandings and points of confusion regarding reanalyses.
Masatomo Fujiwara, Takuji Sugidachi, Toru Arai, Kensaku Shimizu, Mayumi Hayashi, Yasuhisa Noma, Hideaki Kawagita, Kazuo Sagara, Taro Nakagawa, Satoshi Okumura, Yoichi Inai, Takashi Shibata, Suginori Iwasaki, and Atsushi Shimizu
Atmos. Meas. Tech., 9, 5911–5931, https://doi.org/10.5194/amt-9-5911-2016, https://doi.org/10.5194/amt-9-5911-2016, 2016
Short summary
Short summary
A meteorological balloon-borne cloud sensor called the cloud particle sensor (CPS) has been developed. The CPS can count the number of particles per second and can obtain the cloud phase information (i.e. liquid, ice, or mixed). Twenty-five test flights have been made between 2012 and 2015 at midlatitude and tropical sites. The results from the four flights are discussed.
Sean M. Davis, Karen H. Rosenlof, Birgit Hassler, Dale F. Hurst, William G. Read, Holger Vömel, Henry Selkirk, Masatomo Fujiwara, and Robert Damadeo
Earth Syst. Sci. Data, 8, 461–490, https://doi.org/10.5194/essd-8-461-2016, https://doi.org/10.5194/essd-8-461-2016, 2016
Short summary
Short summary
This paper describes the construction of the Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database, whose main feature is a combined data product created by homogenizing multiple satellite records. This motivation for SWOOSH is that in order to study multiyear to decadal variability in ozone and water vapor concentrations, it is necessary to have a continuous and smooth record without artificial jumps in the data.
Yoshio Kawatani, Kevin Hamilton, Kazuyuki Miyazaki, Masatomo Fujiwara, and James A. Anstey
Atmos. Chem. Phys., 16, 6681–6699, https://doi.org/10.5194/acp-16-6681-2016, https://doi.org/10.5194/acp-16-6681-2016, 2016
Short summary
Short summary
This paper compares the representation of the monthly-mean zonal wind in the equatorial stratosphere among major global atmospheric reanalysis data sets. Differences among reanalysis display a prominent equatorial maximum, indicating the particularly challenging nature of the reanalysis problem in the low-latitude stratosphere. Our study confirms that the high accuracy in situ wind measurements have provided important constraints to reanalyses of circulation in the tropical stratosphere.
M. Fujiwara, T. Hibino, S. K. Mehta, L. Gray, D. Mitchell, and J. Anstey
Atmos. Chem. Phys., 15, 13507–13518, https://doi.org/10.5194/acp-15-13507-2015, https://doi.org/10.5194/acp-15-13507-2015, 2015
Short summary
Short summary
This paper evaluates the temperature response in the troposphere and the stratosphere to the three major volcanic eruptions between the 1960s and the 1990s by comparing nine reanalysis data sets. It was found that the volcanic temperature response patterns differ among the major eruptions and that in general, more recent reanalysis data sets show a more consistent response pattern.
Y. Inai, M. Shiotani, M. Fujiwara, F. Hasebe, and H. Vömel
Atmos. Meas. Tech., 8, 4043–4054, https://doi.org/10.5194/amt-8-4043-2015, https://doi.org/10.5194/amt-8-4043-2015, 2015
Short summary
Short summary
For conventional soundings, the pressure bias of radiosonde leads to an altitude misestimation, which can lead to offsets in any meteorological profile. Therefore, we must take this issue into account to improve historical data sets.
Y. Kasai, H. Sagawa, D. Kreyling, E. Dupuy, P. Baron, J. Mendrok, K. Suzuki, T. O. Sato, T. Nishibori, S. Mizobuchi, K. Kikuchi, T. Manabe, H. Ozeki, T. Sugita, M. Fujiwara, Y. Irimajiri, K. A. Walker, P. F. Bernath, C. Boone, G. Stiller, T. von Clarmann, J. Orphal, J. Urban, D. Murtagh, E. J. Llewellyn, D. Degenstein, A. E. Bourassa, N. D. Lloyd, L. Froidevaux, M. Birk, G. Wagner, F. Schreier, J. Xu, P. Vogt, T. Trautmann, and M. Yasui
Atmos. Meas. Tech., 6, 2311–2338, https://doi.org/10.5194/amt-6-2311-2013, https://doi.org/10.5194/amt-6-2311-2013, 2013
Y. Inai, F. Hasebe, M. Fujiwara, M. Shiotani, N. Nishi, S.-Y. Ogino, H. Vömel, S. Iwasaki, and T. Shibata
Atmos. Chem. Phys., 13, 8623–8642, https://doi.org/10.5194/acp-13-8623-2013, https://doi.org/10.5194/acp-13-8623-2013, 2013
F. Hasebe, Y. Inai, M. Shiotani, M. Fujiwara, H. Vömel, N. Nishi, S.-Y. Ogino, T. Shibata, S. Iwasaki, N. Komala, T. Peter, and S. J. Oltmans
Atmos. Chem. Phys., 13, 4393–4411, https://doi.org/10.5194/acp-13-4393-2013, https://doi.org/10.5194/acp-13-4393-2013, 2013
G. A. Morris, G. Labow, H. Akimoto, M. Takigawa, M. Fujiwara, F. Hasebe, J. Hirokawa, and T. Koide
Atmos. Chem. Phys., 13, 1243–1260, https://doi.org/10.5194/acp-13-1243-2013, https://doi.org/10.5194/acp-13-1243-2013, 2013
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Christophe Cassou, Mathias Hauser, Zeke Hausfather, June-Yi Lee, Matthew D. Palmer, Karina von Schuckmann, Aimée B. A. Slangen, Sophie Szopa, Blair Trewin, Jeongeun Yun, Nathan P. Gillett, Stuart Jenkins, H. Damon Matthews, Krishnan Raghavan, Aurélien Ribes, Joeri Rogelj, Debbie Rosen, Xuebin Zhang, Myles Allen, Lara Aleluia Reis, Robbie M. Andrew, Richard A. Betts, Alex Borger, Jiddu A. Broersma, Samantha N. Burgess, Lijing Cheng, Pierre Friedlingstein, Catia M. Domingues, Marco Gambarini, Thomas Gasser, Johannes Gütschow, Masayoshi Ishii, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Aurélien Liné, Didier P. Monselesan, Colin Morice, Jens Mühle, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Jan C. Minx, Matthew Rigby, Robert Rohde, Abhishek Savita, Sonia I. Seneviratne, Peter Thorne, Christopher Wells, Luke M. Western, Guido R. van der Werf, Susan E. Wijffels, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 17, 2641–2680, https://doi.org/10.5194/essd-17-2641-2025, https://doi.org/10.5194/essd-17-2641-2025, 2025
Short summary
Short summary
In a rapidly changing climate, evidence-based decision-making benefits from up-to-date and timely information. Here we compile monitoring datasets to track real-world changes over time. To make our work relevant to policymakers, we follow methods from the Intergovernmental Panel on Climate Change (IPCC). Human activities are increasing the Earth's energy imbalance and driving faster sea-level rise compared to the IPCC assessment.
Bavo Langerock, Martine De Mazière, Filip Desmet, Pauli Heikkinen, Rigel Kivi, Mahesh Kumar Sha, Corinne Vigouroux, Minqiang Zhou, Gopala Krishna Darbha, and Mohmmed Talib
Atmos. Meas. Tech., 18, 2439–2446, https://doi.org/10.5194/amt-18-2439-2025, https://doi.org/10.5194/amt-18-2439-2025, 2025
Short summary
Short summary
Ground-based Fourier transform interferometer instruments have been used for many decades to measure direct solar light in the infrared to obtain high-resolution spectra from which atmospheric gas profile concentrations can be derived. It is shown that the typical processing chain used to derive atmospheric gas columns can be sensitive to relatively small shortenings of the recorded interferograms. Low-resolution recordings, used in more recent years, are more sensitive to such adaptations.
Derrick Muheki, Bas Vercruysse, Krishna Kumar Thirukokaranam Chandrasekar, Christophe Verbruggen, Julie M. Birkholz, Koen Hufkens, Hans Verbeeck, Pascal Boeckx, Seppe Lampe, Ed Hawkins, Peter Thorne, Dominique Kankonde Ntumba, Olivier Kapalay Moulasa, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2024-3779, https://doi.org/10.5194/egusphere-2024-3779, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Archives worldwide host vast records of observed weather data crucial for understanding climate variability. However, most of these records are still in paper form, limiting their use. To address this, we developed MeteoSaver, an open-source tool, to transcribe these records to machine-readable format. Applied to ten handwritten temperature sheets, it achieved a median accuracy of 74%. This tool offers a promising solution to preserve records from archives and unlock historical weather insights.
Tyler P. Janoski, Ivan Mitevski, Ryan J. Kramer, Michael Previdi, and Lorenzo M. Polvani
Geosci. Model Dev., 18, 3065–3079, https://doi.org/10.5194/gmd-18-3065-2025, https://doi.org/10.5194/gmd-18-3065-2025, 2025
Short summary
Short summary
We developed ClimKern, a Python package and radiative kernel repository, to simplify calculating radiative feedbacks and make climate sensitivity studies more reproducible. Testing of ClimKern with sample climate model data reveals that radiative kernel choice may be more important than previously thought, especially in polar regions. Our work highlights the need for kernel sensitivity analyses to be included in future studies.
Domenico Cimini, Rémi Gandoin, Stephanie Fiedler, Claudia Acquistapace, Andrea Balotti, Sabrina Gentile, Edoardo Geraldi, Christine Knist, Pauline Martinet, Saverio T. Nilo, Giandomenico Pace, Bernhard Pospichal, and Filomena Romano
Atmos. Meas. Tech., 18, 2041–2067, https://doi.org/10.5194/amt-18-2041-2025, https://doi.org/10.5194/amt-18-2041-2025, 2025
Short summary
Short summary
Atmospheric stability indicates whether air vertical motion is dumped or amplified. This is important for wind energy applications as it affects wind turbine wakes and thus the yield of wind parks. The paper provides an assessment of stability metrics measured by ground-based microwave radiometers in different climatological conditions and instrument types, onshore and offshore. Results indicate that special precaution may be required offshore to achieve typical onshore performances.
Simone Brunamonti, Harald Saathoff, Albert Hertzog, Glenn Diskin, Masatomo Fujiwara, Karen Rosenlof, Ottmar Möhler, Béla Tuzson, Lukas Emmenegger, Nadir Amarouche, Georges Durry, Fabien Frérot, Jean-Christophe Samake, Claire Cenac, Julio Lopez, Paul Monnier, and Mélanie Ghysels
EGUsphere, https://doi.org/10.5194/egusphere-2025-1029, https://doi.org/10.5194/egusphere-2025-1029, 2025
Short summary
Short summary
Water vapor is a strong greenhouse gas and accurate measurements of its concentration in the upper atmosphere (~8–25 km altitude) are crucial for reliable climate predictions. We investigated the performance of four airborne hygrometers, deployed on aircraft or stratospheric balloon platforms and based on different techniques, in a climate simulation chamber. The results demonstrate the high accuracy and reliability of the involved sensors for atmospheric monitoring and research applications.
Denghui Ji, Mathias Palm, Matthias Buschmann, Kerstin Ebell, Marion Maturilli, Xiaoyu Sun, and Justus Notholt
Atmos. Chem. Phys., 25, 3889–3904, https://doi.org/10.5194/acp-25-3889-2025, https://doi.org/10.5194/acp-25-3889-2025, 2025
Short summary
Short summary
Our study explores how certain aerosols, like sea salt, affect infrared heat radiation in the Arctic, potentially speeding up warming. We used advanced technology to measure aerosol composition and found that these particles grow with humidity, significantly increasing their heat-trapping effect in the infrared region, especially in winter. Our findings suggest these aerosols could be a key factor in Arctic warming, emphasizing the importance of understanding aerosols for climate prediction.
Felix Pithan, Ann Kristin Naumann, and Marion Maturilli
Atmos. Chem. Phys., 25, 3269–3285, https://doi.org/10.5194/acp-25-3269-2025, https://doi.org/10.5194/acp-25-3269-2025, 2025
Short summary
Short summary
Representing the exchange of air masses between the Arctic and mid-latitudes and the associated cloud formation is difficult for climate models. We compare climate model output to temperature and humidity measurements from weather balloons to provide suggestions for model improvements. Cold biases mostly occur in air that is exported from the Arctic. Models that compute the number of ice particles in a cloud better represent humidity than models that assume a fixed number of ice particles.
Sina Voshtani, Dylan B. A. Jones, Debra Wunch, Drew C. Pendergrass, Paul O. Wennberg, David F. Pollard, Isamu Morino, Hirofumi Ohyama, Nicholas M. Deutscher, Frank Hase, Ralf Sussmann, Damien Weidmann, Rigel Kivi, Omaira García, Yao Té, Jack Chen, Kerry Anderson, Robin Stevens, Shobha Kondragunta, Aihua Zhu, Douglas Worthy, Senen Racki, Kathryn McKain, Maria V. Makarova, Nicholas Jones, Emmanuel Mahieu, Andrea Cadena-Caicedo, Paolo Cristofanelli, Casper Labuschagne, Elena Kozlova, Thomas Seitz, Martin Steinbacher, Reza Mahdi, and Isao Murata
EGUsphere, https://doi.org/10.5194/egusphere-2025-858, https://doi.org/10.5194/egusphere-2025-858, 2025
Short summary
Short summary
We assess the complementarity of the greater temporal coverage provided by ground-based remote sensing data with the spatial coverage of satellite observations when these data are used together to quantify CO emissions from extreme wildfires in 2023. Our results reveal that the commonly used biomass burning emission inventories significantly underestimate the fire emissions and emphasize the importance of the ground-based remote sensing data in reducing uncertainties in the estimated emissions.
Frank Hase, Paolo Castracane, Angelika Dehn, Omaira Elena García, David W. T. Griffith, Lukas Heizmann, Nicholas B. Jones, Tomi Karppinen, Rigel Kivi, Martine de Mazière, Justus Notholt, and Mahesh Kumar Sha
Atmos. Meas. Tech., 18, 1257–1267, https://doi.org/10.5194/amt-18-1257-2025, https://doi.org/10.5194/amt-18-1257-2025, 2025
Short summary
Short summary
The primary measurement result delivered by a Fourier transform spectrometer is an interferogram, and the spectrum required for further analysis needs to be calculated from the interferogram by Fourier analysis. The paper deals with technical aspects of this process and shows how the reconstruction of the spectrum can be optimized.
Jonas Hachmeister, Debra Wunch, Erin McGee, Kimberly Strong, Rigel Kivi, Justus Notholt, Thorsten Warneke, and Matthias Buschmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-4055, https://doi.org/10.5194/egusphere-2024-4055, 2025
Short summary
Short summary
Methane measurements from the Total Carbon Column Observing Network (TCCON) are important for climate research, especially in the Arctic where few measurements are available. We show that during early spring systematic errors are present in these data that are correlated to the presence of the polar vortex. These errors occur due to the usage of wrong methane prior shapes in the retrieval and can be alleviated by modifying the prior shape accordingly.
Yugo Kanaya, Roberto Sommariva, Alfonso Saiz-Lopez, Andrea Mazzeo, Theodore K. Koenig, Kaori Kawana, James E. Johnson, Aurélie Colomb, Pierre Tulet, Suzie Molloy, Ian E. Galbally, Rainer Volkamer, Anoop Mahajan, John W. Halfacre, Paul B. Shepson, Julia Schmale, Hélène Angot, Byron Blomquist, Matthew D. Shupe, Detlev Helmig, Junsu Gil, Meehye Lee, Sean C. Coburn, Ivan Ortega, Gao Chen, James Lee, Kenneth C. Aikin, David D. Parrish, John S. Holloway, Thomas B. Ryerson, Ilana B. Pollack, Eric J. Williams, Brian M. Lerner, Andrew J. Weinheimer, Teresa Campos, Frank M. Flocke, J. Ryan Spackman, Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Ralf M. Staebler, Amir A. Aliabadi, Wanmin Gong, Roeland Van Malderen, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Juan Carlos Gómez Martin, Masatomo Fujiwara, Katie Read, Matthew Rowlinson, Keiichi Sato, Junichi Kurokawa, Yoko Iwamoto, Fumikazu Taketani, Hisahiro Takashima, Monica Navarro Comas, Marios Panagi, and Martin G. Schultz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-566, https://doi.org/10.5194/essd-2024-566, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
The first comprehensive dataset of tropospheric ozone over oceans/polar regions is presented, including 77 ship/buoy and 48 aircraft campaign observations (1977–2022, 0–5000 m altitude), supplemented by ozonesonde and surface data. Air masses isolated from land for 72+ hours are systematically selected as essentially oceanic. Among the 11 global regions, they show daytime decreases of 10–16% in the tropics, while near-zero depletions are rare, unlike in the Arctic, implying different mechanisms.
Aki Tsuruta, Akihiko Kuze, Kei Shiomi, Fumie Kataoka, Nobuhiro Kikuchi, Tuula Aalto, Leif Backman, Ella Kivimäki, Maria K. Tenkanen, Kathryn McKain, Omaira E. García, Frank Hase, Rigel Kivi, Isamu Morino, Hirofumi Ohyama, David F. Pollard, Mahesh K. Sha, Kimberly Strong, Ralf Sussmann, Yao Te, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, Minqiang Zhou, and Hiroshi Suto
EGUsphere, https://doi.org/10.5194/egusphere-2025-159, https://doi.org/10.5194/egusphere-2025-159, 2025
Short summary
Short summary
Satellite data bring invaluable information about greenhouse gas emissions globally. We found that a new type of data from the Greenhouse Gas Observing Satellite (GOSAT), which contains information about methane in the lowest layer of Earth's atmosphere, could provide reliable estimates of recent methane emissions when combined with atmospheric modelling. Therefore, the use of such data is encouraged to improve emission quantification methods and advance our understanding of methane cycles.
Philippe Marbaix, Alexandre K. Magnan, Veruska Muccione, Peter W. Thorne, and Zinta Zommers
Earth Syst. Sci. Data, 17, 317–349, https://doi.org/10.5194/essd-17-317-2025, https://doi.org/10.5194/essd-17-317-2025, 2025
Short summary
Short summary
Since 2001, the Intergovernmental Panel on Climate Change (IPCC) has used burning-ember diagrams to show how risks increase with global warming. We bring these data into a harmonized framework available through an online Climate Risks Embers Explorer. Without high levels of adaptation, most risks reach a high level around 2 to 2.3 °C of global warming. Improvements in future reports could include systematic collection of explanatory information and broader coverage of regions and adaptation.
Takuji Sugidachi, Masatomo Fujiwara, Kensaku Shimizu, Shin-Ya Ogino, Junko Suzuki, and Ruud J. Dirksen
Atmos. Meas. Tech., 18, 509–531, https://doi.org/10.5194/amt-18-509-2025, https://doi.org/10.5194/amt-18-509-2025, 2025
Short summary
Short summary
A Peltier-based chilled-mirror hygrometer, SKYDEW, has been developed to measure tropospheric and stratospheric water vapor. Continuous accurate measurements of water vapor are essential for climate monitoring. More than 40 soundings with SKYDEW have been conducted since 2011 to evaluate the performance. The result of soundings at tropical and midlatitudes demonstrated that SKYDEW is able to measure up to an altitude of 20–25 km for daytime soundings and above 25 km for nighttime soundings.
Wanmin Gong, Stephen R. Beagley, Kenjiro Toyota, Henrik Skov, Jesper Heile Christensen, Alexandru Lupu, Diane Pendlebury, Junhua Zhang, Ulas Im, Yugo Kanaya, Alfonso Saiz-Lopez, Roberto Sommariva, Peter Effertz, John W. Halfacre, Nis Jepsen, Rigel Kivi, Theodore K. Koenig, Katrin Müller, Claus Nordstrøm, Irina Petropavlovskikh, Paul B. Shepson, William R. Simpson, Sverre Solberg, Ralf M. Staebler, David W. Tarasick, Roeland Van Malderen, and Mika Vestenius
EGUsphere, https://doi.org/10.5194/egusphere-2024-3750, https://doi.org/10.5194/egusphere-2024-3750, 2025
Short summary
Short summary
This study showed that the springtime O3 depletion plays a critical role in driving the surface O3 seasonal cycle in Central Arctic. The O3 depletion events, while occurring most notably within the lowest few hundred metres above the Arctic Ocean, can induce a 5–7 % of loss in the pan-Arctic tropospheric O3 burden during springtime. The study also found an enhancement in O3 and NOy (mostly PAN) concentrations in the Arctic due to northern boreal wildfires, particularly at altitudes.
Roeland Van Malderen, Anne M. Thompson, Debra E. Kollonige, Ryan M. Stauffer, Herman G. J. Smit, Eliane Maillard Barras, Corinne Vigouroux, Irina Petropavlovskikh, Thierry Leblanc, Valérie Thouret, Pawel Wolff, Peter Effertz, David W. Tarasick, Deniz Poyraz, Gérard Ancellet, Marie-Renée De Backer, Stéphanie Evan, Victoria Flood, Matthias M. Frey, James W. Hannigan, José L. Hernandez, Marco Iarlori, Bryan J. Johnson, Nicholas Jones, Rigel Kivi, Emmanuel Mahieu, Glen McConville, Katrin Müller, Tomoo Nagahama, Justus Notholt, Ankie Piters, Natalia Prats, Richard Querel, Dan Smale, Wolfgang Steinbrecht, Kimberly Strong, and Ralf Sussmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3736, https://doi.org/10.5194/egusphere-2024-3736, 2025
Short summary
Short summary
Tropospheric ozone is an important greenhouse gas and is an air pollutant. The time variability of tropospheric ozone is mainly driven by anthropogenic emissions. In this paper, we study the distribution and time variability of ozone from harmonized ground-based observations from five different measurement techniques. Our findings will provide clear standard references for atmospheric models and evolving tropospheric ozone satellite data for the 2000–2022 period.
Roeland Van Malderen, Zhou Zang, Kai-Lan Chang, Robin Björklund, Owen R. Cooper, Jane Liu, Eliane Maillard Barras, Corinne Vigouroux, Irina Petropavlovskikh, Thierry Leblanc, Valérie Thouret, Pawel Wolff, Peter Effertz, Audrey Gaudel, David W. Tarasick, Herman G. J. Smit, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Deniz Poyraz, Gérard Ancellet, Marie-Renée De Backer, Matthias M. Frey, James W. Hannigan, José L. Hernandez, Bryan J. Johnson, Nicholas Jones, Rigel Kivi, Emmanuel Mahieu, Isamu Morino, Glen McConville, Katrin Müller, Isao Murata, Justus Notholt, Ankie Piters, Maxime Prignon, Richard Querel, Vincenzo Rizi, Dan Smale, Wolfgang Steinbrecht, Kimberly Strong, and Ralf Sussmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3745, https://doi.org/10.5194/egusphere-2024-3745, 2025
Short summary
Short summary
Tropospheric ozone is an important greenhouse gas and an air pollutant, whose distribution and time variability is mainly governed by anthropogenic emissions and dynamics. In this paper, we assess regional trends of tropospheric ozone column amounts, based on two different approaches of merging or synthesizing ground-based observations and their trends within specific regions. Our findings clearly demonstrate regional trend differences, but also consistently higher pre- than post-COVID trends.
Amit Kumar Pandit, Jean-Paul Vernier, Thomas Duncan Fairlie, Kristopher M. Bedka, Melody A. Avery, Harish Gadhavi, Madineni Venkat Ratnam, Sanjeev Dwivedi, Kasimahanthi Amar Jyothi, Frank G. Wienhold, Holger Vömel, Hongyu Liu, Bo Zhang, Buduru Suneel Kumar, Tra Dinh, and Achuthan Jayaraman
Atmos. Chem. Phys., 24, 14209–14238, https://doi.org/10.5194/acp-24-14209-2024, https://doi.org/10.5194/acp-24-14209-2024, 2024
Short summary
Short summary
This study investigates the formation mechanism of a tropopause cirrus cloud layer observed at extremely cold temperatures over Hyderabad in India during the 2017 Asian summer monsoon using balloon-borne sensors. Ice crystals smaller than 50 µm were found in this optically thin cirrus cloud layer. Combined analysis of back trajectories, satellite, and model data revealed that the formation of this layer was influenced by waves and stratospheric hydration induced by typhoon Hato.
Fabrizio Marra, Emanuele Tramutola, Marco Rosoldi, and Fabio Madonna
EGUsphere, https://doi.org/10.5194/egusphere-2024-2882, https://doi.org/10.5194/egusphere-2024-2882, 2024
Short summary
Short summary
This article investigates the impact of sampling frequency on ozone partial pressure trends. By analyzing ozonesounding profiles obtained from three different networks within a unified database, the effects at different latitudes and vertical layers in the upper troposphere/lower stratosphere are evaluated. This is significant because the unified database improves both spatial and temporal coverage, allowing for deeper analysis of ozone anomalies and global trends than individual datasets.
Fabio Madonna, Benedetto De Rosa, Simone Gagliardi, Ilaria Gandolfi, Yassmina Hesham Essa, Domenico Madonna, Fabrizio Marra, Maria Assunta Menniti, Donato Summa, Emanuele Tramutola, Faezeh Karimian Saracks, Filomena Romano, and Marco Rosoldi
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-32, https://doi.org/10.5194/esd-2024-32, 2024
Revised manuscript not accepted
Short summary
Short summary
Extreme weather events in the Mediterranean have intensified, and understanding their causes is key to improving forecasts. This study used data from the MESSA-DIN measurement campaign in Soverato, Italy (July–September 2021) to analyze the water vapor fluxes effect in extreme weather events as well as the related ERA5 performances. This study highlights a bias in ERA5 reanalysis humidity and the importance of high-resolution data for improving weather predictions.
Soodabeh Namdari, Sanja Dmitrovic, Gao Chen, Yonghoon Choi, Ewan Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Richard A. Ferrare, Johnathan W. Hair, Simon Kirschler, John B. Nowak, Kenneth L. Thornhill, Christiane Voigt, Holger Vömel, Xubin Zeng, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-3024, https://doi.org/10.5194/egusphere-2024-3024, 2024
Short summary
Short summary
We conducted this study to assess the accuracy of airborne measurements of wind, temperature, and humidity, essential for understanding atmospheric processes. Using data from NASA's ACTIVATE campaign, we compared measurements from the TAMMS and DLH aboard a Falcon aircraft with dropsondes from a King Air, matching data points based on location and time using statistical methods. The study showed strong agreement, confirming the reliability of these methods for advancing climate models.
Robert J. Allen, Xueying Zhao, Cynthia A. Randles, Ryan J. Kramer, Bjørn H. Samset, and Christopher J. Smith
Atmos. Chem. Phys., 24, 11207–11226, https://doi.org/10.5194/acp-24-11207-2024, https://doi.org/10.5194/acp-24-11207-2024, 2024
Short summary
Short summary
Present-day methane shortwave absorption mutes 28% (7–55%) of the surface warming associated with its longwave absorption. The precipitation increase associated with the longwave radiative effects of the present-day methane perturbation is also muted by shortwave absorption but not significantly so. Methane shortwave absorption also impacts the magnitude of its climate feedback parameter, largely through the cloud feedback.
Kavitha Mottungan, Chayan Roychoudhury, Vanessa Brocchi, Benjamin Gaubert, Wenfu Tang, Mohammad Amin Mirrezaei, John McKinnon, Yafang Guo, David W. T. Griffith, Dietrich G. Feist, Isamu Morino, Mahesh K. Sha, Manvendra K. Dubey, Martine De Mazière, Nicholas M. Deutscher, Paul O. Wennberg, Ralf Sussmann, Rigel Kivi, Tae-Young Goo, Voltaire A. Velazco, Wei Wang, and Avelino F. Arellano Jr.
Atmos. Meas. Tech., 17, 5861–5885, https://doi.org/10.5194/amt-17-5861-2024, https://doi.org/10.5194/amt-17-5861-2024, 2024
Short summary
Short summary
A combination of data analysis techniques is introduced to separate local and regional influences on observed levels of carbon dioxide, carbon monoxide, and methane from an established ground-based remote sensing network. We take advantage of the covariations in these trace gases to identify the dominant type of sources driving these levels. Applying these methods in conjunction with existing approaches to other datasets can better address uncertainties in identifying sources and sinks.
Chanyoung Park, Brian J. Soden, Ryan J. Kramer, Tristan S. L’Ecuyer, and Haozhe He
EGUsphere, https://doi.org/10.5194/egusphere-2024-2547, https://doi.org/10.5194/egusphere-2024-2547, 2024
Short summary
Short summary
This study addresses the challenge of quantifying the impact of aerosol-cloud interactions. By analyzing satellite data and reanalysis, we examine cloud responses to aerosols by incorporating aerosol-to-cloud droplet activation rates. Our "perfect-model" validation reveals a smaller, less uncertain impact of aerosol-cloud interactions than previously estimated. This breakthrough suggests a reduced role of aerosol-cloud interactions in determining climate sensitivity.
Tim Trent, Marc Schröder, Shu-Peng Ho, Steffen Beirle, Ralf Bennartz, Eva Borbas, Christian Borger, Helene Brogniez, Xavier Calbet, Elisa Castelli, Gilbert P. Compo, Wesley Ebisuzaki, Ulrike Falk, Frank Fell, John Forsythe, Hans Hersbach, Misako Kachi, Shinya Kobayashi, Robert E. Kursinski, Diego Loyola, Zhengzao Luo, Johannes K. Nielsen, Enzo Papandrea, Laurence Picon, Rene Preusker, Anthony Reale, Lei Shi, Laura Slivinski, Joao Teixeira, Tom Vonder Haar, and Thomas Wagner
Atmos. Chem. Phys., 24, 9667–9695, https://doi.org/10.5194/acp-24-9667-2024, https://doi.org/10.5194/acp-24-9667-2024, 2024
Short summary
Short summary
In a warmer future, water vapour will spend more time in the atmosphere, changing global rainfall patterns. In this study, we analysed the performance of 28 water vapour records between 1988 and 2014. We find sensitivity to surface warming generally outside expected ranges, attributed to breakpoints in individual record trends and differing representations of climate variability. The implication is that longer records are required for high confidence in assessing climate trends.
Stuart Fox, Vinia Mattioli, Emma Turner, Alan Vance, Domenico Cimini, and Donatello Gallucci
Atmos. Meas. Tech., 17, 4957–4978, https://doi.org/10.5194/amt-17-4957-2024, https://doi.org/10.5194/amt-17-4957-2024, 2024
Short summary
Short summary
Airborne observations are used to evaluate two models for absorption and emission by atmospheric gases, including water vapour and oxygen, at microwave and sub-millimetre wavelengths. These models are needed for the Ice Cloud Imager (ICI) on the next generation of European polar-orbiting weather satellites, which measures at frequencies up to 664 GHz. Both models can provide a good match to measurements from airborne radiometers and are sufficiently accurate for use with ICI.
Manfred Wendisch, Susanne Crewell, André Ehrlich, Andreas Herber, Benjamin Kirbus, Christof Lüpkes, Mario Mech, Steven J. Abel, Elisa F. Akansu, Felix Ament, Clémantyne Aubry, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Sandro Dahlke, Georgios Dekoutsidis, Julien Delanoë, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Irina V. Gorodetskaya, Sarah Grawe, Silke Groß, Jörg Hartmann, Silvia Henning, Lutz Hirsch, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsofia Jurányi, Michail Karalis, Mona Kellermann, Marcus Klingebiel, Michael Lonardi, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Marion Maturilli, Bernhard Mayer, Johanna Mayer, Stephan Mertes, Janosch Michaelis, Michel Michalkov, Guillaume Mioche, Manuel Moser, Hanno Müller, Roel Neggers, Davide Ori, Daria Paul, Fiona M. Paulus, Christian Pilz, Felix Pithan, Mira Pöhlker, Veronika Pörtge, Maximilian Ringel, Nils Risse, Gregory C. Roberts, Sophie Rosenburg, Johannes Röttenbacher, Janna Rückert, Michael Schäfer, Jonas Schaefer, Vera Schemann, Imke Schirmacher, Jörg Schmidt, Sebastian Schmidt, Johannes Schneider, Sabrina Schnitt, Anja Schwarz, Holger Siebert, Harald Sodemann, Tim Sperzel, Gunnar Spreen, Bjorn Stevens, Frank Stratmann, Gunilla Svensson, Christian Tatzelt, Thomas Tuch, Timo Vihma, Christiane Voigt, Lea Volkmer, Andreas Walbröl, Anna Weber, Birgit Wehner, Bruno Wetzel, Martin Wirth, and Tobias Zinner
Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024, https://doi.org/10.5194/acp-24-8865-2024, 2024
Short summary
Short summary
The Arctic is warming faster than the rest of the globe. Warm-air intrusions (WAIs) into the Arctic may play an important role in explaining this phenomenon. Cold-air outbreaks (CAOs) out of the Arctic may link the Arctic climate changes to mid-latitude weather. In our article, we describe how to observe air mass transformations during CAOs and WAIs using three research aircraft instrumented with state-of-the-art remote-sensing and in situ measurement devices.
Andreas Walbröl, Janosch Michaelis, Sebastian Becker, Henning Dorff, Kerstin Ebell, Irina Gorodetskaya, Bernd Heinold, Benjamin Kirbus, Melanie Lauer, Nina Maherndl, Marion Maturilli, Johanna Mayer, Hanno Müller, Roel A. J. Neggers, Fiona M. Paulus, Johannes Röttenbacher, Janna E. Rückert, Imke Schirmacher, Nils Slättberg, André Ehrlich, Manfred Wendisch, and Susanne Crewell
Atmos. Chem. Phys., 24, 8007–8029, https://doi.org/10.5194/acp-24-8007-2024, https://doi.org/10.5194/acp-24-8007-2024, 2024
Short summary
Short summary
To support the interpretation of the data collected during the HALO-(AC)3 campaign, which took place in the North Atlantic sector of the Arctic from 7 March to 12 April 2022, we analyze how unusual the weather and sea ice conditions were with respect to the long-term climatology. From observations and ERA5 reanalysis, we found record-breaking warm air intrusions and a large variety of marine cold air outbreaks. Sea ice concentration was mostly within the climatological interquartile range.
Masatomo Fujiwara, Patrick Martineau, Jonathon S. Wright, Marta Abalos, Petr Šácha, Yoshio Kawatani, Sean M. Davis, Thomas Birner, and Beatriz M. Monge-Sanz
Atmos. Chem. Phys., 24, 7873–7898, https://doi.org/10.5194/acp-24-7873-2024, https://doi.org/10.5194/acp-24-7873-2024, 2024
Short summary
Short summary
A climatology of the major variables and terms of the transformed Eulerian-mean (TEM) momentum and thermodynamic equations from four global atmospheric reanalyses is evaluated. The spread among reanalysis TEM momentum balance terms is around 10 % in Northern Hemisphere winter and up to 50 % in Southern Hemisphere winter. The largest uncertainties in the thermodynamic equation (about 50 %) are in the vertical advection, which does not show a structure consistent with the differences in heating.
Taneil Uttal, Leslie M. Hartten, Siri Jodha Khalsa, Barbara Casati, Gunilla Svensson, Jonathan Day, Jareth Holt, Elena Akish, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Laura X. Huang, Robert Crawford, Zen Mariani, Øystein Godøy, Johanna A. K. Tjernström, Giri Prakash, Nicki Hickmon, Marion Maturilli, and Christopher J. Cox
Geosci. Model Dev., 17, 5225–5247, https://doi.org/10.5194/gmd-17-5225-2024, https://doi.org/10.5194/gmd-17-5225-2024, 2024
Short summary
Short summary
A Merged Observatory Data File (MODF) format to systematically collate complex atmosphere, ocean, and terrestrial data sets collected by multiple instruments during field campaigns is presented. The MODF format is also designed to be applied to model output data, yielding format-matching Merged Model Data Files (MMDFs). MODFs plus MMDFs will augment and accelerate the synergistic use of model results with observational data to increase understanding and predictive skill.
Zen Mariani, Sara M. Morris, Taneil Uttal, Elena Akish, Robert Crawford, Laura Huang, Jonathan Day, Johanna Tjernström, Øystein Godøy, Lara Ferrighi, Leslie M. Hartten, Jareth Holt, Christopher J. Cox, Ewan O'Connor, Roberta Pirazzini, Marion Maturilli, Giri Prakash, James Mather, Kimberly Strong, Pierre Fogal, Vasily Kustov, Gunilla Svensson, Michael Gallagher, and Brian Vasel
Earth Syst. Sci. Data, 16, 3083–3124, https://doi.org/10.5194/essd-16-3083-2024, https://doi.org/10.5194/essd-16-3083-2024, 2024
Short summary
Short summary
During the Year of Polar Prediction (YOPP), we increased measurements in the polar regions and have made dedicated efforts to centralize and standardize all of the different types of datasets that have been collected to facilitate user uptake and model–observation comparisons. This paper is an overview of those efforts and a description of the novel standardized Merged Observation Data Files (MODFs), including a description of the sites, data format, and instruments.
Donatello Gallucci, Domenico Cimini, Emma Turner, Stuart Fox, Philip W. Rosenkranz, Mikhail Y. Tretyakov, Vinia Mattioli, Salvatore Larosa, and Filomena Romano
Atmos. Chem. Phys., 24, 7283–7308, https://doi.org/10.5194/acp-24-7283-2024, https://doi.org/10.5194/acp-24-7283-2024, 2024
Short summary
Short summary
Nowadays, atmospheric radiative transfer models are widely used to simulate satellite and ground-based observations. A meaningful comparison between observations and simulations requires an estimate of the uncertainty associated with both. This work quantifies the uncertainty in atmospheric radiative transfer models in the microwave range, providing the uncertainty associated with simulations of new-generation satellite microwave sensors.
Sanja Dmitrovic, Johnathan W. Hair, Brian L. Collister, Ewan Crosbie, Marta A. Fenn, Richard A. Ferrare, David B. Harper, Chris A. Hostetler, Yongxiang Hu, John A. Reagan, Claire E. Robinson, Shane T. Seaman, Taylor J. Shingler, Kenneth L. Thornhill, Holger Vömel, Xubin Zeng, and Armin Sorooshian
Atmos. Meas. Tech., 17, 3515–3532, https://doi.org/10.5194/amt-17-3515-2024, https://doi.org/10.5194/amt-17-3515-2024, 2024
Short summary
Short summary
This study introduces and evaluates a new ocean surface wind speed product from the NASA Langley Research Center (LARC) airborne High-Spectral-Resolution Lidar – Generation 2 (HSRL-2) during the NASA ACTIVATE mission. We show that HSRL-2 surface wind speed data are accurate when compared to ground-truth dropsonde measurements. Therefore, the HSRL-2 instrument is able obtain accurate, high-resolution surface wind speed data in airborne field campaigns.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Joshua L. Laughner, Geoffrey C. Toon, Joseph Mendonca, Christof Petri, Sébastien Roche, Debra Wunch, Jean-Francois Blavier, David W. T. Griffith, Pauli Heikkinen, Ralph F. Keeling, Matthäus Kiel, Rigel Kivi, Coleen M. Roehl, Britton B. Stephens, Bianca C. Baier, Huilin Chen, Yonghoon Choi, Nicholas M. Deutscher, Joshua P. DiGangi, Jochen Gross, Benedikt Herkommer, Pascal Jeseck, Thomas Laemmel, Xin Lan, Erin McGee, Kathryn McKain, John Miller, Isamu Morino, Justus Notholt, Hirofumi Ohyama, David F. Pollard, Markus Rettinger, Haris Riris, Constantina Rousogenous, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Steven C. Wofsy, Minqiang Zhou, and Paul O. Wennberg
Earth Syst. Sci. Data, 16, 2197–2260, https://doi.org/10.5194/essd-16-2197-2024, https://doi.org/10.5194/essd-16-2197-2024, 2024
Short summary
Short summary
This paper describes a new version, called GGG2020, of a data set containing column-integrated observations of greenhouse and related gases (including CO2, CH4, CO, and N2O) made by ground stations located around the world. Compared to the previous version (GGG2014), improvements have been made toward site-to-site consistency. This data set plays a key role in validating space-based greenhouse gas observations and in understanding the carbon cycle.
Stephanie Fiedler, Vaishali Naik, Fiona M. O'Connor, Christopher J. Smith, Paul Griffiths, Ryan J. Kramer, Toshihiko Takemura, Robert J. Allen, Ulas Im, Matthew Kasoar, Angshuman Modak, Steven Turnock, Apostolos Voulgarakis, Duncan Watson-Parris, Daniel M. Westervelt, Laura J. Wilcox, Alcide Zhao, William J. Collins, Michael Schulz, Gunnar Myhre, and Piers M. Forster
Geosci. Model Dev., 17, 2387–2417, https://doi.org/10.5194/gmd-17-2387-2024, https://doi.org/10.5194/gmd-17-2387-2024, 2024
Short summary
Short summary
Climate scientists want to better understand modern climate change. Thus, climate model experiments are performed and compared. The results of climate model experiments differ, as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) assessment report. This article gives insights into the challenges and outlines opportunities for further improving the understanding of climate change. It is based on views of a group of experts in atmospheric composition–climate interactions.
Salvatore Larosa, Domenico Cimini, Donatello Gallucci, Saverio Teodosio Nilo, and Filomena Romano
Geosci. Model Dev., 17, 2053–2076, https://doi.org/10.5194/gmd-17-2053-2024, https://doi.org/10.5194/gmd-17-2053-2024, 2024
Short summary
Short summary
PyRTlib is an attractive educational tool because it provides a flexible and user-friendly way to broadly simulate how electromagnetic radiation travels through the atmosphere as it interacts with atmospheric constituents (such as gases, aerosols, and hydrometeors). PyRTlib is a so-called radiative transfer model; these are commonly used to simulate and understand remote sensing observations from ground-based, airborne, or satellite instruments.
Nicole Jacobs, Christopher W. O'Dell, Thomas E. Taylor, Thomas L. Logan, Brendan Byrne, Matthäus Kiel, Rigel Kivi, Pauli Heikkinen, Aronne Merrelli, Vivienne H. Payne, and Abhishek Chatterjee
Atmos. Meas. Tech., 17, 1375–1401, https://doi.org/10.5194/amt-17-1375-2024, https://doi.org/10.5194/amt-17-1375-2024, 2024
Short summary
Short summary
The accuracy of trace gas retrievals from spaceborne observations, like those from the Orbiting Carbon Observatory 2 (OCO-2), are sensitive to the referenced digital elevation model (DEM). Therefore, we evaluate several global DEMs, used in versions 10 and 11 of the OCO-2 retrieval along with the Copernicus DEM. We explore the impacts of changing the DEM on biases in OCO-2-retrieved XCO2 and inferred CO2 fluxes. Our findings led to an update to OCO-2 v11.1 using the Copernicus DEM globally.
Jean-François Müller, Trissevgeni Stavrakou, Glenn-Michael Oomen, Beata Opacka, Isabelle De Smedt, Alex Guenther, Corinne Vigouroux, Bavo Langerock, Carlos Augusto Bauer Aquino, Michel Grutter, James Hannigan, Frank Hase, Rigel Kivi, Erik Lutsch, Emmanuel Mahieu, Maria Makarova, Jean-Marc Metzger, Isamu Morino, Isao Murata, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Amelie Röhling, Wolfgang Stremme, Kimberly Strong, Ralf Sussmann, Yao Té, and Alan Fried
Atmos. Chem. Phys., 24, 2207–2237, https://doi.org/10.5194/acp-24-2207-2024, https://doi.org/10.5194/acp-24-2207-2024, 2024
Short summary
Short summary
Formaldehyde observations from satellites can be used to constrain the emissions of volatile organic compounds, but those observations have biases. Using an atmospheric model, aircraft and ground-based remote sensing data, we quantify these biases, propose a correction to the data, and assess the consequence of this correction for the evaluation of emissions.
Luis F. Millán, Matthew D. Lebsock, Ken B. Cooper, Jose V. Siles, Robert Dengler, Raquel Rodriguez Monje, Amin Nehrir, Rory A. Barton-Grimley, James E. Collins, Claire E. Robinson, Kenneth L. Thornhill, and Holger Vömel
Atmos. Meas. Tech., 17, 539–559, https://doi.org/10.5194/amt-17-539-2024, https://doi.org/10.5194/amt-17-539-2024, 2024
Short summary
Short summary
In this study, we describe and validate a new technique in which three radar tones are used to estimate the water vapor inside clouds and precipitation. This instrument flew on board NASA's P-3 aircraft during the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) campaign and the Synergies Of Active optical and Active microwave Remote Sensing Experiment (SOA2RSE) campaign.
Glenn-Michael Oomen, Jean-François Müller, Trissevgeni Stavrakou, Isabelle De Smedt, Thomas Blumenstock, Rigel Kivi, Maria Makarova, Mathias Palm, Amelie Röhling, Yao Té, Corinne Vigouroux, Martina M. Friedrich, Udo Frieß, François Hendrick, Alexis Merlaud, Ankie Piters, Andreas Richter, Michel Van Roozendael, and Thomas Wagner
Atmos. Chem. Phys., 24, 449–474, https://doi.org/10.5194/acp-24-449-2024, https://doi.org/10.5194/acp-24-449-2024, 2024
Short summary
Short summary
Natural emissions from vegetation have a profound impact on air quality for their role in the formation of harmful tropospheric ozone and organic aerosols, yet these emissions are highly uncertain. In this study, we quantify emissions of organic gases over Europe using high-quality satellite measurements of formaldehyde. These satellite observations suggest that emissions from vegetation are much higher than predicted by models, especially in southern Europe.
Andrea Pazmiño, Florence Goutail, Sophie Godin-Beekmann, Alain Hauchecorne, Jean-Pierre Pommereau, Martyn P. Chipperfield, Wuhu Feng, Franck Lefèvre, Audrey Lecouffe, Michel Van Roozendael, Nis Jepsen, Georg Hansen, Rigel Kivi, Kimberly Strong, and Kaley A. Walker
Atmos. Chem. Phys., 23, 15655–15670, https://doi.org/10.5194/acp-23-15655-2023, https://doi.org/10.5194/acp-23-15655-2023, 2023
Short summary
Short summary
The vortex-averaged ozone loss over the last 3 decades is evaluated for both polar regions using the passive ozone tracer of the chemical transport model TOMCAT/SLIMCAT and total ozone observations from the SAOZ network and MSR2 reanalysis. Three metrics were developed to compute ozone trends since 2000. The study confirms the ozone recovery in the Antarctic and shows a potential sign of quantitative detection of ozone recovery in the Arctic that needs to be robustly confirmed in the future.
Minqiang Zhou, Bavo Langerock, Mahesh Kumar Sha, Christian Hermans, Nicolas Kumps, Rigel Kivi, Pauli Heikkinen, Christof Petri, Justus Notholt, Huilin Chen, and Martine De Mazière
Atmos. Meas. Tech., 16, 5593–5608, https://doi.org/10.5194/amt-16-5593-2023, https://doi.org/10.5194/amt-16-5593-2023, 2023
Short summary
Short summary
Atmospheric N2O and CH4 columns are successfully retrieved from low-resolution FTIR spectra recorded by a Bruker VERTEX 70. The 1-year measurements at Sodankylä show that the N2O total columns retrieved from 125HR and VERTEX 70 spectra are −0.3 ± 0.7 % with an R value of 0.93. The relative differences between the CH4 total columns retrieved from the 125HR and VERTEX spectra are 0.0 ± 0.8 % with an R value of 0.87. Such a technique can help to fill the gap in NDACC N2O and CH4 measurements.
Yunqian Zhu, Robert W. Portmann, Douglas Kinnison, Owen Brian Toon, Luis Millán, Jun Zhang, Holger Vömel, Simone Tilmes, Charles G. Bardeen, Xinyue Wang, Stephanie Evan, William J. Randel, and Karen H. Rosenlof
Atmos. Chem. Phys., 23, 13355–13367, https://doi.org/10.5194/acp-23-13355-2023, https://doi.org/10.5194/acp-23-13355-2023, 2023
Short summary
Short summary
The 2022 Hunga Tonga eruption injected a large amount of water into the stratosphere. Ozone depletion was observed inside the volcanic plume. Chlorine and water vapor injected by this eruption exceeded the normal range, which made the ozone chemistry during this event occur at a higher temperature than polar ozone depletion. Unlike polar ozone chemistry where chlorine nitrate is more important, hypochlorous acid plays a large role in the in-plume chlorine balance and heterogeneous processes.
Albert Ansmann, Kevin Ohneiser, Ronny Engelmann, Martin Radenz, Hannes Griesche, Julian Hofer, Dietrich Althausen, Jessie M. Creamean, Matthew C. Boyer, Daniel A. Knopf, Sandro Dahlke, Marion Maturilli, Henriette Gebauer, Johannes Bühl, Cristofer Jimenez, Patric Seifert, and Ulla Wandinger
Atmos. Chem. Phys., 23, 12821–12849, https://doi.org/10.5194/acp-23-12821-2023, https://doi.org/10.5194/acp-23-12821-2023, 2023
Short summary
Short summary
The 1-year MOSAiC (2019–2020) expedition with the German ice breaker Polarstern was the largest polar field campaign ever conducted. The Polarstern, with our lidar aboard, drifted with the pack ice north of 85° N for more than 7 months (October 2019 to mid-May 2020). We measured the full annual cycle of aerosol conditions in terms of aerosol optical and cloud-process-relevant properties. We observed a strong contrast between polluted winter and clean summer aerosol conditions.
Michael Kiefer, Dale F. Hurst, Gabriele P. Stiller, Stefan Lossow, Holger Vömel, John Anderson, Faiza Azam, Jean-Loup Bertaux, Laurent Blanot, Klaus Bramstedt, John P. Burrows, Robert Damadeo, Bianca Maria Dinelli, Patrick Eriksson, Maya García-Comas, John C. Gille, Mark Hervig, Yasuko Kasai, Farahnaz Khosrawi, Donal Murtagh, Gerald E. Nedoluha, Stefan Noël, Piera Raspollini, William G. Read, Karen H. Rosenlof, Alexei Rozanov, Christopher E. Sioris, Takafumi Sugita, Thomas von Clarmann, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 16, 4589–4642, https://doi.org/10.5194/amt-16-4589-2023, https://doi.org/10.5194/amt-16-4589-2023, 2023
Short summary
Short summary
We quantify biases and drifts (and their uncertainties) between the stratospheric water vapor measurement records of 15 satellite-based instruments (SATs, with 31 different retrievals) and balloon-borne frost point hygrometers (FPs) launched at 27 globally distributed stations. These comparisons of measurements during the period 2000–2016 are made using robust, consistent statistical methods. With some exceptions, the biases and drifts determined for most SAT–FP pairs are < 10 % and < 1 % yr−1.
Armin Sorooshian, Mikhail D. Alexandrov, Adam D. Bell, Ryan Bennett, Grace Betito, Sharon P. Burton, Megan E. Buzanowicz, Brian Cairns, Eduard V. Chemyakin, Gao Chen, Yonghoon Choi, Brian L. Collister, Anthony L. Cook, Andrea F. Corral, Ewan C. Crosbie, Bastiaan van Diedenhoven, Joshua P. DiGangi, Glenn S. Diskin, Sanja Dmitrovic, Eva-Lou Edwards, Marta A. Fenn, Richard A. Ferrare, David van Gilst, Johnathan W. Hair, David B. Harper, Miguel Ricardo A. Hilario, Chris A. Hostetler, Nathan Jester, Michael Jones, Simon Kirschler, Mary M. Kleb, John M. Kusterer, Sean Leavor, Joseph W. Lee, Hongyu Liu, Kayla McCauley, Richard H. Moore, Joseph Nied, Anthony Notari, John B. Nowak, David Painemal, Kasey E. Phillips, Claire E. Robinson, Amy Jo Scarino, Joseph S. Schlosser, Shane T. Seaman, Chellappan Seethala, Taylor J. Shingler, Michael A. Shook, Kenneth A. Sinclair, William L. Smith Jr., Douglas A. Spangenberg, Snorre A. Stamnes, Kenneth L. Thornhill, Christiane Voigt, Holger Vömel, Andrzej P. Wasilewski, Hailong Wang, Edward L. Winstead, Kira Zeider, Xubin Zeng, Bo Zhang, Luke D. Ziemba, and Paquita Zuidema
Earth Syst. Sci. Data, 15, 3419–3472, https://doi.org/10.5194/essd-15-3419-2023, https://doi.org/10.5194/essd-15-3419-2023, 2023
Short summary
Short summary
The NASA Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) produced a unique dataset for research into aerosol–cloud–meteorology interactions. HU-25 Falcon and King Air aircraft conducted systematic and spatially coordinated flights over the northwest Atlantic Ocean. This paper describes the ACTIVATE flight strategy, instrument and complementary dataset products, data access and usage details, and data application notes.
Piers M. Forster, Christopher J. Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Sonia I. Seneviratne, Blair Trewin, Xuebin Zhang, Myles Allen, Robbie Andrew, Arlene Birt, Alex Borger, Tim Boyer, Jiddu A. Broersma, Lijing Cheng, Frank Dentener, Pierre Friedlingstein, José M. Gutiérrez, Johannes Gütschow, Bradley Hall, Masayoshi Ishii, Stuart Jenkins, Xin Lan, June-Yi Lee, Colin Morice, Christopher Kadow, John Kennedy, Rachel Killick, Jan C. Minx, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sophie Szopa, Peter Thorne, Robert Rohde, Maisa Rojas Corradi, Dominik Schumacher, Russell Vose, Kirsten Zickfeld, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 15, 2295–2327, https://doi.org/10.5194/essd-15-2295-2023, https://doi.org/10.5194/essd-15-2295-2023, 2023
Short summary
Short summary
This is a critical decade for climate action, but there is no annual tracking of the level of human-induced warming. We build on the Intergovernmental Panel on Climate Change assessment reports that are authoritative but published infrequently to create a set of key global climate indicators that can be tracked through time. Our hope is that this becomes an important annual publication that policymakers, media, scientists and the public can refer to.
Yifan Guan, Gretchen Keppel-Aleks, Scott C. Doney, Christof Petri, Dave Pollard, Debra Wunch, Frank Hase, Hirofumi Ohyama, Isamu Morino, Justus Notholt, Kei Shiomi, Kim Strong, Rigel Kivi, Matthias Buschmann, Nicholas Deutscher, Paul Wennberg, Ralf Sussmann, Voltaire A. Velazco, and Yao Té
Atmos. Chem. Phys., 23, 5355–5372, https://doi.org/10.5194/acp-23-5355-2023, https://doi.org/10.5194/acp-23-5355-2023, 2023
Short summary
Short summary
We characterize spatial–temporal patterns of interannual variability (IAV) in atmospheric CO2 based on NASA’s Orbiting Carbon Observatory-2 (OCO-2). CO2 variation is strongly impacted by climate events, with higher anomalies during El Nino years. We show high correlation in IAV between space-based and ground-based CO2 from long-term sites. Because OCO-2 has near-global coverage, our paper provides a roadmap to study IAV where in situ observation is sparse, such as open oceans and remote lands.
Yu Someya, Yukio Yoshida, Hirofumi Ohyama, Shohei Nomura, Akihide Kamei, Isamu Morino, Hitoshi Mukai, Tsuneo Matsunaga, Joshua L. Laughner, Voltaire A. Velazco, Benedikt Herkommer, Yao Té, Mahesh Kumar Sha, Rigel Kivi, Minqiang Zhou, Young Suk Oh, Nicholas M. Deutscher, and David W. T. Griffith
Atmos. Meas. Tech., 16, 1477–1501, https://doi.org/10.5194/amt-16-1477-2023, https://doi.org/10.5194/amt-16-1477-2023, 2023
Short summary
Short summary
The updated retrieval algorithm for the Greenhouse gases Observing SATellite level 2 product is presented. The main changes in the algorithm from the previous one are the treatment of cirrus clouds, the degradation model of the sensor, solar irradiance, and gas absorption coefficient tables. The retrieval results showed improvements in fitting accuracy and an increase in the data amount over land. On the other hand, there are still large biases of XCO2 which should be corrected over the ocean.
Brendan Byrne, David F. Baker, Sourish Basu, Michael Bertolacci, Kevin W. Bowman, Dustin Carroll, Abhishek Chatterjee, Frédéric Chevallier, Philippe Ciais, Noel Cressie, David Crisp, Sean Crowell, Feng Deng, Zhu Deng, Nicholas M. Deutscher, Manvendra K. Dubey, Sha Feng, Omaira E. García, David W. T. Griffith, Benedikt Herkommer, Lei Hu, Andrew R. Jacobson, Rajesh Janardanan, Sujong Jeong, Matthew S. Johnson, Dylan B. A. Jones, Rigel Kivi, Junjie Liu, Zhiqiang Liu, Shamil Maksyutov, John B. Miller, Scot M. Miller, Isamu Morino, Justus Notholt, Tomohiro Oda, Christopher W. O'Dell, Young-Suk Oh, Hirofumi Ohyama, Prabir K. Patra, Hélène Peiro, Christof Petri, Sajeev Philip, David F. Pollard, Benjamin Poulter, Marine Remaud, Andrew Schuh, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Colm Sweeney, Yao Té, Hanqin Tian, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, John R. Worden, Debra Wunch, Yuanzhi Yao, Jeongmin Yun, Andrew Zammit-Mangion, and Ning Zeng
Earth Syst. Sci. Data, 15, 963–1004, https://doi.org/10.5194/essd-15-963-2023, https://doi.org/10.5194/essd-15-963-2023, 2023
Short summary
Short summary
Changes in the carbon stocks of terrestrial ecosystems result in emissions and removals of CO2. These can be driven by anthropogenic activities (e.g., deforestation), natural processes (e.g., fires) or in response to rising CO2 (e.g., CO2 fertilization). This paper describes a dataset of CO2 emissions and removals derived from atmospheric CO2 observations. This pilot dataset informs current capabilities and future developments towards top-down monitoring and verification systems.
Joshua L. Laughner, Sébastien Roche, Matthäus Kiel, Geoffrey C. Toon, Debra Wunch, Bianca C. Baier, Sébastien Biraud, Huilin Chen, Rigel Kivi, Thomas Laemmel, Kathryn McKain, Pierre-Yves Quéhé, Constantina Rousogenous, Britton B. Stephens, Kaley Walker, and Paul O. Wennberg
Atmos. Meas. Tech., 16, 1121–1146, https://doi.org/10.5194/amt-16-1121-2023, https://doi.org/10.5194/amt-16-1121-2023, 2023
Short summary
Short summary
Observations using sunlight to measure surface-to-space total column of greenhouse gases in the atmosphere need an initial guess of the vertical distribution of those gases to start from. We have developed an approach to provide those initial guess profiles that uses readily available meteorological data as input. This lets us make these guesses without simulating them with a global model. The profiles generated this way match independent observations well.
Simone Kotthaus, Juan Antonio Bravo-Aranda, Martine Collaud Coen, Juan Luis Guerrero-Rascado, Maria João Costa, Domenico Cimini, Ewan J. O'Connor, Maxime Hervo, Lucas Alados-Arboledas, María Jiménez-Portaz, Lucia Mona, Dominique Ruffieux, Anthony Illingworth, and Martial Haeffelin
Atmos. Meas. Tech., 16, 433–479, https://doi.org/10.5194/amt-16-433-2023, https://doi.org/10.5194/amt-16-433-2023, 2023
Short summary
Short summary
Profile observations of the atmospheric boundary layer now allow for layer heights and characteristics to be derived at high temporal and vertical resolution. With novel high-density ground-based remote-sensing measurement networks emerging, horizontal information content is also increasing. This review summarises the capabilities and limitations of various sensors and retrieval algorithms which need to be considered during the harmonisation of data products for high-impact applications.
Cynthia H. Whaley, Kathy S. Law, Jens Liengaard Hjorth, Henrik Skov, Stephen R. Arnold, Joakim Langner, Jakob Boyd Pernov, Garance Bergeron, Ilann Bourgeois, Jesper H. Christensen, Rong-You Chien, Makoto Deushi, Xinyi Dong, Peter Effertz, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Greg Huey, Ulas Im, Rigel Kivi, Louis Marelle, Tatsuo Onishi, Naga Oshima, Irina Petropavlovskikh, Jeff Peischl, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Tom Ryerson, Ragnhild Skeie, Sverre Solberg, Manu A. Thomas, Chelsea Thompson, Kostas Tsigaridis, Svetlana Tsyro, Steven T. Turnock, Knut von Salzen, and David W. Tarasick
Atmos. Chem. Phys., 23, 637–661, https://doi.org/10.5194/acp-23-637-2023, https://doi.org/10.5194/acp-23-637-2023, 2023
Short summary
Short summary
This study summarizes recent research on ozone in the Arctic, a sensitive and rapidly warming region. We find that the seasonal cycles of near-surface atmospheric ozone are variable depending on whether they are near the coast, inland, or at high altitude. Several global model simulations were evaluated, and we found that because models lack some of the ozone chemistry that is important for the coastal Arctic locations, they do not accurately simulate ozone there.
Katherine Dooley, Ciaran Kelly, Natascha Seifert, Therese Myslinski, Sophie O'Kelly, Rushna Siraj, Ciara Crosby, Jack Kevin Dunne, Kate McCauley, James Donoghue, Eoin Gaddren, Daniel Conway, Jordan Cooney, Niamh McCarthy, Eoin Cullen, Simon Noone, Conor Murphy, and Peter Thorne
Clim. Past, 19, 1–22, https://doi.org/10.5194/cp-19-1-2023, https://doi.org/10.5194/cp-19-1-2023, 2023
Short summary
Short summary
The highest currently recognised air temperature (33.3 °C) ever recorded in the Republic of Ireland was logged at Kilkenny Castle in 1887. This paper reassesses the plausibility of the record using various methods such as inter-station reassessment and 20CRv3 reanalysis. As a result, Boora 1976 at 32.5 °C is presented as a more reliable high-temperature record for the Republic of Ireland. The final decision however rests with the national meteorological service, Met Éireann.
Julie Thérèse Pasquier, Jan Henneberger, Fabiola Ramelli, Annika Lauber, Robert Oscar David, Jörg Wieder, Tim Carlsen, Rosa Gierens, Marion Maturilli, and Ulrike Lohmann
Atmos. Chem. Phys., 22, 15579–15601, https://doi.org/10.5194/acp-22-15579-2022, https://doi.org/10.5194/acp-22-15579-2022, 2022
Short summary
Short summary
It is important to understand how ice crystals and cloud droplets form in clouds, as their concentrations and sizes determine the exact radiative properties of the clouds. Normally, ice crystals form from aerosols, but we found evidence for the formation of additional ice crystals from the original ones over a large temperature range within Arctic clouds. In particular, additional ice crystals were formed during collisions of several ice crystals or during the freezing of large cloud droplets.
Xavier Calbet, Cintia Carbajal Henken, Sergio DeSouza-Machado, Bomin Sun, and Tony Reale
Atmos. Meas. Tech., 15, 7105–7118, https://doi.org/10.5194/amt-15-7105-2022, https://doi.org/10.5194/amt-15-7105-2022, 2022
Short summary
Short summary
Water vapor concentration in the atmosphere at small scales (< 6 km) is considered. The measurements show Gaussian random field behavior following Kolmogorov's theory of turbulence two-thirds law. These properties can be useful when estimating the water vapor variability within a given observed satellite scene or when different water vapor measurements have to be merged consistently.
Shunsuke Hoshino, Takuji Sugidachi, Kensaku Shimizu, Eriko Kobayashi, Masatomo Fujiwara, and Masami Iwabuchi
Atmos. Meas. Tech., 15, 5917–5948, https://doi.org/10.5194/amt-15-5917-2022, https://doi.org/10.5194/amt-15-5917-2022, 2022
Short summary
Short summary
GRUAN data products (GDPs) from Meisei iMS-100 and Vaisala RS92 were compared with 59 dual sounding data. For daytime observations, the iMS-100 temperature is around 0.5 K lower than RS92-GDP in the stratosphere, but for nighttime observations, the difference is around −0.1 K, and data are mostly in agreement. For relative humidity (RH), iMS-100 is around 1–2 % RH higher in the troposphere and 1 % RH smaller in the stratosphere than RS92, but both GDPs are in agreement for most of the profile.
Claudia Mignani, Lukas Zimmermann, Rigel Kivi, Alexis Berne, and Franz Conen
Atmos. Chem. Phys., 22, 13551–13568, https://doi.org/10.5194/acp-22-13551-2022, https://doi.org/10.5194/acp-22-13551-2022, 2022
Short summary
Short summary
We determined over the course of 8 winter months the phase of clouds associated with snowfall in Northern Finland using radiosondes and observations of ice particle habits at ground level. We found that precipitating clouds were extending from near ground to at least 2.7 km altitude and approximately three-quarters of them were likely glaciated. Possible moisture sources and ice formation processes are discussed.
Varaha Ravi Kiran, Madineni Venkat Ratnam, Masatomo Fujiwara, Herman Russchenberg, Frank G. Wienhold, Bomidi Lakshmi Madhavan, Mekalathur Roja Raman, Renju Nandan, Sivan Thankamani Akhil Raj, Alladi Hemanth Kumar, and Saginela Ravindra Babu
Atmos. Meas. Tech., 15, 4709–4734, https://doi.org/10.5194/amt-15-4709-2022, https://doi.org/10.5194/amt-15-4709-2022, 2022
Short summary
Short summary
We proposed and conducted the multi-instrumental BACIS (Balloon-borne Aerosol–Cloud Interaction Studies) field campaigns using balloon-borne in situ measurements and ground-based and space-borne remote sensing instruments. Aerosol-cloud interaction is quantified for liquid clouds by segregating aerosol and cloud information in a balloon profile. Overall, the observational approach proposed here demonstrated its capability for understanding the aerosol–cloud interaction process.
Matthias Schneider, Benjamin Ertl, Qiansi Tu, Christopher J. Diekmann, Farahnaz Khosrawi, Amelie N. Röhling, Frank Hase, Darko Dubravica, Omaira E. García, Eliezer Sepúlveda, Tobias Borsdorff, Jochen Landgraf, Alba Lorente, André Butz, Huilin Chen, Rigel Kivi, Thomas Laemmel, Michel Ramonet, Cyril Crevoisier, Jérome Pernin, Martin Steinbacher, Frank Meinhardt, Kimberly Strong, Debra Wunch, Thorsten Warneke, Coleen Roehl, Paul O. Wennberg, Isamu Morino, Laura T. Iraci, Kei Shiomi, Nicholas M. Deutscher, David W. T. Griffith, Voltaire A. Velazco, and David F. Pollard
Atmos. Meas. Tech., 15, 4339–4371, https://doi.org/10.5194/amt-15-4339-2022, https://doi.org/10.5194/amt-15-4339-2022, 2022
Short summary
Short summary
We present a computationally very efficient method for the synergetic use of level 2 remote-sensing data products. We apply the method to IASI vertical profile and TROPOMI total column space-borne methane observations and thus gain sensitivity for the tropospheric methane partial columns, which is not achievable by the individual use of TROPOMI and IASI. These synergetic effects are evaluated theoretically and empirically by inter-comparisons to independent references of TCCON, AirCore, and GAW.
Donato Summa, Fabio Madonna, Noemi Franco, Benedetto De Rosa, and Paolo Di Girolamo
Atmos. Meas. Tech., 15, 4153–4170, https://doi.org/10.5194/amt-15-4153-2022, https://doi.org/10.5194/amt-15-4153-2022, 2022
Short summary
Short summary
The evolution of the atmospheric boundary layer height (ABLH) has an important impact on meteorology. However, the complexity of the phenomena occurring within the ABL and the influence of advection and local accumulation processes often prevent an unambiguous determination of the ABLH. The paper reports results from an inter-comparison effort involving different sensors and techniques to measure the ABLH. Correlations between the ABLH and other atmospheric variables are also assessed.
William G. Read, Gabriele Stiller, Stefan Lossow, Michael Kiefer, Farahnaz Khosrawi, Dale Hurst, Holger Vömel, Karen Rosenlof, Bianca M. Dinelli, Piera Raspollini, Gerald E. Nedoluha, John C. Gille, Yasuko Kasai, Patrick Eriksson, Christopher E. Sioris, Kaley A. Walker, Katja Weigel, John P. Burrows, and Alexei Rozanov
Atmos. Meas. Tech., 15, 3377–3400, https://doi.org/10.5194/amt-15-3377-2022, https://doi.org/10.5194/amt-15-3377-2022, 2022
Short summary
Short summary
This paper attempts to provide an assessment of the accuracy of 21 satellite-based instruments that remotely measure atmospheric humidity in the upper troposphere of the Earth's atmosphere. The instruments made their measurements from 1984 to the present time; however, most of these instruments began operations after 2000, and only a few are still operational. The objective of this study is to quantify the accuracy of each satellite humidity data set.
Stefan Noël, Maximilian Reuter, Michael Buchwitz, Jakob Borchardt, Michael Hilker, Oliver Schneising, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Robert J. Parker, Hiroshi Suto, Yukio Yoshida, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Cheng Liu, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, Christof Petri, David F. Pollard, Markus Rettinger, Coleen Roehl, Constantina Rousogenous, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Mihalis Vrekoussis, and Thorsten Warneke
Atmos. Meas. Tech., 15, 3401–3437, https://doi.org/10.5194/amt-15-3401-2022, https://doi.org/10.5194/amt-15-3401-2022, 2022
Short summary
Short summary
We present a new version (v3) of the GOSAT and GOSAT-2 FOCAL products.
In addition to an increased number of XCO2 data, v3 also includes products for XCH4 (full-physics and proxy), XH2O and the relative ratio of HDO to H2O (δD). For GOSAT-2, we also present first XCO and XN2O results. All FOCAL data products show reasonable spatial distribution and temporal variations and agree well with TCCON. Global XN2O maps show a gradient from the tropics to higher latitudes on the order of 15 ppb.
Nora Mettig, Mark Weber, Alexei Rozanov, John P. Burrows, Pepijn Veefkind, Anne M. Thompson, Ryan M. Stauffer, Thierry Leblanc, Gerard Ancellet, Michael J. Newchurch, Shi Kuang, Rigel Kivi, Matthew B. Tully, Roeland Van Malderen, Ankie Piters, Bogumil Kois, René Stübi, and Pavla Skrivankova
Atmos. Meas. Tech., 15, 2955–2978, https://doi.org/10.5194/amt-15-2955-2022, https://doi.org/10.5194/amt-15-2955-2022, 2022
Short summary
Short summary
Vertical ozone profiles from combined spectral measurements in the UV and IR spectral ranges were retrieved by using data from TROPOMI/S5P and CrIS/Suomi-NPP. The vertical resolution and accuracy of the ozone profiles are improved by combining both wavelength ranges compared to retrievals limited to UV or IR spectral data only. The advancement of our TOPAS algorithm for combined measurements is required because in the UV-only retrieval the vertical resolution in the troposphere is very limited.
Amin Shoari Nejad, Andrew C. Parnell, Alice Greene, Peter Thorne, Brian P. Kelleher, Robert J. N. Devoy, and Gerard McCarthy
Ocean Sci., 18, 511–522, https://doi.org/10.5194/os-18-511-2022, https://doi.org/10.5194/os-18-511-2022, 2022
Short summary
Short summary
We have collated multiple sources of tide gauge data for Dublin Port, and subsequently corrected them for bias. We have then shown that these corrected mean sea level measurements agree with nearby tide gauges to a far higher degree than the raw data. A longer-term comparison with Brest and Newlyn also indicates overall agreement. Our final adjusted dataset estimated the rate of sea level rise to be 1.1 mm/yr between 1953 and 2016 and 7 mm/yr between 1997 and 2016 at Dublin Port.
Carlos Alberti, Frank Hase, Matthias Frey, Darko Dubravica, Thomas Blumenstock, Angelika Dehn, Paolo Castracane, Gregor Surawicz, Roland Harig, Bianca C. Baier, Caroline Bès, Jianrong Bi, Hartmut Boesch, André Butz, Zhaonan Cai, Jia Chen, Sean M. Crowell, Nicholas M. Deutscher, Dragos Ene, Jonathan E. Franklin, Omaira García, David Griffith, Bruno Grouiez, Michel Grutter, Abdelhamid Hamdouni, Sander Houweling, Neil Humpage, Nicole Jacobs, Sujong Jeong, Lilian Joly, Nicholas B. Jones, Denis Jouglet, Rigel Kivi, Ralph Kleinschek, Morgan Lopez, Diogo J. Medeiros, Isamu Morino, Nasrin Mostafavipak, Astrid Müller, Hirofumi Ohyama, Paul I. Palmer, Mahesh Pathakoti, David F. Pollard, Uwe Raffalski, Michel Ramonet, Robbie Ramsay, Mahesh Kumar Sha, Kei Shiomi, William Simpson, Wolfgang Stremme, Youwen Sun, Hiroshi Tanimoto, Yao Té, Gizaw Mengistu Tsidu, Voltaire A. Velazco, Felix Vogel, Masataka Watanabe, Chong Wei, Debra Wunch, Marcia Yamasoe, Lu Zhang, and Johannes Orphal
Atmos. Meas. Tech., 15, 2433–2463, https://doi.org/10.5194/amt-15-2433-2022, https://doi.org/10.5194/amt-15-2433-2022, 2022
Short summary
Short summary
Space-borne greenhouse gas missions require ground-based validation networks capable of providing fiducial reference measurements. Here, considerable refinements of the calibration procedures for the COllaborative Carbon Column Observing Network (COCCON) are presented. Laboratory and solar side-by-side procedures for the characterization of the spectrometers have been refined and extended. Revised calibration factors for XCO2, XCO and XCH4 are provided, incorporating 47 new spectrometers.
Andreas Schneider, Tobias Borsdorff, Joost aan de Brugh, Alba Lorente, Franziska Aemisegger, David Noone, Dean Henze, Rigel Kivi, and Jochen Landgraf
Atmos. Meas. Tech., 15, 2251–2275, https://doi.org/10.5194/amt-15-2251-2022, https://doi.org/10.5194/amt-15-2251-2022, 2022
Short summary
Short summary
This paper presents an extended H₂O/HDO total column dataset from short-wave infrared measurements by TROPOMI including cloudy and clear-sky scenes. Coverage is tremendously increased compared to previous TROPOMI HDO datasets. The new dataset is validated against recent ground-based FTIR measurements from TCCON and against aircraft measurements over the ocean. The use of the new dataset is demonstrated with a case study of a cold air outbreak in January 2020.
Samuel O. Awe, Martin Mahony, Edley Michaud, Conor Murphy, Simon J. Noone, Victor K. C. Venema, Thomas G. Thorne, and Peter W. Thorne
Clim. Past, 18, 793–820, https://doi.org/10.5194/cp-18-793-2022, https://doi.org/10.5194/cp-18-793-2022, 2022
Short summary
Short summary
We unearth and analyse 2 decades of highly valuable measurements made on Mauritius at the Royal Alfred Observatory, where several distinct thermometer combinations were in use and compared, at the turn of the 20th century. This series provides unique insights into biases in early instrumental temperature records. Differences are substantial and for some instruments exhibit strong seasonality. This reinforces the critical importance of understanding early instrumental series biases.
Anna A. Shestakova, Dmitry G. Chechin, Christof Lüpkes, Jörg Hartmann, and Marion Maturilli
Atmos. Chem. Phys., 22, 1529–1548, https://doi.org/10.5194/acp-22-1529-2022, https://doi.org/10.5194/acp-22-1529-2022, 2022
Short summary
Short summary
This article presents a comprehensive analysis of the easterly orographic wind episode which occurred over Svalbard on 30–31 May 2017. This wind caused a significant temperature rise on the lee side of the mountains and greatly intensified the snowmelt. This episode was investigated on the basis of measurements collected during the ACLOUD/PASCAL field campaigns with the help of numerical modeling.
Thomas E. Taylor, Christopher W. O'Dell, David Crisp, Akhiko Kuze, Hannakaisa Lindqvist, Paul O. Wennberg, Abhishek Chatterjee, Michael Gunson, Annmarie Eldering, Brendan Fisher, Matthäus Kiel, Robert R. Nelson, Aronne Merrelli, Greg Osterman, Frédéric Chevallier, Paul I. Palmer, Liang Feng, Nicholas M. Deutscher, Manvendra K. Dubey, Dietrich G. Feist, Omaira E. García, David W. T. Griffith, Frank Hase, Laura T. Iraci, Rigel Kivi, Cheng Liu, Martine De Mazière, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, David F. Pollard, Markus Rettinger, Matthias Schneider, Coleen M. Roehl, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, and Debra Wunch
Earth Syst. Sci. Data, 14, 325–360, https://doi.org/10.5194/essd-14-325-2022, https://doi.org/10.5194/essd-14-325-2022, 2022
Short summary
Short summary
We provide an analysis of an 11-year record of atmospheric carbon dioxide (CO2) concentrations derived using an optimal estimation retrieval algorithm on measurements made by the GOSAT satellite. The new product (version 9) shows improvement over the previous version (v7.3) as evaluated against independent estimates of CO2 from ground-based sensors and atmospheric inversion systems. We also compare the new GOSAT CO2 values to collocated estimates from NASA's Orbiting Carbon Observatory-2.
Christoph von Rohden, Michael Sommer, Tatjana Naebert, Vasyl Motuz, and Ruud J. Dirksen
Atmos. Meas. Tech., 15, 383–405, https://doi.org/10.5194/amt-15-383-2022, https://doi.org/10.5194/amt-15-383-2022, 2022
Short summary
Short summary
Heating by solar radiation is the dominant error source for daytime temperature measurements by radiosondes. This paper describes a new laboratory setup (SISTER) to characterise this radiation error for pressures and ventilation speeds that are typical for the conditions between the surface and 35 km altitude. This characterisation is the basis for the radiation correction that is applied in the GRUAN data processing for the RS41 radiosonde. The GRUAN data product is compared to that of Vaisala.
Carolina Viceto, Irina V. Gorodetskaya, Annette Rinke, Marion Maturilli, Alfredo Rocha, and Susanne Crewell
Atmos. Chem. Phys., 22, 441–463, https://doi.org/10.5194/acp-22-441-2022, https://doi.org/10.5194/acp-22-441-2022, 2022
Short summary
Short summary
We focus on anomalous moisture transport events known as atmospheric rivers (ARs). During ACLOUD and PASCAL, three AR events were identified: 30 May, 6 June, and 9 June 2017. We explore their spatio-temporal evolution and precipitation patterns using measurements, reanalyses, and a model. We show the importance of the following: Atlantic and Siberian pathways during spring–summer in the Arctic, AR-associated heat/moisture increase, precipitation phase transition, and high-resolution datasets.
Bruce Ingleby, Martin Motl, Graeme Marlton, David Edwards, Michael Sommer, Christoph von Rohden, Holger Vömel, and Hannu Jauhiainen
Atmos. Meas. Tech., 15, 165–183, https://doi.org/10.5194/amt-15-165-2022, https://doi.org/10.5194/amt-15-165-2022, 2022
Short summary
Short summary
Radiosonde descent data could provide extra profiles of the atmosphere for forecasting and other uses. Descent data from Vaisala RS41 radiosondes have been compared with the ascent profiles and with ECMWF short-range forecasts. The agreement is mostly good. The descent rate is very variable and high descent rates cause temperature biases, especially at upper levels. Ascent winds are affected by pendulum motion; on average, the descent winds are smoother.
Hélène Bresson, Annette Rinke, Mario Mech, Daniel Reinert, Vera Schemann, Kerstin Ebell, Marion Maturilli, Carolina Viceto, Irina Gorodetskaya, and Susanne Crewell
Atmos. Chem. Phys., 22, 173–196, https://doi.org/10.5194/acp-22-173-2022, https://doi.org/10.5194/acp-22-173-2022, 2022
Short summary
Short summary
Arctic warming is pronounced, and one factor in this is the poleward atmospheric transport of heat and moisture. This study assesses the 4D structure of an Arctic moisture intrusion event which occurred in June 2017. For the first time, high-resolution pan-Arctic ICON simulations are performed and compared with global models, reanalysis, and observations. Results show the added value of high resolution in the event representation and the impact of the intrusion on the surface energy fluxes.
Joseph Mendonca, Ray Nassar, Christopher W. O'Dell, Rigel Kivi, Isamu Morino, Justus Notholt, Christof Petri, Kimberly Strong, and Debra Wunch
Atmos. Meas. Tech., 14, 7511–7524, https://doi.org/10.5194/amt-14-7511-2021, https://doi.org/10.5194/amt-14-7511-2021, 2021
Short summary
Short summary
Machine learning has become an important tool for pattern recognition in many applications. In this study, we used a neural network to improve the data quality of OCO-2 measurements made at northern high latitudes. The neural network was trained and used as a binary classifier to filter out bad OCO-2 measurements in order to increase the accuracy and precision of OCO-2 XCO2 measurements in the Boreal and Arctic regions.
Daan Hubert, Klaus-Peter Heue, Jean-Christopher Lambert, Tijl Verhoelst, Marc Allaart, Steven Compernolle, Patrick D. Cullis, Angelika Dehn, Christian Félix, Bryan J. Johnson, Arno Keppens, Debra E. Kollonige, Christophe Lerot, Diego Loyola, Matakite Maata, Sukarni Mitro, Maznorizan Mohamad, Ankie Piters, Fabian Romahn, Henry B. Selkirk, Francisco R. da Silva, Ryan M. Stauffer, Anne M. Thompson, J. Pepijn Veefkind, Holger Vömel, Jacquelyn C. Witte, and Claus Zehner
Atmos. Meas. Tech., 14, 7405–7433, https://doi.org/10.5194/amt-14-7405-2021, https://doi.org/10.5194/amt-14-7405-2021, 2021
Short summary
Short summary
We assess the first 2 years of TROPOMI tropical tropospheric ozone column data. Comparisons to reference measurements by ozonesonde and satellite sensors show that TROPOMI bias (−0.1 to +2.3 DU) and precision (1.5 to 2.5 DU) meet mission requirements. Potential causes of bias and its spatio-temporal structure are discussed, as well as ways to identify sampling errors. Our analysis of known geophysical patterns demonstrates the improved performance of TROPOMI with respect to its predecessors.
Nicole Jacobs, William R. Simpson, Kelly A. Graham, Christopher Holmes, Frank Hase, Thomas Blumenstock, Qiansi Tu, Matthias Frey, Manvendra K. Dubey, Harrison A. Parker, Debra Wunch, Rigel Kivi, Pauli Heikkinen, Justus Notholt, Christof Petri, and Thorsten Warneke
Atmos. Chem. Phys., 21, 16661–16687, https://doi.org/10.5194/acp-21-16661-2021, https://doi.org/10.5194/acp-21-16661-2021, 2021
Short summary
Short summary
Spatial patterns of carbon dioxide seasonal cycle amplitude and summer drawdown timing derived from the OCO-2 satellite over northern high latitudes agree well with corresponding estimates from two models. The Asian boreal forest is anomalous with the largest amplitude and earliest seasonal drawdown. Modeled land contact tracers suggest that accumulated CO2 exchanges during atmospheric transport play a major role in shaping carbon dioxide seasonality in northern high-latitude regions.
Kevin Ohneiser, Albert Ansmann, Alexandra Chudnovsky, Ronny Engelmann, Christoph Ritter, Igor Veselovskii, Holger Baars, Henriette Gebauer, Hannes Griesche, Martin Radenz, Julian Hofer, Dietrich Althausen, Sandro Dahlke, and Marion Maturilli
Atmos. Chem. Phys., 21, 15783–15808, https://doi.org/10.5194/acp-21-15783-2021, https://doi.org/10.5194/acp-21-15783-2021, 2021
Short summary
Short summary
The highlight of the lidar measurements during the 1-year MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition of the German icebreaker Polarstern (October 2019–October 2020) was the detection of a persistent, 10 km deep Siberian wildfire smoke layer in the upper troposphere and lower stratosphere (UTLS) from about 7–8 km to 17–18 km height that could potentially have impacted the record-breaking ozone depletion over the Arctic in the spring of 2020.
Marco Rosoldi, Graziano Coppa, Andrea Merlone, Chiara Musacchio, and Fabio Madonna
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-337, https://doi.org/10.5194/amt-2021-337, 2021
Preprint withdrawn
Short summary
Short summary
A methodology based on tests in climatic chambers was proposed to evaluate the effect of radiosonde models’ change on radiosounding stations’ data series, in terms of measurements accuracy and homogeneity. For Vaisala radiosonde models RS92 and RS41, the noise, the calibration accuracy and the bias of their temperature sensors were quantified independently of the manufacturer. The potential effects of steep thermal changes during radiosondes’ pre-launch phase were also investigated.
Mahesh Kumar Sha, Bavo Langerock, Jean-François L. Blavier, Thomas Blumenstock, Tobias Borsdorff, Matthias Buschmann, Angelika Dehn, Martine De Mazière, Nicholas M. Deutscher, Dietrich G. Feist, Omaira E. García, David W. T. Griffith, Michel Grutter, James W. Hannigan, Frank Hase, Pauli Heikkinen, Christian Hermans, Laura T. Iraci, Pascal Jeseck, Nicholas Jones, Rigel Kivi, Nicolas Kumps, Jochen Landgraf, Alba Lorente, Emmanuel Mahieu, Maria V. Makarova, Johan Mellqvist, Jean-Marc Metzger, Isamu Morino, Tomoo Nagahama, Justus Notholt, Hirofumi Ohyama, Ivan Ortega, Mathias Palm, Christof Petri, David F. Pollard, Markus Rettinger, John Robinson, Sébastien Roche, Coleen M. Roehl, Amelie N. Röhling, Constantina Rousogenous, Matthias Schneider, Kei Shiomi, Dan Smale, Wolfgang Stremme, Kimberly Strong, Ralf Sussmann, Yao Té, Osamu Uchino, Voltaire A. Velazco, Corinne Vigouroux, Mihalis Vrekoussis, Pucai Wang, Thorsten Warneke, Tyler Wizenberg, Debra Wunch, Shoma Yamanouchi, Yang Yang, and Minqiang Zhou
Atmos. Meas. Tech., 14, 6249–6304, https://doi.org/10.5194/amt-14-6249-2021, https://doi.org/10.5194/amt-14-6249-2021, 2021
Short summary
Short summary
This paper presents, for the first time, Sentinel-5 Precursor methane and carbon monoxide validation results covering a period from November 2017 to September 2020. For this study, we used global TCCON and NDACC-IRWG network data covering a wide range of atmospheric and surface conditions across different terrains. We also show the influence of a priori alignment, smoothing uncertainties and the sensitivity of the validation results towards the application of advanced co-location criteria.
Nora Mettig, Mark Weber, Alexei Rozanov, Carlo Arosio, John P. Burrows, Pepijn Veefkind, Anne M. Thompson, Richard Querel, Thierry Leblanc, Sophie Godin-Beekmann, Rigel Kivi, and Matthew B. Tully
Atmos. Meas. Tech., 14, 6057–6082, https://doi.org/10.5194/amt-14-6057-2021, https://doi.org/10.5194/amt-14-6057-2021, 2021
Short summary
Short summary
TROPOMI is a nadir-viewing satellite that has observed global atmospheric trace gases at unprecedented spatial resolution since 2017. The retrieval of ozone profiles with high accuracy has been demonstrated using the TOPAS (Tikhonov regularised Ozone Profile retrievAl with SCIATRAN) algorithm and applying appropriate spectral corrections to TROPOMI UV data. Ozone profiles from TROPOMI were compared to ozonesonde and lidar profiles, showing an agreement to within 5 % in the stratosphere.
Ronny Engelmann, Albert Ansmann, Kevin Ohneiser, Hannes Griesche, Martin Radenz, Julian Hofer, Dietrich Althausen, Sandro Dahlke, Marion Maturilli, Igor Veselovskii, Cristofer Jimenez, Robert Wiesen, Holger Baars, Johannes Bühl, Henriette Gebauer, Moritz Haarig, Patric Seifert, Ulla Wandinger, and Andreas Macke
Atmos. Chem. Phys., 21, 13397–13423, https://doi.org/10.5194/acp-21-13397-2021, https://doi.org/10.5194/acp-21-13397-2021, 2021
Short summary
Short summary
A Raman lidar was operated aboard the icebreaker Polarstern during MOSAiC and monitored aerosol and cloud layers in the central Arctic up to 30 km height. The article provides an overview of the spectrum of aerosol profiling observations and shows aerosol–cloud interaction studies for liquid-water and ice clouds. A highlight was the detection of a 10 km deep wildfire smoke layer over the North Pole up to 17 km height from the fire season of 2019, which persisted over the whole winter period.
Benjamin Männel, Florian Zus, Galina Dick, Susanne Glaser, Maximilian Semmling, Kyriakos Balidakis, Jens Wickert, Marion Maturilli, Sandro Dahlke, and Harald Schuh
Atmos. Meas. Tech., 14, 5127–5138, https://doi.org/10.5194/amt-14-5127-2021, https://doi.org/10.5194/amt-14-5127-2021, 2021
Short summary
Short summary
Within the MOSAiC expedition, GNSS was used to monitor variations in atmospheric water vapor. Based on 15 months of continuously tracked data, coordinates and hourly zenith total delays (ZTDs) were determined using kinematic precise point positioning. The derived ZTD values agree within few millimeters with ERA5 and terrestrial GNSS and VLBI stations. The derived integrated water vapor corresponds to the frequently launched radiosondes (0.08 ± 0.04 kg m−2, rms of the differences of 1.47 kg m−2).
Jun Inoue, Yutaka Tobo, Kazutoshi Sato, Fumikazu Taketani, and Marion Maturilli
Atmos. Meas. Tech., 14, 4971–4987, https://doi.org/10.5194/amt-14-4971-2021, https://doi.org/10.5194/amt-14-4971-2021, 2021
Short summary
Short summary
A cloud particle sensor (CPS) sonde is an observing system to obtain the signals of the phase, size, and the number of cloud particles. Based on the field experiments in the Arctic regions and numerical experiments, we proposed a method to correct the CPS sonde data and found that the CPS sonde system can appropriately observe the liquid cloud if our correction method is applied.
Susanne Crewell, Kerstin Ebell, Patrick Konjari, Mario Mech, Tatiana Nomokonova, Ana Radovan, David Strack, Arantxa M. Triana-Gómez, Stefan Noël, Raul Scarlat, Gunnar Spreen, Marion Maturilli, Annette Rinke, Irina Gorodetskaya, Carolina Viceto, Thomas August, and Marc Schröder
Atmos. Meas. Tech., 14, 4829–4856, https://doi.org/10.5194/amt-14-4829-2021, https://doi.org/10.5194/amt-14-4829-2021, 2021
Short summary
Short summary
Water vapor (WV) is an important variable in the climate system. Satellite measurements are thus crucial to characterize the spatial and temporal variability in WV and how it changed over time. In particular with respect to the observed strong Arctic warming, the role of WV still needs to be better understood. However, as shown in this paper, a detailed understanding is still hampered by large uncertainties in the various satellite WV products, showing the need for improved methods to derive WV.
Ilya Stanevich, Dylan B. A. Jones, Kimberly Strong, Martin Keller, Daven K. Henze, Robert J. Parker, Hartmut Boesch, Debra Wunch, Justus Notholt, Christof Petri, Thorsten Warneke, Ralf Sussmann, Matthias Schneider, Frank Hase, Rigel Kivi, Nicholas M. Deutscher, Voltaire A. Velazco, Kaley A. Walker, and Feng Deng
Atmos. Chem. Phys., 21, 9545–9572, https://doi.org/10.5194/acp-21-9545-2021, https://doi.org/10.5194/acp-21-9545-2021, 2021
Short summary
Short summary
We explore the utility of a weak-constraint (WC) four-dimensional variational (4D-Var) data assimilation scheme for mitigating systematic errors in methane simulation in the GEOS-Chem model. We use data from the Greenhouse Gases Observing Satellite (GOSAT) and show that, compared to the traditional 4D-Var approach, the WC scheme improves the agreement between the model and independent observations. We find that the WC corrections to the model provide insight into the source of the errors.
Matthieu Dogniaux, Cyril Crevoisier, Raymond Armante, Virginie Capelle, Thibault Delahaye, Vincent Cassé, Martine De Mazière, Nicholas M. Deutscher, Dietrich G. Feist, Omaira E. Garcia, David W. T. Griffith, Frank Hase, Laura T. Iraci, Rigel Kivi, Isamu Morino, Justus Notholt, David F. Pollard, Coleen M. Roehl, Kei Shiomi, Kimberly Strong, Yao Té, Voltaire A. Velazco, and Thorsten Warneke
Atmos. Meas. Tech., 14, 4689–4706, https://doi.org/10.5194/amt-14-4689-2021, https://doi.org/10.5194/amt-14-4689-2021, 2021
Short summary
Short summary
We present the Adaptable 4A Inversion (5AI), an implementation of the optimal estimation (OE) algorithm, relying on the Automatized Atmospheric Absorption Atlas (4A/OP) radiative transfer model, that enables the retrieval of greenhouse gas atmospheric weighted columns from infrared measurements. It is tested on a sample of Orbiting Carbon Observatory-2 observations, and its results satisfactorily compare to several reference products, thus showing the reliability of 5AI OE implementation.
Stefan Noël, Maximilian Reuter, Michael Buchwitz, Jakob Borchardt, Michael Hilker, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Hiroshi Suto, Yukio Yoshida, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Isamu Morino, Justus Notholt, Hirofumi Ohyama, Christof Petri, James R. Podolske, David F. Pollard, Mahesh Kumar Sha, Kei Shiomi, Ralf Sussmann, Yao Té, Voltaire A. Velazco, and Thorsten Warneke
Atmos. Meas. Tech., 14, 3837–3869, https://doi.org/10.5194/amt-14-3837-2021, https://doi.org/10.5194/amt-14-3837-2021, 2021
Short summary
Short summary
We present the first GOSAT and GOSAT-2 XCO2 data derived with the FOCAL retrieval algorithm. Comparisons of the GOSAT-FOCAL product with other data reveal long-term agreement within about 1 ppm over 1 decade, differences in seasonal variations of about 0.5 ppm, and a mean regional bias to ground-based TCCON data of 0.56 ppm with a mean scatter of 1.89 ppm. GOSAT-2-FOCAL data are preliminary only, but first comparisons show that they compare well with the GOSAT-FOCAL results and TCCON.
Ayham Alyosef, Domenico Cimini, Lorenzo Luini, Carlo Riva, Frank S. Marzano, Marianna Biscarini, Luca Milani, Antonio Martellucci, Sabrina Gentile, Saverio T. Nilo, Francesco Di Paola, Ayman Alkhateeb, and Filomena Romano
Atmos. Meas. Tech., 14, 2737–2748, https://doi.org/10.5194/amt-14-2737-2021, https://doi.org/10.5194/amt-14-2737-2021, 2021
Short summary
Short summary
Telecommunication is based on the propagation of radio signals through the atmosphere. The signal power diminishes along the path due to atmospheric attenuation, which needs to be estimated to be accounted for. In a study funded by the European Space Agency, we demonstrate an innovative method improving atmospheric attenuation estimates from ground-based radiometric measurements by 10–30 %. More accurate atmospheric attenuation estimates imply better telecommunication services in the future.
Holger Vömel, Mack Goodstein, Laura Tudor, Jacquelyn Witte, Željka Fuchs-Stone, Stipo Sentić, David Raymond, Jose Martinez-Claros, Ana Juračić, Vijit Maithel, and Justin W. Whitaker
Earth Syst. Sci. Data, 13, 1107–1117, https://doi.org/10.5194/essd-13-1107-2021, https://doi.org/10.5194/essd-13-1107-2021, 2021
Short summary
Short summary
We provide an extensive data set of in situ vertical profile observations for pressure, temperature, humidity, and winds from 648 NCAR NRD41 dropsondes during the Organization of Tropical East Pacific Convection (OTREC) field campaign. The measurements were taken during 22 flights of the NSF/NCAR G-V research aircraft in August and September 2019 over the eastern Pacific Ocean and the Caribbean Sea. The data allow a detailed study of atmospheric dynamics and convection over the tropical ocean.
Qiansi Tu, Frank Hase, Thomas Blumenstock, Matthias Schneider, Andreas Schneider, Rigel Kivi, Pauli Heikkinen, Benjamin Ertl, Christopher Diekmann, Farahnaz Khosrawi, Michael Sommer, Tobias Borsdorff, and Uwe Raffalski
Atmos. Meas. Tech., 14, 1993–2011, https://doi.org/10.5194/amt-14-1993-2021, https://doi.org/10.5194/amt-14-1993-2021, 2021
Short summary
Short summary
We compare column-averaged dry-air mole fractions of water vapor (XH2O) retrievals from the COllaborative Carbon Column Observing Network (COCCON) with two co-located ground-based spectrometers as references at two boreal sites. Our study supports the assumption that COCCON also delivers a well-characterized XH2O data product. This is the first published study applying COCCON for MUSICA IASI and TROPOMI validation.
Masatomo Fujiwara, Tetsu Sakai, Tomohiro Nagai, Koichi Shiraishi, Yoichi Inai, Sergey Khaykin, Haosen Xi, Takashi Shibata, Masato Shiotani, and Laura L. Pan
Atmos. Chem. Phys., 21, 3073–3090, https://doi.org/10.5194/acp-21-3073-2021, https://doi.org/10.5194/acp-21-3073-2021, 2021
Short summary
Short summary
Lidar aerosol particle measurements in Japan during the summer of 2018 were found to detect the eastward extension of the Asian tropopause aerosol layer from the Asian summer monsoon anticyclone in the lower stratosphere. Analysis of various other data indicates that the observed enhanced particle levels are due to eastward-shedding vortices from the anticyclone, originating from pollutants emitted in Asian countries and transported vertically by convection in the Asian summer monsoon region.
Manuel Graf, Philipp Scheidegger, André Kupferschmid, Herbert Looser, Thomas Peter, Ruud Dirksen, Lukas Emmenegger, and Béla Tuzson
Atmos. Meas. Tech., 14, 1365–1378, https://doi.org/10.5194/amt-14-1365-2021, https://doi.org/10.5194/amt-14-1365-2021, 2021
Short summary
Short summary
Water vapor is the most important natural greenhouse gas. The accurate and frequent measurement of its abundance, especially in the upper troposphere and lower stratosphere (UTLS), is technically challenging. We developed and characterized a mid-IR absorption spectrometer for highly accurate water vapor measurements in the UTLS. The instrument is sufficiently small and lightweight (3.9 kg) to be carried by meteorological balloons, which enables frequent and cost-effective soundings.
Thomas Blumenstock, Frank Hase, Axel Keens, Denis Czurlok, Orfeo Colebatch, Omaira Garcia, David W. T. Griffith, Michel Grutter, James W. Hannigan, Pauli Heikkinen, Pascal Jeseck, Nicholas Jones, Rigel Kivi, Erik Lutsch, Maria Makarova, Hamud K. Imhasin, Johan Mellqvist, Isamu Morino, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Uwe Raffalski, Markus Rettinger, John Robinson, Matthias Schneider, Christian Servais, Dan Smale, Wolfgang Stremme, Kimberly Strong, Ralf Sussmann, Yao Té, and Voltaire A. Velazco
Atmos. Meas. Tech., 14, 1239–1252, https://doi.org/10.5194/amt-14-1239-2021, https://doi.org/10.5194/amt-14-1239-2021, 2021
Short summary
Short summary
This study investigates the level of channeling (optical resonances) of each FTIR spectrometer within the Network for the Detection of Atmospheric Composition Change (NDACC). Since the air gap of the beam splitter is a significant source of channeling, we propose new beam splitters with an increased wedge of the air gap. This study shows the potential for reducing channeling in the FTIR spectrometers operated by the NDACC, thereby increasing the quality of recorded spectra across the network.
Iris-Amata Dion, Cyrille Dallet, Philippe Ricaud, Fabien Carminati, Thibaut Dauhut, and Peter Haynes
Atmos. Chem. Phys., 21, 2191–2210, https://doi.org/10.5194/acp-21-2191-2021, https://doi.org/10.5194/acp-21-2191-2021, 2021
Short summary
Short summary
Ice in the tropopause has a strong radiative effect on climate. The amount of ice injected (∆IWC) up to the tropical tropopause layer has been shown to be the highest over the Maritime Continent (MC), a region that includes Indonesia. ∆IWC is studied over islands and sea of the MC. Space-borne observations of ice, precipitation and lightning are used to estimate ∆IWC and are compared to ∆IWC estimated from the ERA5 reanalyses. It is shown that Java is the area of the greatest ∆IWC over the MC.
Alba Lorente, Tobias Borsdorff, Andre Butz, Otto Hasekamp, Joost aan de Brugh, Andreas Schneider, Lianghai Wu, Frank Hase, Rigel Kivi, Debra Wunch, David F. Pollard, Kei Shiomi, Nicholas M. Deutscher, Voltaire A. Velazco, Coleen M. Roehl, Paul O. Wennberg, Thorsten Warneke, and Jochen Landgraf
Atmos. Meas. Tech., 14, 665–684, https://doi.org/10.5194/amt-14-665-2021, https://doi.org/10.5194/amt-14-665-2021, 2021
Short summary
Short summary
TROPOMI aboard Sentinel-5P satellite provides methane (CH4) measurements with exceptional temporal and spatial resolution. The study describes a series of improvements developed to retrieve CH4 from TROPOMI. The updated CH4 product features (among others) a more accurate a posteriori correction derived independently of any reference data. The validation of the improved data product shows good agreement with ground-based and satellite measurements, which highlights the quality of the TROPOMI CH4.
Tijl Verhoelst, Steven Compernolle, Gaia Pinardi, Jean-Christopher Lambert, Henk J. Eskes, Kai-Uwe Eichmann, Ann Mari Fjæraa, José Granville, Sander Niemeijer, Alexander Cede, Martin Tiefengraber, François Hendrick, Andrea Pazmiño, Alkiviadis Bais, Ariane Bazureau, K. Folkert Boersma, Kristof Bognar, Angelika Dehn, Sebastian Donner, Aleksandr Elokhov, Manuel Gebetsberger, Florence Goutail, Michel Grutter de la Mora, Aleksandr Gruzdev, Myrto Gratsea, Georg H. Hansen, Hitoshi Irie, Nis Jepsen, Yugo Kanaya, Dimitris Karagkiozidis, Rigel Kivi, Karin Kreher, Pieternel F. Levelt, Cheng Liu, Moritz Müller, Monica Navarro Comas, Ankie J. M. Piters, Jean-Pierre Pommereau, Thierry Portafaix, Cristina Prados-Roman, Olga Puentedura, Richard Querel, Julia Remmers, Andreas Richter, John Rimmer, Claudia Rivera Cárdenas, Lidia Saavedra de Miguel, Valery P. Sinyakov, Wolfgang Stremme, Kimberly Strong, Michel Van Roozendael, J. Pepijn Veefkind, Thomas Wagner, Folkard Wittrock, Margarita Yela González, and Claus Zehner
Atmos. Meas. Tech., 14, 481–510, https://doi.org/10.5194/amt-14-481-2021, https://doi.org/10.5194/amt-14-481-2021, 2021
Short summary
Short summary
This paper reports on the ground-based validation of the NO2 data produced operationally by the TROPOMI instrument on board the Sentinel-5 Precursor satellite. Tropospheric, stratospheric, and total NO2 columns are compared to measurements collected from MAX-DOAS, ZSL-DOAS, and PGN/Pandora instruments respectively. The products are found to satisfy mission requirements in general, though negative mean differences are found at sites with high pollution levels. Potential causes are discussed.
Gillian D. Thornhill, William J. Collins, Ryan J. Kramer, Dirk Olivié, Ragnhild B. Skeie, Fiona M. O'Connor, Nathan Luke Abraham, Ramiro Checa-Garcia, Susanne E. Bauer, Makoto Deushi, Louisa K. Emmons, Piers M. Forster, Larry W. Horowitz, Ben Johnson, James Keeble, Jean-Francois Lamarque, Martine Michou, Michael J. Mills, Jane P. Mulcahy, Gunnar Myhre, Pierre Nabat, Vaishali Naik, Naga Oshima, Michael Schulz, Christopher J. Smith, Toshihiko Takemura, Simone Tilmes, Tongwen Wu, Guang Zeng, and Jie Zhang
Atmos. Chem. Phys., 21, 853–874, https://doi.org/10.5194/acp-21-853-2021, https://doi.org/10.5194/acp-21-853-2021, 2021
Short summary
Short summary
This paper is a study of how different constituents in the atmosphere, such as aerosols and gases like methane and ozone, affect the energy balance in the atmosphere. Different climate models were run using the same inputs to allow an easy comparison of the results and to understand where the models differ. We found the effect of aerosols is to reduce warming in the atmosphere, but this effect varies between models. Reactions between gases are also important in affecting climate.
Teresa Jorge, Simone Brunamonti, Yann Poltera, Frank G. Wienhold, Bei P. Luo, Peter Oelsner, Sreeharsha Hanumanthu, Bhupendra B. Singh, Susanne Körner, Ruud Dirksen, Manish Naja, Suvarna Fadnavis, and Thomas Peter
Atmos. Meas. Tech., 14, 239–268, https://doi.org/10.5194/amt-14-239-2021, https://doi.org/10.5194/amt-14-239-2021, 2021
Short summary
Short summary
Balloon-borne frost point hygrometers are crucial for the monitoring of water vapour in the upper troposphere and lower stratosphere. We found that when traversing a mixed-phase cloud with big supercooled droplets, the intake tube of the instrument collects on its inner surface a high percentage of these droplets. The newly formed ice layer will sublimate at higher levels and contaminate the measurement. The balloon is also a source of contamination, but only at higher levels during the ascent.
Robert J. Parker, Alex Webb, Hartmut Boesch, Peter Somkuti, Rocio Barrio Guillo, Antonio Di Noia, Nikoleta Kalaitzi, Jasdeep S. Anand, Peter Bergamaschi, Frederic Chevallier, Paul I. Palmer, Liang Feng, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, Christof Petri, David F. Pollard, Coleen Roehl, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Thorsten Warneke, Paul O. Wennberg, and Debra Wunch
Earth Syst. Sci. Data, 12, 3383–3412, https://doi.org/10.5194/essd-12-3383-2020, https://doi.org/10.5194/essd-12-3383-2020, 2020
Short summary
Short summary
This work presents the latest release of the University of Leicester GOSAT methane data and acts as the definitive description of this dataset. We detail the processing, validation and evaluation involved in producing these data and highlight its many applications. With now over a decade of global atmospheric methane observations, this dataset has helped, and will continue to help, us better understand the global methane budget and investigate how it may respond to a future changing climate.
Pauline Martinet, Domenico Cimini, Frédéric Burnet, Benjamin Ménétrier, Yann Michel, and Vinciane Unger
Atmos. Meas. Tech., 13, 6593–6611, https://doi.org/10.5194/amt-13-6593-2020, https://doi.org/10.5194/amt-13-6593-2020, 2020
Short summary
Short summary
Each year large human and economical losses are due to fog episodes. However, fog forecasts remain quite inaccurate, partly due to a lack of observations in the atmospheric boundary layer. The benefit of ground-based microwave radiometers has been investigated and has demonstrated their capability of significantly improving the initial state of temperature and liquid water content profiles in current numerical weather prediction models, paving the way for improved fog forecasts in the future.
Alessandro Fassò, Michael Sommer, and Christoph von Rohden
Atmos. Meas. Tech., 13, 6445–6458, https://doi.org/10.5194/amt-13-6445-2020, https://doi.org/10.5194/amt-13-6445-2020, 2020
Short summary
Short summary
Modern radiosonde balloons fly from ground level up to the lower stratosphere and take temperature measurements. What is the uncertainty of interpolated values in the resulting atmospheric temperature profiles? To answer this question, we introduce a general statistical–mathematical model for the computation of interpolation uncertainty. Analysing more than 51 million measurements, we provide some understanding of the consequences of filling missing data with interpolated ones.
Sreeharsha Hanumanthu, Bärbel Vogel, Rolf Müller, Simone Brunamonti, Suvarna Fadnavis, Dan Li, Peter Ölsner, Manish Naja, Bhupendra Bahadur Singh, Kunchala Ravi Kumar, Sunil Sonbawne, Hannu Jauhiainen, Holger Vömel, Beiping Luo, Teresa Jorge, Frank G. Wienhold, Ruud Dirkson, and Thomas Peter
Atmos. Chem. Phys., 20, 14273–14302, https://doi.org/10.5194/acp-20-14273-2020, https://doi.org/10.5194/acp-20-14273-2020, 2020
Short summary
Short summary
During boreal summer, anthropogenic sources yield the Asian Tropopause Aerosol Layer (ATAL), found in Asia between about 13 and 18 km altitude. Balloon-borne measurements of the ATAL conducted in northern India in 2016 show the strong variability of the ATAL. To explain its observed variability, model simulations are performed to deduce the origin of air masses on the Earth's surface, which is important to develop recommendations for regulations of anthropogenic surface emissions of the ATAL.
Joram J. D. Hooghiem, Maria Elena Popa, Thomas Röckmann, Jens-Uwe Grooß, Ines Tritscher, Rolf Müller, Rigel Kivi, and Huilin Chen
Atmos. Chem. Phys., 20, 13985–14003, https://doi.org/10.5194/acp-20-13985-2020, https://doi.org/10.5194/acp-20-13985-2020, 2020
Short summary
Short summary
Wildfires release a large quantity of pollutants that can reach the stratosphere through pyro-convection events. In September 2017, a stratospheric plume was accidentally sampled during balloon soundings in northern Finland. The source of the plume was identified to be wildfire smoke based on in situ measurements of carbon monoxide (CO) and stable isotope analysis of CO. Furthermore, the age of the plume was estimated using backwards transport modelling to be ~24 d, with its origin in Canada.
Holger Vömel, Herman G. J. Smit, David Tarasick, Bryan Johnson, Samuel J. Oltmans, Henry Selkirk, Anne M. Thompson, Ryan M. Stauffer, Jacquelyn C. Witte, Jonathan Davies, Roeland van Malderen, Gary A. Morris, Tatsumi Nakano, and Rene Stübi
Atmos. Meas. Tech., 13, 5667–5680, https://doi.org/10.5194/amt-13-5667-2020, https://doi.org/10.5194/amt-13-5667-2020, 2020
Short summary
Short summary
The time response of electrochemical concentration cell (ECC) ozonesondes points to at least two distinct reaction pathways with time constants of approximately 20 s and 25 min. Properly considering these time constants eliminates the need for a poorly defined "background" and allows reducing ad hoc corrections based on laboratory tests. This reduces the uncertainty of ECC ozonesonde measurements throughout the profile and especially in regions of low ozone and strong gradients of ozone.
Nicole Jacobs, William R. Simpson, Debra Wunch, Christopher W. O'Dell, Gregory B. Osterman, Frank Hase, Thomas Blumenstock, Qiansi Tu, Matthias Frey, Manvendra K. Dubey, Harrison A. Parker, Rigel Kivi, and Pauli Heikkinen
Atmos. Meas. Tech., 13, 5033–5063, https://doi.org/10.5194/amt-13-5033-2020, https://doi.org/10.5194/amt-13-5033-2020, 2020
Short summary
Short summary
The boreal forest is the largest seasonally varying biospheric CO2-exchange region on Earth. This region is also undergoing amplified climate warming, leading to concerns about the potential for altered regional carbon exchange. Satellite missions, such as the Orbiting Carbon Observatory-2 (OCO-2) project, can measure CO2 abundance over the boreal forest but need validation for the assurance of accuracy. Therefore, we carried out a ground-based validation of OCO-2 CO2 data at three locations.
Christopher J. Smith, Ryan J. Kramer, and Adriana Sima
Earth Syst. Sci. Data, 12, 2157–2168, https://doi.org/10.5194/essd-12-2157-2020, https://doi.org/10.5194/essd-12-2157-2020, 2020
Short summary
Short summary
Radiative kernels allow efficient diagnosis of climate feedbacks and radiative adjustments to an external forcing using standard climate model output. We present a radiative kernel derived from the UK Met Office's HadGEM3-GA7.1 climate model. We show that a highly resolved stratosphere is important for correctly diagnosing the stratospheric temperature adjustment to greenhouse gas forcings and, by extension, the instantaneous radiative forcing.
Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Kenneth C. Aikin, Teresa Campos, Hannah Clark, Róisín Commane, Bruce Daube, Glenn W. Diskin, James W. Elkins, Ru-Shan Gao, Audrey Gaudel, Eric J. Hintsa, Bryan J. Johnson, Rigel Kivi, Kathryn McKain, Fred L. Moore, David D. Parrish, Richard Querel, Eric Ray, Ricardo Sánchez, Colm Sweeney, David W. Tarasick, Anne M. Thompson, Valérie Thouret, Jacquelyn C. Witte, Steve C. Wofsy, and Thomas B. Ryerson
Atmos. Chem. Phys., 20, 10611–10635, https://doi.org/10.5194/acp-20-10611-2020, https://doi.org/10.5194/acp-20-10611-2020, 2020
Mahesh Kumar Sha, Martine De Mazière, Justus Notholt, Thomas Blumenstock, Huilin Chen, Angelika Dehn, David W. T. Griffith, Frank Hase, Pauli Heikkinen, Christian Hermans, Alex Hoffmann, Marko Huebner, Nicholas Jones, Rigel Kivi, Bavo Langerock, Christof Petri, Francis Scolas, Qiansi Tu, and Damien Weidmann
Atmos. Meas. Tech., 13, 4791–4839, https://doi.org/10.5194/amt-13-4791-2020, https://doi.org/10.5194/amt-13-4791-2020, 2020
Short summary
Short summary
We present the results of the 2017 FRM4GHG campaign at the Sodankylä TCCON site aimed at characterising the assessment of several low-cost portable instruments for precise solar absorption measurements of column-averaged dry-air mole fractions of CO2, CH4, and CO. The test instruments provided stable and precise measurements of these gases with quantified small biases. This qualifies the instruments to complement TCCON and expand the global coverage of ground-based measurements of these gases.
Stephanie Evan, Jerome Brioude, Karen Rosenlof, Sean M. Davis, Holger Vömel, Damien Héron, Françoise Posny, Jean-Marc Metzger, Valentin Duflot, Guillaume Payen, Hélène Vérèmes, Philippe Keckhut, and Jean-Pierre Cammas
Atmos. Chem. Phys., 20, 10565–10586, https://doi.org/10.5194/acp-20-10565-2020, https://doi.org/10.5194/acp-20-10565-2020, 2020
Short summary
Short summary
The role of deep convection in the southwest Indian Ocean (the 3rd most active tropical cyclone basin) on the composition of the tropical tropopause layer (TTL) and the climate system is less understood due to scarce observations. Balloon-borne lidar and satellite measurements in the southwest Indian Ocean were used to study tropical cyclones' influence on TTL composition. This study compares the impact of a tropical storm and cyclone on the humidification of the TTL over the SW Indian Ocean.
Qiansi Tu, Frank Hase, Thomas Blumenstock, Rigel Kivi, Pauli Heikkinen, Mahesh Kumar Sha, Uwe Raffalski, Jochen Landgraf, Alba Lorente, Tobias Borsdorff, Huilin Chen, Florian Dietrich, and Jia Chen
Atmos. Meas. Tech., 13, 4751–4771, https://doi.org/10.5194/amt-13-4751-2020, https://doi.org/10.5194/amt-13-4751-2020, 2020
Short summary
Short summary
Two COCCON instruments are used to observe multiyear greenhouse gases in boreal areas and are compared with the CAMS analysis and S5P satellite data. These three datasets predict greenhouse gas gradients with reasonable agreement. The results indicate that the COCCON instrument has the capability of measuring gradients on regional scales, and observations performed with the portable spectrometers can contribute to inferring sources and sinks and to validating spaceborne greenhouse gases.
Ilya Stanevich, Dylan B. A. Jones, Kimberly Strong, Robert J. Parker, Hartmut Boesch, Debra Wunch, Justus Notholt, Christof Petri, Thorsten Warneke, Ralf Sussmann, Matthias Schneider, Frank Hase, Rigel Kivi, Nicholas M. Deutscher, Voltaire A. Velazco, Kaley A. Walker, and Feng Deng
Geosci. Model Dev., 13, 3839–3862, https://doi.org/10.5194/gmd-13-3839-2020, https://doi.org/10.5194/gmd-13-3839-2020, 2020
Short summary
Short summary
Systematic errors in atmospheric models pose a challenge for inverse modeling studies of methane (CH4) emissions. We evaluated the CH4 simulation in the GEOS-Chem model at the horizontal resolutions of 4° × 5° and 2° × 2.5°. Our analysis identified resolution-dependent biases in the model, which we attributed to discrepancies between the two model resolutions in vertical transport in the troposphere and in stratosphere–troposphere exchange.
Fabio Madonna, Emanuele Tramutola, Souleymane Sy, Federico Serva, Monica Proto, Marco Rosoldi, Simone Gagliardi, Francesco Amato, Fabrizio Marra, Alessandro Fassò, Tom Gardiner, and Peter William Thorne
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-183, https://doi.org/10.5194/essd-2020-183, 2020
Revised manuscript not accepted
Short summary
Short summary
In situ measurements, including radiosonde observations, are key for the study of climate. However, observations are more often than not influenced by instrumental effects which must be adjusted prior to their usage.
A novel approach, named RHARM (Radiosounding HARMonization), is able to improve quality of global radiosounding profiles of temperature, humidity and wind. RHARM also estimates the measurement uncertainties. This paper discusses the post-2004 radiosounding measurements only.
Johannes C. Laube, Emma C. Leedham Elvidge, Karina E. Adcock, Bianca Baier, Carl A. M. Brenninkmeijer, Huilin Chen, Elise S. Droste, Jens-Uwe Grooß, Pauli Heikkinen, Andrew J. Hind, Rigel Kivi, Alexander Lojko, Stephen A. Montzka, David E. Oram, Steve Randall, Thomas Röckmann, William T. Sturges, Colm Sweeney, Max Thomas, Elinor Tuffnell, and Felix Ploeger
Atmos. Chem. Phys., 20, 9771–9782, https://doi.org/10.5194/acp-20-9771-2020, https://doi.org/10.5194/acp-20-9771-2020, 2020
Short summary
Short summary
We demonstrate that AirCore technology, which is based on small low-cost balloons, can provide access to trace gas measurements such as CFCs at ultra-low abundances. This is a new way to quantify ozone-depleting, and related, substances in the stratosphere, which is largely inaccessible to aircraft. We show two potential uses: (a) tracking the stratospheric circulation, which is predicted to change, and (b) assessing three common meteorological reanalyses driving a global stratospheric model.
Ruud J. Dirksen, Greg E. Bodeker, Peter W. Thorne, Andrea Merlone, Tony Reale, Junhong Wang, Dale F. Hurst, Belay B. Demoz, Tom D. Gardiner, Bruce Ingleby, Michael Sommer, Christoph von Rohden, and Thierry Leblanc
Geosci. Instrum. Method. Data Syst., 9, 337–355, https://doi.org/10.5194/gi-9-337-2020, https://doi.org/10.5194/gi-9-337-2020, 2020
Short summary
Short summary
This paper describes GRUAN's strategy for a network-wide change of the operational radiosonde from Vaisala RS92 to RS41. GRUAN's main goal is to provide long-term data records that are free of inhomogeneities due to instrumental effects, which requires proper change management. The approach is to fully characterize differences between the two radiosonde types using laboratory tests, twin soundings, and ancillary data, as well as by drawing from the various fields of expertise available in GRUAN.
Christopher J. Smith, Ryan J. Kramer, Gunnar Myhre, Kari Alterskjær, William Collins, Adriana Sima, Olivier Boucher, Jean-Louis Dufresne, Pierre Nabat, Martine Michou, Seiji Yukimoto, Jason Cole, David Paynter, Hideo Shiogama, Fiona M. O'Connor, Eddy Robertson, Andy Wiltshire, Timothy Andrews, Cécile Hannay, Ron Miller, Larissa Nazarenko, Alf Kirkevåg, Dirk Olivié, Stephanie Fiedler, Anna Lewinschal, Chloe Mackallah, Martin Dix, Robert Pincus, and Piers M. Forster
Atmos. Chem. Phys., 20, 9591–9618, https://doi.org/10.5194/acp-20-9591-2020, https://doi.org/10.5194/acp-20-9591-2020, 2020
Short summary
Short summary
The spread in effective radiative forcing for both CO2 and aerosols is narrower in the latest CMIP6 (Coupled Model Intercomparison Project) generation than in CMIP5. For the case of CO2 it is likely that model radiation parameterisations have improved. Tropospheric and stratospheric radiative adjustments to the forcing behave differently for different forcing agents, and there is still significant diversity in how clouds respond to forcings, particularly for total anthropogenic forcing.
Yoshio Kawatani, Toshihiko Hirooka, Kevin Hamilton, Anne K. Smith, and Masatomo Fujiwara
Atmos. Chem. Phys., 20, 9115–9133, https://doi.org/10.5194/acp-20-9115-2020, https://doi.org/10.5194/acp-20-9115-2020, 2020
Short summary
Short summary
This paper reports on a project to compare the representation of the semiannual oscillation (SAO) among six major global atmospheric reanalyses and with recent satellite observations. The differences among the zonal mean zonal wind as represented by the various reanalyses display a prominent equatorial maximum that increases with height. It is shown that assimilation of satellite temperature measurements is crucial for the realistic representation of the tropical upper stratospheric circulation.
Corinne Vigouroux, Bavo Langerock, Carlos Augusto Bauer Aquino, Thomas Blumenstock, Zhibin Cheng, Martine De Mazière, Isabelle De Smedt, Michel Grutter, James W. Hannigan, Nicholas Jones, Rigel Kivi, Diego Loyola, Erik Lutsch, Emmanuel Mahieu, Maria Makarova, Jean-Marc Metzger, Isamu Morino, Isao Murata, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Gaia Pinardi, Amelie Röhling, Dan Smale, Wolfgang Stremme, Kim Strong, Ralf Sussmann, Yao Té, Michel van Roozendael, Pucai Wang, and Holger Winkler
Atmos. Meas. Tech., 13, 3751–3767, https://doi.org/10.5194/amt-13-3751-2020, https://doi.org/10.5194/amt-13-3751-2020, 2020
Short summary
Short summary
We validate the TROPOMI HCHO product with ground-based FTIR (Fourier-transform infrared) measurements from 25 stations. We find that TROPOMI overestimates HCHO under clean conditions, while it underestimates it at high HCHO levels. Both TROPOMI precision and accuracy reach the pre-launch requirements, and its precision can even be 2 times better. The observed TROPOMI seasonal variability is in agreement with the FTIR data. The TROPOMI random uncertainty and data filtering should be refined.
Fabio Madonna, Rigel Kivi, Jean-Charles Dupont, Bruce Ingleby, Masatomo Fujiwara, Gonzague Romanens, Miguel Hernandez, Xavier Calbet, Marco Rosoldi, Aldo Giunta, Tomi Karppinen, Masami Iwabuchi, Shunsuke Hoshino, Christoph von Rohden, and Peter William Thorne
Atmos. Meas. Tech., 13, 3621–3649, https://doi.org/10.5194/amt-13-3621-2020, https://doi.org/10.5194/amt-13-3621-2020, 2020
Short summary
Short summary
Radiosondes are one of the primary sources of upper-air data for weather and climate monitoring. In the last two decades, technological progress made available automated radiosonde launchers (ARLs), which are able to replace measurements typically performed manually. This work presents a comparative analysis of the technical performance of the ARLs currently available on the market and contribute to define a strategy to achieve the full traceability of the ARL products.
Tatiana Nomokonova, Kerstin Ebell, Ulrich Löhnert, Marion Maturilli, and Christoph Ritter
Atmos. Chem. Phys., 20, 5157–5173, https://doi.org/10.5194/acp-20-5157-2020, https://doi.org/10.5194/acp-20-5157-2020, 2020
Short summary
Short summary
This paper presents an influence of water vapor anomalies on cloud properties and their radiative effect at Ny-Ålesund. The study is based on a 2.5-year active and passive cloud observation and a radiative transfer model. The results show that moist and dry conditions are related to strong changes in cloud occurrence, phase partitioning, water path, and, consequently, modulate the surface radiative budget.
Dan Li, Bärbel Vogel, Rolf Müller, Jianchun Bian, Gebhard Günther, Felix Ploeger, Qian Li, Jinqiang Zhang, Zhixuan Bai, Holger Vömel, and Martin Riese
Atmos. Chem. Phys., 20, 4133–4152, https://doi.org/10.5194/acp-20-4133-2020, https://doi.org/10.5194/acp-20-4133-2020, 2020
Short summary
Short summary
Low ozone and low water vapour signatures in the UTLS were investigated using balloon-borne measurements and trajectory calculations. The results show that deep convection in tropical cyclones over the western Pacific transports boundary air parcels with low ozone into the tropopause region. Subsequently, these air parcels are dehydrated when passing the lowest temperature region (< 190 K) during quasi-horizontal advection.
Rosa Gierens, Stefan Kneifel, Matthew D. Shupe, Kerstin Ebell, Marion Maturilli, and Ulrich Löhnert
Atmos. Chem. Phys., 20, 3459–3481, https://doi.org/10.5194/acp-20-3459-2020, https://doi.org/10.5194/acp-20-3459-2020, 2020
Short summary
Short summary
Multiyear statistics of persistent low-level mixed-phase clouds observed at an Arctic fjord environment in Svalbard are presented. The effects the local boundary layer (i.e. the fjords' wind climate and surface coupling), regional wind direction, and seasonality have on the cloud occurrence and properties are evaluated using a synergy of ground-based remote sensing methods and auxiliary data. The phenomena considered were found to modify the amount of liquid and ice in the studied clouds.
Maximilian Reuter, Michael Buchwitz, Oliver Schneising, Stefan Noël, Heinrich Bovensmann, John P. Burrows, Hartmut Boesch, Antonio Di Noia, Jasdeep Anand, Robert J. Parker, Peter Somkuti, Lianghai Wu, Otto P. Hasekamp, Ilse Aben, Akihiko Kuze, Hiroshi Suto, Kei Shiomi, Yukio Yoshida, Isamu Morino, David Crisp, Christopher W. O'Dell, Justus Notholt, Christof Petri, Thorsten Warneke, Voltaire A. Velazco, Nicholas M. Deutscher, David W. T. Griffith, Rigel Kivi, David F. Pollard, Frank Hase, Ralf Sussmann, Yao V. Té, Kimberly Strong, Sébastien Roche, Mahesh K. Sha, Martine De Mazière, Dietrich G. Feist, Laura T. Iraci, Coleen M. Roehl, Christian Retscher, and Dinand Schepers
Atmos. Meas. Tech., 13, 789–819, https://doi.org/10.5194/amt-13-789-2020, https://doi.org/10.5194/amt-13-789-2020, 2020
Short summary
Short summary
We present new satellite-derived data sets of atmospheric carbon dioxide (CO2) and methane (CH4). The data products are column-averaged dry-air mole fractions of CO2 and CH4, denoted XCO2 and XCH4. The products cover the years 2003–2018 and are merged Level 2 (satellite footprints) and merged Level 3 (gridded at monthly time and 5° x 5° spatial resolution) products obtained from combining several individual sensor products. We present the merging algorithms and product validation results.
Jonas Simon Wilzewski, Anke Roiger, Johan Strandgren, Jochen Landgraf, Dietrich G. Feist, Voltaire A. Velazco, Nicholas M. Deutscher, Isamu Morino, Hirofumi Ohyama, Yao Té, Rigel Kivi, Thorsten Warneke, Justus Notholt, Manvendra Dubey, Ralf Sussmann, Markus Rettinger, Frank Hase, Kei Shiomi, and André Butz
Atmos. Meas. Tech., 13, 731–745, https://doi.org/10.5194/amt-13-731-2020, https://doi.org/10.5194/amt-13-731-2020, 2020
Short summary
Short summary
Through spectral degradation of GOSAT measurements in the 1.6 and 2.0 μm spectral bands, we mimic a single-band, passive satellite sensor for monitoring of CO2 emissions at fine spatial scales. We compare retrievals of XCO2 from these bands to TCCON and native GOSAT retrievals. At spectral resolutions near 1.3 nm, XCO2 retrievals from both bands show promising performance, but the 2.0 μm band is favorable due to better noise performance and the potential to retrieve some aerosol information.
Andreas Schneider, Tobias Borsdorff, Joost aan de Brugh, Franziska Aemisegger, Dietrich G. Feist, Rigel Kivi, Frank Hase, Matthias Schneider, and Jochen Landgraf
Atmos. Meas. Tech., 13, 85–100, https://doi.org/10.5194/amt-13-85-2020, https://doi.org/10.5194/amt-13-85-2020, 2020
Short summary
Short summary
This paper presents a new H2O/HDO data set from TROPOMI short-wave infrared measurements. It is validated against recent ground-based FTIR measurements from the TCCON network. A bias in TCCON HDO (which is not verified) is corrected by fitting a correction factor for the HDO column to match MUSICA δD for common observations. The use of the new TROPOMI data set is demonstrated using a case study of a blocking anticyclone over Europe in July 2018.
Masatomo Fujiwara, Patrick Martineau, and Jonathon S. Wright
Atmos. Chem. Phys., 20, 345–374, https://doi.org/10.5194/acp-20-345-2020, https://doi.org/10.5194/acp-20-345-2020, 2020
Short summary
Short summary
The global response of surface air temperature (SST) to the eruptions of Mount Agung in 1963, El Chichón in 1982, and Mount Pinatubo in 1991 is investigated using 11 global atmospheric reanalysis data sets. Multiple linear regression is applied, with a set of climatic indices orthogonalized, and the residuals are investigated. It is found that careful treatment of tropical SST variability is necessary to evaluate the surface response to volcanic eruptions in observations and reanalyses.
Oliver Schneising, Michael Buchwitz, Maximilian Reuter, Heinrich Bovensmann, John P. Burrows, Tobias Borsdorff, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Christian Hermans, Laura T. Iraci, Rigel Kivi, Jochen Landgraf, Isamu Morino, Justus Notholt, Christof Petri, David F. Pollard, Sébastien Roche, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Voltaire A. Velazco, Thorsten Warneke, and Debra Wunch
Atmos. Meas. Tech., 12, 6771–6802, https://doi.org/10.5194/amt-12-6771-2019, https://doi.org/10.5194/amt-12-6771-2019, 2019
Short summary
Short summary
We introduce an algorithm that is used to simultaneously derive the abundances of the important atmospheric constituents carbon monoxide and methane from the TROPOMI instrument onboard the Sentinel-5 Precursor satellite, which enables the determination of both gases with an unprecedented level of detail on a global scale. The quality of the resulting data sets is assessed and the first results are presented.
Minqiang Zhou, Bavo Langerock, Mahesh Kumar Sha, Nicolas Kumps, Christian Hermans, Christof Petri, Thorsten Warneke, Huilin Chen, Jean-Marc Metzger, Rigel Kivi, Pauli Heikkinen, Michel Ramonet, and Martine De Mazière
Atmos. Meas. Tech., 12, 6125–6141, https://doi.org/10.5194/amt-12-6125-2019, https://doi.org/10.5194/amt-12-6125-2019, 2019
Short summary
Short summary
In this study, CH4 vertical profile is retrieved by SFIT4 code from FTIR NIR spectra based on six sites during 2016–2017. The degree of freedom for signal of the SFIT4NIR retrieval is about 2.4, with two distinct species of information in the troposphere and in the stratosphere. By comparison against other measurements, e.g. TCCON standard products, satellite observations and AirCore measurements, the uncertainties of the SFIT4NIR total column and partial columns are estimated and discussed.
Robert Reichert, Bernd Kaifler, Natalie Kaifler, Markus Rapp, Pierre-Dominique Pautet, Michael J. Taylor, Alexander Kozlovsky, Mark Lester, and Rigel Kivi
Atmos. Meas. Tech., 12, 5997–6015, https://doi.org/10.5194/amt-12-5997-2019, https://doi.org/10.5194/amt-12-5997-2019, 2019
Short summary
Short summary
To determine gravity wave properties like wavelengths, periods and propagation directions at mesospheric altitudes (∼ 86 km) we combine lidar and airglow temperature and meteor radar wind data. By means of wavelet transformation we investigate the wave field and determine intrinsic wave properties as functions of time and period. We are able to identify several gravity wave packets by their distinct propagation and discover a superposition with possible wave–wave and wave–mean-flow interaction.
Minqiang Zhou, Bavo Langerock, Corinne Vigouroux, Mahesh Kumar Sha, Christian Hermans, Jean-Marc Metzger, Huilin Chen, Michel Ramonet, Rigel Kivi, Pauli Heikkinen, Dan Smale, David F. Pollard, Nicholas Jones, Voltaire A. Velazco, Omaira E. García, Matthias Schneider, Mathias Palm, Thorsten Warneke, and Martine De Mazière
Atmos. Meas. Tech., 12, 5979–5995, https://doi.org/10.5194/amt-12-5979-2019, https://doi.org/10.5194/amt-12-5979-2019, 2019
Short summary
Short summary
The differences between the TCCON and NDACC XCO measurements are investigated and discussed based on six NDACC–TCCON sites (Ny-Ålesund, Bremen, Izaña, Saint-Denis, Wollongong and Lauder) using data over the period 2007–2017. The smoothing errors from both TCCON and NDACC measurements are estimated. In addition, the scaling factor of the TCCON XCO data is reassessed by comparing with the AirCore measurements at Sodankylä and Orléans.
Simon Noone, Alison Brody, Sasha Brown, Niamh Cantwell, Martha Coleman, Louise Sarsfield Collins, Caoilfhionn Darcy, Dick Dee, Seán Donegan, Rowan Fealy, Padraig Flattery, Rhonda McGovern, Caspar Menkman, Michael Murphy, Christopher Phillips, Martina Roche, and Peter Thorne
Geosci. Commun., 2, 157–171, https://doi.org/10.5194/gc-2-157-2019, https://doi.org/10.5194/gc-2-157-2019, 2019
Short summary
Short summary
The Global Land and Marine Observations Database aims to produce a comprehensive land-based meteorological data archive and inventory. Data sources contained stations in incorrect locations; therefore, we developed the Geo-locate project, enlisting the help of undergraduate geography students. The project has resolved 1926 station issues so far. Due to the success of the Geo-locate project, we encourage other organizations to engage university students to help resolve similar data issues.
Andrea Spolaor, Elena Barbaro, David Cappelletti, Clara Turetta, Mauro Mazzola, Fabio Giardi, Mats P. Björkman, Federico Lucchetta, Federico Dallo, Katrine Aspmo Pfaffhuber, Hélène Angot, Aurelien Dommergue, Marion Maturilli, Alfonso Saiz-Lopez, Carlo Barbante, and Warren R. L. Cairns
Atmos. Chem. Phys., 19, 13325–13339, https://doi.org/10.5194/acp-19-13325-2019, https://doi.org/10.5194/acp-19-13325-2019, 2019
Short summary
Short summary
The main aims of the study are to (a) detect whether mercury in the surface snow undergoes a daily cycle as determined in the atmosphere, (b) compare the mercury concentration in surface snow with the concentration in the atmosphere, (c) evaluate the effect of snow depositions, (d) detect whether iodine and bromine in the surface snow undergo a daily cycle, and (e) evaluate the role of metereological and atmospheric conditions. Different behaviours were determined during different seasons.
Susan S. Kulawik, Sean Crowell, David Baker, Junjie Liu, Kathryn McKain, Colm Sweeney, Sebastien C. Biraud, Steve Wofsy, Christopher W. O'Dell, Paul O. Wennberg, Debra Wunch, Coleen M. Roehl, Nicholas M. Deutscher, Matthäus Kiel, David W. T. Griffith, Voltaire A. Velazco, Justus Notholt, Thorsten Warneke, Christof Petri, Martine De Mazière, Mahesh K. Sha, Ralf Sussmann, Markus Rettinger, Dave F. Pollard, Isamu Morino, Osamu Uchino, Frank Hase, Dietrich G. Feist, Sébastien Roche, Kimberly Strong, Rigel Kivi, Laura Iraci, Kei Shiomi, Manvendra K. Dubey, Eliezer Sepulveda, Omaira Elena Garcia Rodriguez, Yao Té, Pascal Jeseck, Pauli Heikkinen, Edward J. Dlugokencky, Michael R. Gunson, Annmarie Eldering, David Crisp, Brendan Fisher, and Gregory B. Osterman
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-257, https://doi.org/10.5194/amt-2019-257, 2019
Publication in AMT not foreseen
Short summary
Short summary
This paper provides a benchmark of OCO-2 v8 and ACOS-GOSAT v7.3 XCO2 and lowermost tropospheric (LMT) errors. The paper focuses on the systematic errors and subtracts out validation, co-location, and random errors, looks at the correlation scale-length (spatially and temporally) of systematic errors, finding that the scale lengths are similar to bias correction scale-lengths. The assimilates of the bias correction term is used to place an error on fluxes estimates.
Mai Ouchi, Yutaka Matsumi, Tomoki Nakayama, Kensaku Shimizu, Takehiko Sawada, Toshinobu Machida, Hidekazu Matsueda, Yousuke Sawa, Isamu Morino, Osamu Uchino, Tomoaki Tanaka, and Ryoichi Imasu
Atmos. Meas. Tech., 12, 5639–5653, https://doi.org/10.5194/amt-12-5639-2019, https://doi.org/10.5194/amt-12-5639-2019, 2019
Short summary
Short summary
A novel, practical observation system for measuring tropospheric carbon dioxide (CO2) concentrations carried by a small helium-filled balloon (CO2 sonde) has been developed for the first time. The low-cost CO2 sondes can potentially be used for frequent measurements of vertical profiles of CO2 in any parts of the world, providing useful information to understand the global and regional carbon budgets by replenishing the present sparse observation coverage.
Jacob K. Hedelius, Tai-Long He, Dylan B. A. Jones, Bianca C. Baier, Rebecca R. Buchholz, Martine De Mazière, Nicholas M. Deutscher, Manvendra K. Dubey, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Laura T. Iraci, Pascal Jeseck, Matthäus Kiel, Rigel Kivi, Cheng Liu, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, David F. Pollard, Markus Rettinger, Sébastien Roche, Coleen M. Roehl, Matthias Schneider, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Colm Sweeney, Yao Té, Osamu Uchino, Voltaire A. Velazco, Wei Wang, Thorsten Warneke, Paul O. Wennberg, Helen M. Worden, and Debra Wunch
Atmos. Meas. Tech., 12, 5547–5572, https://doi.org/10.5194/amt-12-5547-2019, https://doi.org/10.5194/amt-12-5547-2019, 2019
Short summary
Short summary
We seek ways to improve the accuracy of column measurements of carbon monoxide (CO) – an important tracer of pollution – made from the MOPITT satellite instrument. We devise a filtering scheme which reduces the scatter and also eliminates bias among the MOPITT detectors. Compared to ground-based observations, MOPITT measurements are about 6 %–8 % higher. When MOPITT data are implemented in a global assimilation model, they tend to reduce the model mismatch with aircraft measurements.
Tobias Borsdorff, Joost aan de Brugh, Andreas Schneider, Alba Lorente, Manfred Birk, Georg Wagner, Rigel Kivi, Frank Hase, Dietrich G. Feist, Ralf Sussmann, Markus Rettinger, Debra Wunch, Thorsten Warneke, and Jochen Landgraf
Atmos. Meas. Tech., 12, 5443–5455, https://doi.org/10.5194/amt-12-5443-2019, https://doi.org/10.5194/amt-12-5443-2019, 2019
Short summary
Short summary
The study presents possible improvements of the TROPOMI CO dataset, which is a primary product of ESA's Sentinel-5P mission. We discuss the use of different molecular spectroscopic databases in the CO retrieval, the induced biases between TROPOMI CO and TCCON validation measurements, and the latitudinally dependent bias between TROPOMI CO and the CAMS-IFS model. Additionally, two methods for the stripe correction of single TROPOMI CO orbits are presented.
Young-Ha Kim, George N. Kiladis, John R. Albers, Juliana Dias, Masatomo Fujiwara, James A. Anstey, In-Sun Song, Corwin J. Wright, Yoshio Kawatani, François Lott, and Changhyun Yoo
Atmos. Chem. Phys., 19, 10027–10050, https://doi.org/10.5194/acp-19-10027-2019, https://doi.org/10.5194/acp-19-10027-2019, 2019
Short summary
Short summary
Reanalyses are widely used products of meteorological variables, generated using observational data and assimilation systems. We compare six modern reanalyses, with focus on their representation of equatorial waves which are important in stratospheric variability and stratosphere–troposphere exchange. Agreement/spreads among the reanalyses in the spectral properties and spatial distributions of the waves are examined, and satellite impacts on the wave representation in reanalyses are discussed.
Shima Bahramvash Shams, Von P. Walden, Irina Petropavlovskikh, David Tarasick, Rigel Kivi, Samuel Oltmans, Bryan Johnson, Patrick Cullis, Chance W. Sterling, Laura Thölix, and Quentin Errera
Atmos. Chem. Phys., 19, 9733–9751, https://doi.org/10.5194/acp-19-9733-2019, https://doi.org/10.5194/acp-19-9733-2019, 2019
Short summary
Short summary
The Arctic plays a very important role in the global ozone cycle. We use balloon-borne sampling and satellite data to create a high-quality dataset of the vertical profile of ozone from 2005 to 2017 to analyze ozone variations over four high-latitude Arctic locations. No significant annual trend is found at any of the studied locations. We develop a mathematical model to understand how deseasonalized ozone fluctuations can be influenced by various parameters.
Dan Weaver, Kimberly Strong, Kaley A. Walker, Chris Sioris, Matthias Schneider, C. Thomas McElroy, Holger Vömel, Michael Sommer, Katja Weigel, Alexei Rozanov, John P. Burrows, William G. Read, Evan Fishbein, and Gabriele Stiller
Atmos. Meas. Tech., 12, 4039–4063, https://doi.org/10.5194/amt-12-4039-2019, https://doi.org/10.5194/amt-12-4039-2019, 2019
Short summary
Short summary
This work assesses water vapour profiles acquired by Atmospheric Chemistry Experiment (ACE) satellite instruments in the upper troposphere and lower stratosphere (UTLS) using comparisons to radiosondes and ground-based Fourier transform infrared spectrometer measurements acquired at a Canadian high Arctic measurement site in Eureka, Nunavut. Additional comparisons are made between these Eureka measurements and other water vapour satellite datasets for context, including AIRS, MLS, and others.
Qianshan He, Jianzhong Ma, Xiangdong Zheng, Xiaolu Yan, Holger Vömel, Frank G. Wienhold, Wei Gao, Dongwei Liu, Guangming Shi, and Tiantao Cheng
Atmos. Chem. Phys., 19, 8399–8406, https://doi.org/10.5194/acp-19-8399-2019, https://doi.org/10.5194/acp-19-8399-2019, 2019
Short summary
Short summary
An enhanced aerosol layer in the upper troposphere--lower stratosphere was observed by a COBALD over the Tibetan Plateau, in the summer of 2014. The color index of the enhanced aerosol layer indicates the prevalence of dominant fine particles with a mode radius < 0.1 μm. Unlike the very small particles at low relative humidity (RHi < 40%), the relatively large particles in the aerosol layer were generally very hydrophilic as their size increased dramatically with relative humidity.
Eriko Kobayashi, Shunsuke Hoshino, Masami Iwabuchi, Takuji Sugidachi, Kensaku Shimizu, and Masatomo Fujiwara
Atmos. Meas. Tech., 12, 3039–3065, https://doi.org/10.5194/amt-12-3039-2019, https://doi.org/10.5194/amt-12-3039-2019, 2019
Short summary
Short summary
The authors carried out dual flights of RS-11G and RS92-SGP radiosondes and investigated the differences in the performance of the radiosondes to help characterize GRUAN data products. A novel aspect of GRUAN data products is that vertically resolved uncertainty estimates and metadata are provided for each sounding and comparison of GRUAN data products is important in securing the temporal homogeneity of climate data records.
Noersomadi, Toshitaka Tsuda, and Masatomo Fujiwara
Atmos. Chem. Phys., 19, 6985–7000, https://doi.org/10.5194/acp-19-6985-2019, https://doi.org/10.5194/acp-19-6985-2019, 2019
Short summary
Short summary
Characteristics of static stability (N2) in the tropical tropopause are analyzed using 0.1 km vertical resolution temperature profiles retrieved from COSMIC GNSS-RO. We define the tropopause inversion layer (TIL) by the sharp increase in N2 across the cold point tropopause (CPT) and the thickness of the enhanced peak in N2 just above the CPT. We investigated the TIL at the intraseasonal to interannual timescales above the Maritime Continent and Pacific Ocean with different land–sea distribution.
Iris-Amata Dion, Philippe Ricaud, Peter Haynes, Fabien Carminati, and Thibaut Dauhut
Atmos. Chem. Phys., 19, 6459–6479, https://doi.org/10.5194/acp-19-6459-2019, https://doi.org/10.5194/acp-19-6459-2019, 2019
Short summary
Short summary
Water vapour and ice cirrus clouds near the tropical tropopause layer (TTL) have a strong radiative impact on climate. Based on space-borne observations, we have developed a model linking ice in the upper troposphere from the Microwave Limb Sounder (MLS) to precipitation in the troposphere from the Tropical Rainfall Measurement Mission (TRMM). Our study quantifies the amount of ice injected into the TTL by deep convection over tropical lands and oceans by investigating the diurnal cycle of ice.
Domenico Cimini, James Hocking, Francesco De Angelis, Angela Cersosimo, Francesco Di Paola, Donatello Gallucci, Sabrina Gentile, Edoardo Geraldi, Salvatore Larosa, Saverio Nilo, Filomena Romano, Elisabetta Ricciardelli, Ermann Ripepi, Mariassunta Viggiano, Lorenzo Luini, Carlo Riva, Frank S. Marzano, Pauline Martinet, Yun Young Song, Myoung Hwan Ahn, and Philip W. Rosenkranz
Geosci. Model Dev., 12, 1833–1845, https://doi.org/10.5194/gmd-12-1833-2019, https://doi.org/10.5194/gmd-12-1833-2019, 2019
Short summary
Short summary
The fast radiative transfer model RTTOV-gb was developed to foster ground-based microwave radiometer data assimilation into numerical weather prediction models, as introduced in a companion paper (https://doi.org/10.5194/gmd-9-2721-2016). Here we present the updates and new features of the current version (v1.0), which is freely accessible online.
Maiken Vassel, Luisa Ickes, Marion Maturilli, and Corinna Hoose
Atmos. Chem. Phys., 19, 5111–5126, https://doi.org/10.5194/acp-19-5111-2019, https://doi.org/10.5194/acp-19-5111-2019, 2019
Short summary
Short summary
Multilayer clouds are coexisting clouds at different heights. We evaluate measurements and find that Arctic multilayer clouds occur in 29 % of the investigated days at Ny-Ålesund, Svalbard. Multilayer clouds can interact by ice crystals falling from the upper cloud into the lower cloud. This is possible in 23 % of the investigated days, and in 9 % it is not possible. Weather models are still error-prone in the Arctic and we suggest that multilayer clouds should be included more in future work.
Tatiana Nomokonova, Kerstin Ebell, Ulrich Löhnert, Marion Maturilli, Christoph Ritter, and Ewan O'Connor
Atmos. Chem. Phys., 19, 4105–4126, https://doi.org/10.5194/acp-19-4105-2019, https://doi.org/10.5194/acp-19-4105-2019, 2019
Short summary
Short summary
In this study, properties of clouds at the French–German Arctic research station in Ny-Ålesund are related to in-cloud thermodynamic conditions. The dataset used was collected within the Arctic Amplification project with a set of active and passive remote instruments. The results are compared with a model output. Significant divergence in observations and modelling of single-layer ice and mixed-phase clouds was found.
Minqiang Zhou, Bavo Langerock, Kelley C. Wells, Dylan B. Millet, Corinne Vigouroux, Mahesh Kumar Sha, Christian Hermans, Jean-Marc Metzger, Rigel Kivi, Pauli Heikkinen, Dan Smale, David F. Pollard, Nicholas Jones, Nicholas M. Deutscher, Thomas Blumenstock, Matthias Schneider, Mathias Palm, Justus Notholt, James W. Hannigan, and Martine De Mazière
Atmos. Meas. Tech., 12, 1393–1408, https://doi.org/10.5194/amt-12-1393-2019, https://doi.org/10.5194/amt-12-1393-2019, 2019
Short summary
Short summary
N2O is an important atmospheric gas which is observed by two ground-based FTIR networks (TCCON and NDACC). The difference between NDACC and TCCON XN2O measurements is discussed. It is found that the bias between the two networks is within their combined uncertainties. However, TCCON measurements are affected by a priori profiles. In addition, the TCCON and NDACC N2O measurements are compared with the GEOS-Chem model simulations.
Fabien Carminati, Stefano Migliorini, Bruce Ingleby, William Bell, Heather Lawrence, Stuart Newman, James Hocking, and Andrew Smith
Atmos. Meas. Tech., 12, 83–106, https://doi.org/10.5194/amt-12-83-2019, https://doi.org/10.5194/amt-12-83-2019, 2019
Short summary
Short summary
The GRUAN processor is a software developed to collocate radiosonde profiles and numerical weather prediction model fields, simulate top-of-atmosphere brightness temperature at frequencies used by space-borne instruments, and propagate the radiosonde uncertainties in that simulation. This work responds to an identified lack of metrologically traceable characterisation of uncertainties in model fields that are increasingly used for the validation and calibration of space-borne instruments.
Joram J. D. Hooghiem, Marcel de Vries, Henk A. Been, Pauli Heikkinen, Rigel Kivi, and Huilin Chen
Atmos. Meas. Tech., 11, 6785–6801, https://doi.org/10.5194/amt-11-6785-2018, https://doi.org/10.5194/amt-11-6785-2018, 2018
Short summary
Short summary
We have developed a lightweight stratospheric air sampler, named LISA, for measurements of CO2, CH4 and CO mole fractions. The LISA sampler is capable of grabbing stratospheric air samples at an altitude of up to 30 km and provides a useful tool for routine stratospheric measurements of both mole fractions and isotopic composition of trace gases.
Erlend M. Knudsen, Bernd Heinold, Sandro Dahlke, Heiko Bozem, Susanne Crewell, Irina V. Gorodetskaya, Georg Heygster, Daniel Kunkel, Marion Maturilli, Mario Mech, Carolina Viceto, Annette Rinke, Holger Schmithüsen, André Ehrlich, Andreas Macke, Christof Lüpkes, and Manfred Wendisch
Atmos. Chem. Phys., 18, 17995–18022, https://doi.org/10.5194/acp-18-17995-2018, https://doi.org/10.5194/acp-18-17995-2018, 2018
Short summary
Short summary
The paper describes the synoptic development during the ACLOUD/PASCAL airborne and ship-based field campaign near Svalbard in spring 2017. This development is presented using near-surface and upperair meteorological observations, satellite, and model data. We first present time series of these data, from which we identify and characterize three key periods. Finally, we put our observations in historical and regional contexts and compare our findings to other Arctic field campaigns.
Dan Li, Bärbel Vogel, Rolf Müller, Jianchun Bian, Gebhard Günther, Qian Li, Jinqiang Zhang, Zhixuan Bai, Holger Vömel, and Martin Riese
Atmos. Chem. Phys., 18, 17979–17994, https://doi.org/10.5194/acp-18-17979-2018, https://doi.org/10.5194/acp-18-17979-2018, 2018
Short summary
Short summary
Balloon-borne measurements performed over Lhasa in August 2013 are investigated using CLaMS trajectory calculations. Here, we focus on high ozone mixing ratios in the free troposphere. Our findings demonstrate that both stratospheric intrusions and convective transport of air pollution play a major role in enhancing middle and upper tropospheric ozone.
Christopher W. O'Dell, Annmarie Eldering, Paul O. Wennberg, David Crisp, Michael R. Gunson, Brendan Fisher, Christian Frankenberg, Matthäus Kiel, Hannakaisa Lindqvist, Lukas Mandrake, Aronne Merrelli, Vijay Natraj, Robert R. Nelson, Gregory B. Osterman, Vivienne H. Payne, Thomas E. Taylor, Debra Wunch, Brian J. Drouin, Fabiano Oyafuso, Albert Chang, James McDuffie, Michael Smyth, David F. Baker, Sourish Basu, Frédéric Chevallier, Sean M. R. Crowell, Liang Feng, Paul I. Palmer, Mavendra Dubey, Omaira E. García, David W. T. Griffith, Frank Hase, Laura T. Iraci, Rigel Kivi, Isamu Morino, Justus Notholt, Hirofumi Ohyama, Christof Petri, Coleen M. Roehl, Mahesh K. Sha, Kimberly Strong, Ralf Sussmann, Yao Te, Osamu Uchino, and Voltaire A. Velazco
Atmos. Meas. Tech., 11, 6539–6576, https://doi.org/10.5194/amt-11-6539-2018, https://doi.org/10.5194/amt-11-6539-2018, 2018
Xavier Calbet, Niobe Peinado-Galan, Sergio DeSouza-Machado, Emil Robert Kursinski, Pedro Oria, Dale Ward, Angel Otarola, Pilar Rípodas, and Rigel Kivi
Atmos. Meas. Tech., 11, 6409–6417, https://doi.org/10.5194/amt-11-6409-2018, https://doi.org/10.5194/amt-11-6409-2018, 2018
Short summary
Short summary
The hypothesis whether turbulence within the passive microwave sounders field of view can cause significant biases in radiative transfer modelling at the 183 GHz water vapour absorption band is tested. It is shown that this effect can cause significant biases, which can match the observed ones by Brogniez et al. (2016). They can be explained by locating intense turbulence in the high troposphere, such as the one present in clear air turbulence, cumulus clouds or storms.
Simone Brunamonti, Teresa Jorge, Peter Oelsner, Sreeharsha Hanumanthu, Bhupendra B. Singh, K. Ravi Kumar, Sunil Sonbawne, Susanne Meier, Deepak Singh, Frank G. Wienhold, Bei Ping Luo, Maxi Boettcher, Yann Poltera, Hannu Jauhiainen, Rijan Kayastha, Jagadishwor Karmacharya, Ruud Dirksen, Manish Naja, Markus Rex, Suvarna Fadnavis, and Thomas Peter
Atmos. Chem. Phys., 18, 15937–15957, https://doi.org/10.5194/acp-18-15937-2018, https://doi.org/10.5194/acp-18-15937-2018, 2018
Short summary
Short summary
Based on balloon-borne measurements performed in India and Nepal in 2016–2017, we infer the vertical distributions of water vapor, ozone and aerosols in the atmosphere, from the surface to 30 km altitude. Our measurements show that the atmospheric dynamics of the Asian summer monsoon system over the polluted Indian subcontinent lead to increased concentrations of water vapor and aerosols in the high atmosphere (approximately 14–20 km altitude), which can have an important effect on climate.
Domenico Cimini, Philip W. Rosenkranz, Mikhail Y. Tretyakov, Maksim A. Koshelev, and Filomena Romano
Atmos. Chem. Phys., 18, 15231–15259, https://doi.org/10.5194/acp-18-15231-2018, https://doi.org/10.5194/acp-18-15231-2018, 2018
Short summary
Short summary
The paper presents a general approach to quantify the uncertainty related to atmospheric absorption models. These models describe how the atmosphere interacts with radiation, and they have general implications for atmospheric sciences.
The presented approach contributes to a better understanding of the total uncertainty affecting atmospheric radiative properties, thus reducing the chances of systematic errors when observations are exploited for weather forecast or climate trend derivations.
Laura Thölix, Alexey Karpechko, Leif Backman, and Rigel Kivi
Atmos. Chem. Phys., 18, 15047–15067, https://doi.org/10.5194/acp-18-15047-2018, https://doi.org/10.5194/acp-18-15047-2018, 2018
Short summary
Short summary
We analyse the impact of water vapour (WV) on Arctic ozone loss and find the strongest impact during intermediately cold stratospheric winters when chlorine activation increases with increasing PSCs and WV. In colder winters the impact is limited because chlorine activation becomes complete at relatively low WV values, so further addition of WV does not affect ozone loss. Our results imply that improved simulations of WV are needed for more reliable projections of ozone layer recovery.
Patrick Martineau, Jonathon S. Wright, Nuanliang Zhu, and Masatomo Fujiwara
Earth Syst. Sci. Data, 10, 1925–1941, https://doi.org/10.5194/essd-10-1925-2018, https://doi.org/10.5194/essd-10-1925-2018, 2018
Short summary
Short summary
This data set provides 6-hourly zonal-mean diagnostics derived from global atmospheric reanalyses on pressure levels. Data include basic variables, such as temperature and three-dimensional winds, advanced diagnostics based on the momentum and thermodynamic equations, and model-generated diabatic heating rates. Diagnostics are provided both on latitude–vertical grids corresponding to data as originally obtained from the reanalysis centers and on a standardized grid to facilitate intercomparison.
Jan Eiof Jonson, Michael Schulz, Louisa Emmons, Johannes Flemming, Daven Henze, Kengo Sudo, Marianne Tronstad Lund, Meiyun Lin, Anna Benedictow, Brigitte Koffi, Frank Dentener, Terry Keating, Rigel Kivi, and Yanko Davila
Atmos. Chem. Phys., 18, 13655–13672, https://doi.org/10.5194/acp-18-13655-2018, https://doi.org/10.5194/acp-18-13655-2018, 2018
Short summary
Short summary
Focusing on Europe, this HTAP 2 study computes ozone in several global models when reducing anthropogenic emissions by 20 % in different world regions. The differences in model results are explored
by use of a novel stepwise approach combining a tracer, CO and ozone. For ozone the contributions from the rest of the world are larger than from Europe, with the largest contributions from North America and eastern Asia. Contributions do, however, depend on the choice of ozone metric.
Corinne Vigouroux, Carlos Augusto Bauer Aquino, Maite Bauwens, Cornelis Becker, Thomas Blumenstock, Martine De Mazière, Omaira García, Michel Grutter, César Guarin, James Hannigan, Frank Hase, Nicholas Jones, Rigel Kivi, Dmitry Koshelev, Bavo Langerock, Erik Lutsch, Maria Makarova, Jean-Marc Metzger, Jean-François Müller, Justus Notholt, Ivan Ortega, Mathias Palm, Clare Paton-Walsh, Anatoly Poberovskii, Markus Rettinger, John Robinson, Dan Smale, Trissevgeni Stavrakou, Wolfgang Stremme, Kim Strong, Ralf Sussmann, Yao Té, and Geoffrey Toon
Atmos. Meas. Tech., 11, 5049–5073, https://doi.org/10.5194/amt-11-5049-2018, https://doi.org/10.5194/amt-11-5049-2018, 2018
Short summary
Short summary
A few ground-based stations have provided time series of HCHO columns until now, which was not optimal for providing good diagnostics for satellite or model validation. In this work, HCHO time series have been determined in a harmonized way at 21 stations ensuring, in addition to a better spatial and level of abundances coverage, that internal biases within the network have been minimized. This data set shows consistent good agreement with model data and is ready for future satellite validation.
Christian Borger, Matthias Schneider, Benjamin Ertl, Frank Hase, Omaira E. García, Michael Sommer, Michael Höpfner, Stephen A. Tjemkes, and Xavier Calbet
Atmos. Meas. Tech., 11, 4981–5006, https://doi.org/10.5194/amt-11-4981-2018, https://doi.org/10.5194/amt-11-4981-2018, 2018
Short summary
Short summary
In this paper MUSICA IASI tropospheric water vapour profile retrievals are evaluated by performing theoretical error assessments and comparisons to GRUAN radiosonde measurements. We show that the vertical water vapour distribution is well captured from 1 km above the ground up to the tropopause. Largest error sources are unrecognized clouds and uncertainties in atmospheric temperature, which can reach about 25 %.
Amelie Driemel, John Augustine, Klaus Behrens, Sergio Colle, Christopher Cox, Emilio Cuevas-Agulló, Fred M. Denn, Thierry Duprat, Masato Fukuda, Hannes Grobe, Martial Haeffelin, Gary Hodges, Nicole Hyett, Osamu Ijima, Ain Kallis, Wouter Knap, Vasilii Kustov, Charles N. Long, David Longenecker, Angelo Lupi, Marion Maturilli, Mohamed Mimouni, Lucky Ntsangwane, Hiroyuki Ogihara, Xabier Olano, Marc Olefs, Masao Omori, Lance Passamani, Enio Bueno Pereira, Holger Schmithüsen, Stefanie Schumacher, Rainer Sieger, Jonathan Tamlyn, Roland Vogt, Laurent Vuilleumier, Xiangao Xia, Atsumu Ohmura, and Gert König-Langlo
Earth Syst. Sci. Data, 10, 1491–1501, https://doi.org/10.5194/essd-10-1491-2018, https://doi.org/10.5194/essd-10-1491-2018, 2018
Short summary
Short summary
The Baseline Surface Radiation Network (BSRN) collects and centrally archives high-quality ground-based radiation measurements in 1 min resolution. More than 10 300 months, i.e., > 850 years, of high-radiation data in 1 min resolution from the years 1992 to 2017 are available. The network currently comprises 59 stations collectively representing all seven continents as well as island-based stations in the Pacific, Atlantic, Indian and Arctic oceans.
Marion Maturilli and Kerstin Ebell
Earth Syst. Sci. Data, 10, 1451–1456, https://doi.org/10.5194/essd-10-1451-2018, https://doi.org/10.5194/essd-10-1451-2018, 2018
Short summary
Short summary
We present a 25-year data record of cloud base height measured by ceilometer at the Ny-Ålesund, Svalbard, Arctic site. The long-term time series allows derivation of an annual cycle of the cloud occurrence frequency, revealing more frequent cloud cover in summer and the lowest cloud cover amount in April. The cloud base data further provide essential information for the interpretation of the surface radiation balance and contribute to understanding meteorological processes at high latitudes.
Arno Keppens, Jean-Christopher Lambert, José Granville, Daan Hubert, Tijl Verhoelst, Steven Compernolle, Barry Latter, Brian Kerridge, Richard Siddans, Anne Boynard, Juliette Hadji-Lazaro, Cathy Clerbaux, Catherine Wespes, Daniel R. Hurtmans, Pierre-François Coheur, Jacob C. A. van Peet, Ronald J van der A, Katerina Garane, Maria Elissavet Koukouli, Dimitris S. Balis, Andy Delcloo, Rigel Kivi, Réné Stübi, Sophie Godin-Beekmann, Michel Van Roozendael, and Claus Zehner
Atmos. Meas. Tech., 11, 3769–3800, https://doi.org/10.5194/amt-11-3769-2018, https://doi.org/10.5194/amt-11-3769-2018, 2018
Short summary
Short summary
This work, performed at the Royal Belgian Institute for Space Aeronomy and the second in a series of four Ozone_cci papers, reports for the first time on data content studies, information content studies, and comparisons with co-located ground-based reference observations for all 13 nadir ozone profile data products that are part of the Climate Research Data Package (CRDP) on atmospheric ozone of the European Space Agency's Climate Change Initiative.
Ralf Becker, Marion Maturilli, Rolf Philipona, and Klaus Behrens
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-173, https://doi.org/10.5194/amt-2018-173, 2018
Revised manuscript not accepted
Lianghai Wu, Otto Hasekamp, Haili Hu, Jochen Landgraf, Andre Butz, Joost aan de Brugh, Ilse Aben, Dave F. Pollard, David W. T. Griffith, Dietrich G. Feist, Dmitry Koshelev, Frank Hase, Geoffrey C. Toon, Hirofumi Ohyama, Isamu Morino, Justus Notholt, Kei Shiomi, Laura Iraci, Matthias Schneider, Martine de Mazière, Ralf Sussmann, Rigel Kivi, Thorsten Warneke, Tae-Young Goo, and Yao Té
Atmos. Meas. Tech., 11, 3111–3130, https://doi.org/10.5194/amt-11-3111-2018, https://doi.org/10.5194/amt-11-3111-2018, 2018
Fabio Madonna, Marco Rosoldi, Simone Lolli, Francesco Amato, Joshua Vande Hey, Ranvir Dhillon, Yunhui Zheng, Mike Brettle, and Gelsomina Pappalardo
Atmos. Meas. Tech., 11, 2459–2475, https://doi.org/10.5194/amt-11-2459-2018, https://doi.org/10.5194/amt-11-2459-2018, 2018
Short summary
Short summary
The accurate monitoring of climate based on the use of low-cost and low-maintenance automatic system represents one of the challenges for the scientific community and instrument manufacturers for the next decade. In the frame of two experiments, INTERACT and INTERACT-II, taking place at CIAO (CNR-IMAA Atmospheric Observatory) in Tito Scalo, Potenza, Italy, commercial low-cost lidars have been compared with advanced lidar systems to assess their performances.
Conor Murphy, Ciaran Broderick, Timothy P. Burt, Mary Curley, Catriona Duffy, Julia Hall, Shaun Harrigan, Tom K. R. Matthews, Neil Macdonald, Gerard McCarthy, Mark P. McCarthy, Donal Mullan, Simon Noone, Timothy J. Osborn, Ciara Ryan, John Sweeney, Peter W. Thorne, Seamus Walsh, and Robert L. Wilby
Clim. Past, 14, 413–440, https://doi.org/10.5194/cp-14-413-2018, https://doi.org/10.5194/cp-14-413-2018, 2018
Short summary
Short summary
This work reconstructs a continuous 305-year rainfall record for Ireland. The series reveals remarkable variability in decadal rainfall – far in excess of the typical period of digitised data. Notably, the series sheds light on exceptionally wet winters in the 1730s and wet summers in the 1750s. The derived record, one of the longest continuous series in Europe, offers a firm basis for benchmarking other long-term records and reconstructions of past climate both locally and across Europe.
Simone Lolli, Fabio Madonna, Marco Rosoldi, James R. Campbell, Ellsworth J. Welton, Jasper R. Lewis, Yu Gu, and Gelsomina Pappalardo
Atmos. Meas. Tech., 11, 1639–1651, https://doi.org/10.5194/amt-11-1639-2018, https://doi.org/10.5194/amt-11-1639-2018, 2018
Short summary
Short summary
We evaluate the comparability of aerosol and cloud vertically resolved optical properties obtained with varying lidar profiling techniques and/or data processing methodologies. The discrepancies are assessed by evaluating climate-sensitive direct radiative effects, computed by radiative transfer code means. Results show important discrepancies up to 0.8 W m−2 due to lidar data smoothing in cirrus clouds and a 0.05 W m−2 difference between Raman and elastic lidar technique on a dust layer aloft.
Takatoshi Sakazaki, Masatomo Fujiwara, and Masato Shiotani
Atmos. Chem. Phys., 18, 1437–1456, https://doi.org/10.5194/acp-18-1437-2018, https://doi.org/10.5194/acp-18-1437-2018, 2018
Short summary
Short summary
Atmospheric solar tides in the stratosphere and lower mesosphere are examined using temperature data from five reanalyses and satellite measurements. The reanalyses agree reasonably well with each other and with the satellite observations, but the agreement among the reanalyses is weaker in the mesosphere. The assimilation of satellite data improves the representation of tides in the reanalyses, while long-term changes are mostly artificial and driven by changes in the input data employed.
Craig S. Long, Masatomo Fujiwara, Sean Davis, Daniel M. Mitchell, and Corwin J. Wright
Atmos. Chem. Phys., 17, 14593–14629, https://doi.org/10.5194/acp-17-14593-2017, https://doi.org/10.5194/acp-17-14593-2017, 2017
Short summary
Short summary
As part of the SPARC Reanalysis Intercomparison Project, we evaluate the temperature and wind structure of all the recent and past reanalyses with 2.5-degree monthly zonal mean data sets from 1979–2014. There is a distinct change in the temperature structure in the stratosphere in 1998. Zonal winds are in greater agreement than temperatures. All reanalyses have issues analysing the tropical stratospheric winds. Caution is advised for using reanalysis temperatures for trend detection.
Zhiting Wang, Thorsten Warneke, Nicholas M. Deutscher, Justus Notholt, Ute Karstens, Marielle Saunois, Matthias Schneider, Ralf Sussmann, Harjinder Sembhi, David W. T. Griffith, Dave F. Pollard, Rigel Kivi, Christof Petri, Voltaire A. Velazco, Michel Ramonet, and Huilin Chen
Atmos. Chem. Phys., 17, 13283–13295, https://doi.org/10.5194/acp-17-13283-2017, https://doi.org/10.5194/acp-17-13283-2017, 2017
Short summary
Short summary
In this paper we separate the biases of atmospheric methane models into stratospheric and tropospheric parts. It is observed in other studies that simulated total columns of atmospheric methane present a latitudinal bias compared to measurements. The latitudinal gradients are considered to be from the stratosphere. However, our results show that the latitudinal biases could come from the troposphere in two of three models evaluated in this study.
Peter W. Thorne, Fabio Madonna, Joerg Schulz, Tim Oakley, Bruce Ingleby, Marco Rosoldi, Emanuele Tramutola, Antti Arola, Matthias Buschmann, Anna C. Mikalsen, Richard Davy, Corinne Voces, Karin Kreher, Martine De Maziere, and Gelsomina Pappalardo
Geosci. Instrum. Method. Data Syst., 6, 453–472, https://doi.org/10.5194/gi-6-453-2017, https://doi.org/10.5194/gi-6-453-2017, 2017
Short summary
Short summary
The term system-of-systems with respect to observational capabilities is frequently used, but what does it mean and how can it be assessed? Here, we define one possible interpretation of a system-of-systems architecture that is based upon demonstrable aspects of observing capabilities. We develop a set of assessment strands and then apply these to a set of atmospheric observational networks to decide which observations may be suitable for characterising satellite platforms in future work.
Sean M. Davis, Michaela I. Hegglin, Masatomo Fujiwara, Rossana Dragani, Yayoi Harada, Chiaki Kobayashi, Craig Long, Gloria L. Manney, Eric R. Nash, Gerald L. Potter, Susann Tegtmeier, Tao Wang, Krzysztof Wargan, and Jonathon S. Wright
Atmos. Chem. Phys., 17, 12743–12778, https://doi.org/10.5194/acp-17-12743-2017, https://doi.org/10.5194/acp-17-12743-2017, 2017
Short summary
Short summary
Ozone and water vapor in the stratosphere are important gases that affect surface climate and absorb incoming solar ultraviolet radiation. These gases are represented in reanalyses, which create a complete picture of the state of Earth's atmosphere using limited observations. We evaluate reanalysis water vapor and ozone fidelity by intercomparing them, and comparing them to independent observations. Generally reanalyses do a good job at representing ozone, but have problems with water vapor.
Francesco De Angelis, Domenico Cimini, Ulrich Löhnert, Olivier Caumont, Alexander Haefele, Bernhard Pospichal, Pauline Martinet, Francisco Navas-Guzmán, Henk Klein-Baltink, Jean-Charles Dupont, and James Hocking
Atmos. Meas. Tech., 10, 3947–3961, https://doi.org/10.5194/amt-10-3947-2017, https://doi.org/10.5194/amt-10-3947-2017, 2017
Short summary
Short summary
Modern data assimilation systems require knowledge of the typical differences between observations and model background (O–B). This work illustrates a 1-year O–B analysis for ground-based microwave radiometer (MWR) observations in clear-sky conditions for a prototype network of six MWRs in Europe. Observations are MWR brightness temperatures (TB). Background profiles extracted from the output of a convective-scale model are used to simulate TB through the radiative transfer model RTTOV-gb.
Pauline Martinet, Domenico Cimini, Francesco De Angelis, Guylaine Canut, Vinciane Unger, Remi Guillot, Diane Tzanos, and Alexandre Paci
Atmos. Meas. Tech., 10, 3385–3402, https://doi.org/10.5194/amt-10-3385-2017, https://doi.org/10.5194/amt-10-3385-2017, 2017
Short summary
Short summary
Microwave radiometers have the capability of observing temperature and humidity profiles with a few minute time resolution. This study investigates the potential benefit of this instrument to improve weather forecasts thanks to a better initialization of the model. Our results show that a significant improvement can be expected in the model initialization in the first 3 km with potential impacts on weather forecasts.
Dan Weaver, Kimberly Strong, Matthias Schneider, Penny M. Rowe, Chris Sioris, Kaley A. Walker, Zen Mariani, Taneil Uttal, C. Thomas McElroy, Holger Vömel, Alessio Spassiani, and James R. Drummond
Atmos. Meas. Tech., 10, 2851–2880, https://doi.org/10.5194/amt-10-2851-2017, https://doi.org/10.5194/amt-10-2851-2017, 2017
Short summary
Short summary
We have compared techniques used by several PEARL instruments to measure atmospheric water vapour. No single instrument can comprehensively map the atmosphere. We documented how well these techniques perform and quantified the agreement and biases between them. This work showed that new FTIR datasets at PEARL capture accurate measurements of High Arctic water vapour.
Bo Christiansen, Nis Jepsen, Rigel Kivi, Georg Hansen, Niels Larsen, and Ulrik Smith Korsholm
Atmos. Chem. Phys., 17, 9347–9364, https://doi.org/10.5194/acp-17-9347-2017, https://doi.org/10.5194/acp-17-9347-2017, 2017
Short summary
Short summary
Ozone soundings in the troposphere from nine Arctic stations covering the period 1984–2014 have been analyzed. Stations with the best data coverage show a consistent and significant temporal variation with a maximum near 2005 followed by a decrease. Some significant changes are found in the annual cycle in agreement with the notion that the ozone summer maximum is appearing earlier in the year. Such changes in Arctic ozone in the free troposphere have not been reported before.
Guanyu Huang, Xiong Liu, Kelly Chance, Kai Yang, Pawan K. Bhartia, Zhaonan Cai, Marc Allaart, Gérard Ancellet, Bertrand Calpini, Gerrie J. R. Coetzee, Emilio Cuevas-Agulló, Manuel Cupeiro, Hugo De Backer, Manvendra K. Dubey, Henry E. Fuelberg, Masatomo Fujiwara, Sophie Godin-Beekmann, Tristan J. Hall, Bryan Johnson, Everette Joseph, Rigel Kivi, Bogumil Kois, Ninong Komala, Gert König-Langlo, Giovanni Laneve, Thierry Leblanc, Marion Marchand, Kenneth R. Minschwaner, Gary Morris, Michael J. Newchurch, Shin-Ya Ogino, Nozomu Ohkawara, Ankie J. M. Piters, Françoise Posny, Richard Querel, Rinus Scheele, Frank J. Schmidlin, Russell C. Schnell, Otto Schrems, Henry Selkirk, Masato Shiotani, Pavla Skrivánková, René Stübi, Ghassan Taha, David W. Tarasick, Anne M. Thompson, Valérie Thouret, Matthew B. Tully, Roeland Van Malderen, Holger Vömel, Peter von der Gathen, Jacquelyn C. Witte, and Margarita Yela
Atmos. Meas. Tech., 10, 2455–2475, https://doi.org/10.5194/amt-10-2455-2017, https://doi.org/10.5194/amt-10-2455-2017, 2017
Short summary
Short summary
It is essential to understand the data quality of +10-year OMI ozone product and impacts of the “row anomaly” (RA). We validate the OMI Ozone Profile (PROFOZ) product from Oct 2004 to Dec 2014 against ozonesonde observations globally. Generally, OMI has good agreement with ozonesondes. The spatiotemporal variation of retrieval performance suggests the need to improve OMI’s radiometric calibration especially during the post-RA period to maintain the long-term stability.
Xavier Calbet, Niobe Peinado-Galan, Pilar Rípodas, Tim Trent, Ruud Dirksen, and Michael Sommer
Atmos. Meas. Tech., 10, 2323–2335, https://doi.org/10.5194/amt-10-2323-2017, https://doi.org/10.5194/amt-10-2323-2017, 2017
Short summary
Short summary
GRUAN temperature and water vapour radiosonde measurements are shown to be consistent with infrared hyperspectral measurements from IASI using LBLRTM as a
reference radiative transfer model. Long-term climate data records of temperature and water vapour can be derived from radiosonde measurements and from
space-based instruments. In order to have accurate and homogeneously useful data series, it is a critical necessary condition that these data sets be
consistent with each other.
Debra Wunch, Paul O. Wennberg, Gregory Osterman, Brendan Fisher, Bret Naylor, Coleen M. Roehl, Christopher O'Dell, Lukas Mandrake, Camille Viatte, Matthäus Kiel, David W. T. Griffith, Nicholas M. Deutscher, Voltaire A. Velazco, Justus Notholt, Thorsten Warneke, Christof Petri, Martine De Maziere, Mahesh K. Sha, Ralf Sussmann, Markus Rettinger, David Pollard, John Robinson, Isamu Morino, Osamu Uchino, Frank Hase, Thomas Blumenstock, Dietrich G. Feist, Sabrina G. Arnold, Kimberly Strong, Joseph Mendonca, Rigel Kivi, Pauli Heikkinen, Laura Iraci, James Podolske, Patrick W. Hillyard, Shuji Kawakami, Manvendra K. Dubey, Harrison A. Parker, Eliezer Sepulveda, Omaira E. García, Yao Te, Pascal Jeseck, Michael R. Gunson, David Crisp, and Annmarie Eldering
Atmos. Meas. Tech., 10, 2209–2238, https://doi.org/10.5194/amt-10-2209-2017, https://doi.org/10.5194/amt-10-2209-2017, 2017
Short summary
Short summary
This paper describes the comparisons between NASA's Orbiting Carbon Observatory (OCO-2) column-averaged dry-air mole fractions of CO2 with its primary ground-based validation network, the Total Carbon Column Observing Network (TCCON). The paper shows that while the standard bias correction reduces much of the spurious variability in the satellite measurements, residual biases remain.
Terry Deshler, Rene Stübi, Francis J. Schmidlin, Jennifer L. Mercer, Herman G. J. Smit, Bryan J. Johnson, Rigel Kivi, and Bruno Nardi
Atmos. Meas. Tech., 10, 2021–2043, https://doi.org/10.5194/amt-10-2021-2017, https://doi.org/10.5194/amt-10-2021-2017, 2017
Short summary
Short summary
Ozonesondes, small balloon-borne instruments to measure ozone profiles, are used once and lost. Quality control is thus essential. From the mid-1990s to late 2000s differences in manufacturers' (Science Pump and ENSCI) recommended sensor solution concentrations, 1.0 % and 0.5 % potassium iodide, led to some confusion. This paper uses comparison measurements to derive transfer functions to homogenize the measurements made with non-standard combinations of instrument and sensor solution.
Liang Feng, Paul I. Palmer, Hartmut Bösch, Robert J. Parker, Alex J. Webb, Caio S. C. Correia, Nicholas M. Deutscher, Lucas G. Domingues, Dietrich G. Feist, Luciana V. Gatti, Emanuel Gloor, Frank Hase, Rigel Kivi, Yi Liu, John B. Miller, Isamu Morino, Ralf Sussmann, Kimberly Strong, Osamu Uchino, Jing Wang, and Andreas Zahn
Atmos. Chem. Phys., 17, 4781–4797, https://doi.org/10.5194/acp-17-4781-2017, https://doi.org/10.5194/acp-17-4781-2017, 2017
Short summary
Short summary
We use the GEOS-Chem global 3-D model of atmospheric chemistry and transport and an ensemble Kalman filter to simultaneously infer regional fluxes of methane (CH4) and carbon dioxide (CO2) directly from GOSAT retrievals of XCH4:XCO2, using sparse ground-based CH4 and CO2 mole fraction data to anchor the ratio. Our results show that assimilation of GOSAT data significantly reduced the posterior uncertainty and changed the a priori spatial distribution of CH4 emissions.
Dan Li, Bärbel Vogel, Jianchun Bian, Rolf Müller, Laura L. Pan, Gebhard Günther, Zhixuan Bai, Qian Li, Jinqiang Zhang, Qiujun Fan, and Holger Vömel
Atmos. Chem. Phys., 17, 4657–4672, https://doi.org/10.5194/acp-17-4657-2017, https://doi.org/10.5194/acp-17-4657-2017, 2017
Short summary
Short summary
High-resolution ozone and water vapour profiles over Lhasa, China, were measured in August 2013. The correlations between ozone and water vapour profiles show a strong variability in the upper troposphere. These relationships were investigated using CLaMS trajectory calculations. The model results demonstrate that three tropical cyclones (Jebi, Utor, and Trami), occurring over the western Pacific, had a strong impact on the vertical structure of ozone and water vapour profiles.
Shu-peng Ho, Liang Peng, and Holger Vömel
Atmos. Chem. Phys., 17, 4493–4511, https://doi.org/10.5194/acp-17-4493-2017, https://doi.org/10.5194/acp-17-4493-2017, 2017
Short summary
Short summary
Radiosonde observations (RAOBs) have provided the only long-term global in situ temperature measurements since 1958. In this study, we use Global Positioning System (GPS) radio occultation (RO) temperature data from 2006 to 2014 to characterize the inter-seasonal and interannual variability of temperature biases in the lower stratosphere. Results from this study also demonstrate the feasibility to use RO data to correct RAOB temperature biases for different sensor types.
Hélène Vérèmes, Guillaume Payen, Philippe Keckhut, Valentin Duflot, Jean-Luc Baray, Jean-Pierre Cammas, Jimmy Leclair De Bellevue, Stéphanie Evan, Françoise Posny, Franck Gabarrot, Jean-Marc Metzger, Nicolas Marquestaut, Susanne Meier, Holger Vömel, and Ruud Dirksen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-32, https://doi.org/10.5194/amt-2017-32, 2017
Preprint withdrawn
Aki Tsuruta, Tuula Aalto, Leif Backman, Janne Hakkarainen, Ingrid T. van der Laan-Luijkx, Maarten C. Krol, Renato Spahni, Sander Houweling, Marko Laine, Ed Dlugokencky, Angel J. Gomez-Pelaez, Marcel van der Schoot, Ray Langenfelds, Raymond Ellul, Jgor Arduini, Francesco Apadula, Christoph Gerbig, Dietrich G. Feist, Rigel Kivi, Yukio Yoshida, and Wouter Peters
Geosci. Model Dev., 10, 1261–1289, https://doi.org/10.5194/gmd-10-1261-2017, https://doi.org/10.5194/gmd-10-1261-2017, 2017
Short summary
Short summary
In this study, we found that the average global methane emission for 2000–2012, estimated by the CTE-CH4 model, was 516±51 Tg CH4 yr-1, and the estimates for 2007–2012 were 4 % larger than for 2000–2006. The model estimates are sensitive to inputs and setups, but according to sensitivity tests the study suggests that the increase in atmospheric methane concentrations during 21st century was due to an increase in emissions from the 35S-EQ latitudinal bands.
Masatomo Fujiwara, Jonathon S. Wright, Gloria L. Manney, Lesley J. Gray, James Anstey, Thomas Birner, Sean Davis, Edwin P. Gerber, V. Lynn Harvey, Michaela I. Hegglin, Cameron R. Homeyer, John A. Knox, Kirstin Krüger, Alyn Lambert, Craig S. Long, Patrick Martineau, Andrea Molod, Beatriz M. Monge-Sanz, Michelle L. Santee, Susann Tegtmeier, Simon Chabrillat, David G. H. Tan, David R. Jackson, Saroja Polavarapu, Gilbert P. Compo, Rossana Dragani, Wesley Ebisuzaki, Yayoi Harada, Chiaki Kobayashi, Will McCarty, Kazutoshi Onogi, Steven Pawson, Adrian Simmons, Krzysztof Wargan, Jeffrey S. Whitaker, and Cheng-Zhi Zou
Atmos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-17-1417-2017, https://doi.org/10.5194/acp-17-1417-2017, 2017
Short summary
Short summary
We introduce the SPARC Reanalysis Intercomparison Project (S-RIP), review key concepts and elements of atmospheric reanalysis systems, and summarize the technical details of and differences among 11 of these systems. This work supports scientific studies and intercomparisons of reanalysis products by collecting these background materials and technical details into a single reference. We also address several common misunderstandings and points of confusion regarding reanalyses.
Dmitry A. Belikov, Shamil Maksyutov, Alexander Ganshin, Ruslan Zhuravlev, Nicholas M. Deutscher, Debra Wunch, Dietrich G. Feist, Isamu Morino, Robert J. Parker, Kimberly Strong, Yukio Yoshida, Andrey Bril, Sergey Oshchepkov, Hartmut Boesch, Manvendra K. Dubey, David Griffith, Will Hewson, Rigel Kivi, Joseph Mendonca, Justus Notholt, Matthias Schneider, Ralf Sussmann, Voltaire A. Velazco, and Shuji Aoki
Atmos. Chem. Phys., 17, 143–157, https://doi.org/10.5194/acp-17-143-2017, https://doi.org/10.5194/acp-17-143-2017, 2017
Masatomo Fujiwara, Takuji Sugidachi, Toru Arai, Kensaku Shimizu, Mayumi Hayashi, Yasuhisa Noma, Hideaki Kawagita, Kazuo Sagara, Taro Nakagawa, Satoshi Okumura, Yoichi Inai, Takashi Shibata, Suginori Iwasaki, and Atsushi Shimizu
Atmos. Meas. Tech., 9, 5911–5931, https://doi.org/10.5194/amt-9-5911-2016, https://doi.org/10.5194/amt-9-5911-2016, 2016
Short summary
Short summary
A meteorological balloon-borne cloud sensor called the cloud particle sensor (CPS) has been developed. The CPS can count the number of particles per second and can obtain the cloud phase information (i.e. liquid, ice, or mixed). Twenty-five test flights have been made between 2012 and 2015 at midlatitude and tropical sites. The results from the four flights are discussed.
Dorota Janina Mrozek, Carina van der Veen, Magdalena E. G. Hofmann, Huilin Chen, Rigel Kivi, Pauli Heikkinen, and Thomas Röckmann
Atmos. Meas. Tech., 9, 5607–5620, https://doi.org/10.5194/amt-9-5607-2016, https://doi.org/10.5194/amt-9-5607-2016, 2016
Short summary
Short summary
Stratospheric Air Sub-sampler (SAS) is a device to collect and to store the stratospheric profile of air collected with an AirCore (Karion et al., 2010) in numerous sub-samples. The sub-samples (each of 25 mL at ambient temperature and pressure) can be later introduced to the continuous flow systems to measure for example the isotopic composition of CO2. The performance of the coupled system is demonstrated for a set of air samples from an AirCore flight in November 2014 near Sodankylä, Finland.
Dipayan Paul, Huilin Chen, Henk A. Been, Rigel Kivi, and Harro A. J. Meijer
Atmos. Meas. Tech., 9, 4997–5006, https://doi.org/10.5194/amt-9-4997-2016, https://doi.org/10.5194/amt-9-4997-2016, 2016
Short summary
Short summary
Here we describe the determination of C-14 concentration in stratospheric CO2 samples collected using the AirCore sampling method. Two stratospheric AirCore profiles, collected in Sodankylä, were used for this study. The stratospheric profile was divided into six sections. CO2 from each section was extracted and converted to graphite for the determination of C-14 using AMS. Through this study, we show that the AirCore is a viable and valuable sampling method for stratospheric C-14 measurements.
Luca Ferrero, David Cappelletti, Maurizio Busetto, Mauro Mazzola, Angelo Lupi, Christian Lanconelli, Silvia Becagli, Rita Traversi, Laura Caiazzo, Fabio Giardi, Beatrice Moroni, Stefano Crocchianti, Martin Fierz, Griša Močnik, Giorgia Sangiorgi, Maria G. Perrone, Marion Maturilli, Vito Vitale, Roberto Udisti, and Ezio Bolzacchini
Atmos. Chem. Phys., 16, 12601–12629, https://doi.org/10.5194/acp-16-12601-2016, https://doi.org/10.5194/acp-16-12601-2016, 2016
Short summary
Short summary
This study reports results from systematic vertical aerosol profiles measured in the Arctic using a tethered balloon platform. The collected data allowed for finding common rules of aerosol behavior along height and seasons. Transport events, secondary aerosol formation and ship impact are examples of the issues investigated along height. The importance of these issues is related to their climatic implications in reference to the aerosol direct and indirect effects in the Arctic atmosphere.
Andreas Ostler, Ralf Sussmann, Prabir K. Patra, Sander Houweling, Marko De Bruine, Gabriele P. Stiller, Florian J. Haenel, Johannes Plieninger, Philippe Bousquet, Yi Yin, Marielle Saunois, Kaley A. Walker, Nicholas M. Deutscher, David W. T. Griffith, Thomas Blumenstock, Frank Hase, Thorsten Warneke, Zhiting Wang, Rigel Kivi, and John Robinson
Atmos. Meas. Tech., 9, 4843–4859, https://doi.org/10.5194/amt-9-4843-2016, https://doi.org/10.5194/amt-9-4843-2016, 2016
Short summary
Short summary
Our evaluation of column-averaged methane (XCH4) in models and TCCON reveals latitudinal biases between 0.4 % and 2.1 % originating from an inter-model spread in stratospheric CH4. Substituting model stratospheric CH4 fields by satellite data significantly reduces the large XCH4 bias observed for one model. For other models, showing only minor biases, the impact is ambiguous; i.e., the satellite uncertainty range hinders a more accurate model evaluation needed to improve inverse modeling.
Sean M. Davis, Karen H. Rosenlof, Birgit Hassler, Dale F. Hurst, William G. Read, Holger Vömel, Henry Selkirk, Masatomo Fujiwara, and Robert Damadeo
Earth Syst. Sci. Data, 8, 461–490, https://doi.org/10.5194/essd-8-461-2016, https://doi.org/10.5194/essd-8-461-2016, 2016
Short summary
Short summary
This paper describes the construction of the Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database, whose main feature is a combined data product created by homogenizing multiple satellite records. This motivation for SWOOSH is that in order to study multiyear to decadal variability in ozone and water vapor concentrations, it is necessary to have a continuous and smooth record without artificial jumps in the data.
Slobodan Nickovic, Bojan Cvetkovic, Fabio Madonna, Marco Rosoldi, Goran Pejanovic, Slavko Petkovic, and Jugoslav Nikolic
Atmos. Chem. Phys., 16, 11367–11378, https://doi.org/10.5194/acp-16-11367-2016, https://doi.org/10.5194/acp-16-11367-2016, 2016
Short summary
Short summary
Specific physical and mineralogical properties of desert dust particles cause extremely efficient production of ice crystals in clouds, thus influencing climate and weather even in regions far from dust sources. This study describes a methodology for predicting conditions of cold cloud formation due to dust. This approach required development of an integrated dust-atmospheric modelling system, designed to improve operational forecasts of weather in general, and cloud/precipitation in particular.
Niall J. Ryan, Kaley A. Walker, Uwe Raffalski, Rigel Kivi, Jochen Gross, and Gloria L. Manney
Atmos. Meas. Tech., 9, 4503–4519, https://doi.org/10.5194/amt-9-4503-2016, https://doi.org/10.5194/amt-9-4503-2016, 2016
Short summary
Short summary
Atmospheric ozone concentrations above Kiruna, Sweden, within 16–54 km altitude, were obtained using measurements from two ground-based instruments, KIMRA and MIRA 2. The results were compared to satellite and balloon data for validation, revealing an oscillatory offset in KIMRA data between 18 and 35 km. KIMRA data from 2008 to 2013 show a local minimum in mid-stratospheric winter ozone concentrations that is likely due to dynamics related to the polar vortex.
Dale F. Hurst, William G. Read, Holger Vömel, Henry B. Selkirk, Karen H. Rosenlof, Sean M. Davis, Emrys G. Hall, Allen F. Jordan, and Samuel J. Oltmans
Atmos. Meas. Tech., 9, 4447–4457, https://doi.org/10.5194/amt-9-4447-2016, https://doi.org/10.5194/amt-9-4447-2016, 2016
Short summary
Short summary
This study compares stratospheric water vapor measurements by the Aura Microwave Limb Sounder (MLS) and balloon-borne frost point hygrometers (FPs) at five sites that launch two different types of FPs. The results demonstrate that FP and MLS measurements have been diverging at statistically significant rates of 0.6 to 1.5 % per year since approximately 2010. Similarities in the divergences at different sites suggest a positive drift in MLS retrievals since approximately 2010.
Swagata Payra, Philippe Ricaud, Rachid Abida, Laaziz El Amraoui, Jean-Luc Attié, Emmanuel Rivière, Fabien Carminati, and Thomas von Clarmann
Atmos. Meas. Tech., 9, 4355–4373, https://doi.org/10.5194/amt-9-4355-2016, https://doi.org/10.5194/amt-9-4355-2016, 2016
Short summary
Short summary
The study deals with the budget of water vapour (H2O) at the tropical tropopause. The MOCAGE-VALENTINA assimilation tool has been used to assimilate Microwave Limb Sounder H2O space-borne measurements within the 316–5 hPa range from August 2011 to March 2013. Diagnostics are developed to assess the quality of the analyses depending on several parameters. Sensitivity studies show the improvement on the analyses when assimilating measurements of better quality, mainly over the convective areas.
Emrys G. Hall, Allen F. Jordan, Dale F. Hurst, Samuel J. Oltmans, Holger Vömel, Benjamin Kühnreich, and Volker Ebert
Atmos. Meas. Tech., 9, 4295–4310, https://doi.org/10.5194/amt-9-4295-2016, https://doi.org/10.5194/amt-9-4295-2016, 2016
Short summary
Short summary
This work focuses on the balloon borne NOAA frost point hygrometer (FPH) instrument flown at three locations around the world: Boulder, Colorado, Lauder, New Zealand, and Hilo, Hawaii. The ongoing 36-year record is the longest continuous water vapor record with profiles reaching 28 km. Significant instrument updates in 2008 decreased the weight, cost, power consumption, and manufacturing time offering greater precision and ease of use.
Francesco De Angelis, Domenico Cimini, James Hocking, Pauline Martinet, and Stefan Kneifel
Geosci. Model Dev., 9, 2721–2739, https://doi.org/10.5194/gmd-9-2721-2016, https://doi.org/10.5194/gmd-9-2721-2016, 2016
Short summary
Short summary
Ground-based microwave radiometers (MWRs) offer to bridge the observational gap in the atmospheric boundary layer. Currently MWRs are operational at many sites worldwide. However, their potential is largely under-exploited, partly due to the lack of a fast radiative transfer model (RTM) suited for data assimilation into numerical weather prediction models. Here we propose and test an RTM, building on satellite heritage and adapting for ground-based MWRs, which addresses this shortage.
Holger Vömel, Tatjana Naebert, Ruud Dirksen, and Michael Sommer
Atmos. Meas. Tech., 9, 3755–3768, https://doi.org/10.5194/amt-9-3755-2016, https://doi.org/10.5194/amt-9-3755-2016, 2016
Short summary
Short summary
This paper describes the fidelity of vertical profile measurements of atmospheric water vapor using the Cryogenic Frostpoint Hygrometer (CFH), which depends on the stability of the calibration, instrument behaviour, and validation of these measurements with respect to a reference. Being able to characterize each of these elements is essential in the understanding long time series of atmospheric water vapor measurements and in the interpretation of water vapor process studies.
Xiaolu Yan, Jonathon S. Wright, Xiangdong Zheng, Nathaniel J. Livesey, Holger Vömel, and Xiuji Zhou
Atmos. Meas. Tech., 9, 3547–3566, https://doi.org/10.5194/amt-9-3547-2016, https://doi.org/10.5194/amt-9-3547-2016, 2016
Short summary
Short summary
We evaluate Aura Microwave Limb Sounder retrievals of temperature, water vapour and ozone over the eastern Tibetan Plateau against measurements from balloon-borne instruments. The newest version of the retrievals (v4) represents a slight improvement over the previous version, particularly with respect to data yields and upper tropospheric ozone. We identify several biases that did not appear in evaluations conducted elsewhere, highlighting the unique challenges of remote sensing in this region.
Makoto Inoue, Isamu Morino, Osamu Uchino, Takahiro Nakatsuru, Yukio Yoshida, Tatsuya Yokota, Debra Wunch, Paul O. Wennberg, Coleen M. Roehl, David W. T. Griffith, Voltaire A. Velazco, Nicholas M. Deutscher, Thorsten Warneke, Justus Notholt, John Robinson, Vanessa Sherlock, Frank Hase, Thomas Blumenstock, Markus Rettinger, Ralf Sussmann, Esko Kyrö, Rigel Kivi, Kei Shiomi, Shuji Kawakami, Martine De Mazière, Sabrina G. Arnold, Dietrich G. Feist, Erica A. Barrow, James Barney, Manvendra Dubey, Matthias Schneider, Laura T. Iraci, James R. Podolske, Patrick W. Hillyard, Toshinobu Machida, Yousuke Sawa, Kazuhiro Tsuboi, Hidekazu Matsueda, Colm Sweeney, Pieter P. Tans, Arlyn E. Andrews, Sebastien C. Biraud, Yukio Fukuyama, Jasna V. Pittman, Eric A. Kort, and Tomoaki Tanaka
Atmos. Meas. Tech., 9, 3491–3512, https://doi.org/10.5194/amt-9-3491-2016, https://doi.org/10.5194/amt-9-3491-2016, 2016
Short summary
Short summary
In this study, we correct the biases of GOSAT XCO2 and XCH4 using TCCON data. To evaluate the effectiveness of our correction method, uncorrected/corrected GOSAT data are compared to independent XCO2 and XCH4 data derived from aircraft measurements. Consequently, we suggest that this method is effective for reducing the biases of the GOSAT data. We consider that our work provides GOSAT data users with valuable information and contributes to the further development of studies on greenhouse gases.
Thomas Trickl, Hannes Vogelmann, Andreas Fix, Andreas Schäfler, Martin Wirth, Bertrand Calpini, Gilbert Levrat, Gonzague Romanens, Arnoud Apituley, Keith M. Wilson, Robert Begbie, Jens Reichardt, Holger Vömel, and Michael Sprenger
Atmos. Chem. Phys., 16, 8791–8815, https://doi.org/10.5194/acp-16-8791-2016, https://doi.org/10.5194/acp-16-8791-2016, 2016
Short summary
Short summary
A rather homogeneous deep stratospheric intrusion event was mapped by vertical sounding over central Europe and by model calculations along the transport path. The very low minimum H2O mixing ratios demonstrate almost negligible mixing with tropospheric air during the downward transport. The vertical distributions of O3 and aerosol were transferred from the source region to Europe without major change. A rather shallow outflow from the stratosphere was found.
Ina Mattis, Giuseppe D'Amico, Holger Baars, Aldo Amodeo, Fabio Madonna, and Marco Iarlori
Atmos. Meas. Tech., 9, 3009–3029, https://doi.org/10.5194/amt-9-3009-2016, https://doi.org/10.5194/amt-9-3009-2016, 2016
Short summary
Short summary
We present an automated software tool for the retrieval of profiles of optical particle properties from lidar signals. This tool is one of the modules of the Single Calculus Chain of the European Aerosol Research Lidar Network (EARLINET). It allows for the analysis of the data of many different lidar systems of EARLINET in an automated, unsupervised way.
Rigel Kivi and Pauli Heikkinen
Geosci. Instrum. Method. Data Syst., 5, 271–279, https://doi.org/10.5194/gi-5-271-2016, https://doi.org/10.5194/gi-5-271-2016, 2016
Short summary
Short summary
Carbon dioxide is the most abundant greenhouse gas emitted due to human activities. Changes in atmospheric columns of carbon dioxide can be measured accurately using ground-based Fourier transform spectrometers, which are operating in the near-infrared spectral region. Our measurements at Sodankylä reveal a significant increase of column carbon dioxide since the start of the column measurements at Sodankylä in early 2009.
Tomi Karppinen, Kaisa Lakkala, Juha M. Karhu, Pauli Heikkinen, Rigel Kivi, and Esko Kyrö
Geosci. Instrum. Method. Data Syst., 5, 229–239, https://doi.org/10.5194/gi-5-229-2016, https://doi.org/10.5194/gi-5-229-2016, 2016
Short summary
Short summary
In this paper, a 26-year-long time series of total ozone column above Arctic Research Center in Sodankylä is presented. The time series is produced using a uniform method, presented in the paper, for retrieving the ozone column from the measurements. The data are checked for obvious errors and filtered automatically and manually to ensure that only good-quality data are delivered to public databases. Some features of the time series are highlighted and availability of the measurements is presented.
Yoshio Kawatani, Kevin Hamilton, Kazuyuki Miyazaki, Masatomo Fujiwara, and James A. Anstey
Atmos. Chem. Phys., 16, 6681–6699, https://doi.org/10.5194/acp-16-6681-2016, https://doi.org/10.5194/acp-16-6681-2016, 2016
Short summary
Short summary
This paper compares the representation of the monthly-mean zonal wind in the equatorial stratosphere among major global atmospheric reanalysis data sets. Differences among reanalysis display a prominent equatorial maximum, indicating the particularly challenging nature of the reanalysis problem in the low-latitude stratosphere. Our study confirms that the high accuracy in situ wind measurements have provided important constraints to reanalyses of circulation in the tropical stratosphere.
Hélène Brogniez, Stephen English, Jean-François Mahfouf, Andreas Behrendt, Wesley Berg, Sid Boukabara, Stefan Alexander Buehler, Philippe Chambon, Antonia Gambacorta, Alan Geer, William Ingram, E. Robert Kursinski, Marco Matricardi, Tatyana A. Odintsova, Vivienne H. Payne, Peter W. Thorne, Mikhail Yu. Tretyakov, and Junhong Wang
Atmos. Meas. Tech., 9, 2207–2221, https://doi.org/10.5194/amt-9-2207-2016, https://doi.org/10.5194/amt-9-2207-2016, 2016
Short summary
Short summary
Because a systematic difference between measurements of water vapor performed by space-borne observing instruments in the microwave spectral domain and their numerical modeling was recently highlighted, this work discusses and gives an overview of the various errors and uncertainties associated with each element in the comparison process. Indeed, the knowledge of absolute errors in any observation of the climate system is key, more specifically because we need to detect small changes.
Marion Maturilli and Christoph Ritter
Earth Syst. Sci. Data, 8, 159–164, https://doi.org/10.5194/essd-8-159-2016, https://doi.org/10.5194/essd-8-159-2016, 2016
Short summary
Short summary
The total solar eclipse over Ny-Ålesund (78.9° N, 11.9° E), Svalbard, on 20 March 2015 has been followed by various sensors. Here, we present the surface radiation measurements in the context of the meteorological observations, providing basic data for further studies on e.g. radiative transfer or micrometeorology.
Laura Thölix, Leif Backman, Rigel Kivi, and Alexey Yu. Karpechko
Atmos. Chem. Phys., 16, 4307–4321, https://doi.org/10.5194/acp-16-4307-2016, https://doi.org/10.5194/acp-16-4307-2016, 2016
C. von Rohden, S. Weinreben, and F. Fehres
Ocean Sci., 12, 275–283, https://doi.org/10.5194/os-12-275-2016, https://doi.org/10.5194/os-12-275-2016, 2016
Short summary
Short summary
The variability of the relative salt composition in seawater may have significant influence on physical properties. Based on off-shore and laboratory measurements, this effect is quantified for the first time for speed of sound in Baltic seawater. Time-of-flight sensors with sufficient resolution were applied to resolve the small sound speed anomaly to values in the range of several cm s−1. The results suggest that the effect can be reasonably predicted by the recent equation of state (TEOS-10).
Sébastien Massart, Anna Agustí-Panareda, Jens Heymann, Michael Buchwitz, Frédéric Chevallier, Maximilian Reuter, Michael Hilker, John P. Burrows, Nicholas M. Deutscher, Dietrich G. Feist, Frank Hase, Ralf Sussmann, Filip Desmet, Manvendra K. Dubey, David W. T. Griffith, Rigel Kivi, Christof Petri, Matthias Schneider, and Voltaire A. Velazco
Atmos. Chem. Phys., 16, 1653–1671, https://doi.org/10.5194/acp-16-1653-2016, https://doi.org/10.5194/acp-16-1653-2016, 2016
Short summary
Short summary
This study presents the European Centre for Medium-Range Weather Forecasts (ECMWF) monitoring of atmospheric CO2 using measurements from the Greenhouse gases Observing Satellite (GOSAT). We show that the modelled CO2 has a better precision than standard CO2 satellite products compared to ground-based measurements. We also present the CO2 forecast based on our best knowledge of the atmospheric CO2 distribution. We show that it has skill to forecast the largest scale CO2 patterns up to day 5.
L. Feng, P. I. Palmer, R. J. Parker, N. M. Deutscher, D. G. Feist, R. Kivi, I. Morino, and R. Sussmann
Atmos. Chem. Phys., 16, 1289–1302, https://doi.org/10.5194/acp-16-1289-2016, https://doi.org/10.5194/acp-16-1289-2016, 2016
Short summary
Short summary
There is an on-going debate on the larger European biospheric uptake inferred from GOSAT XCO2 retrievals than those inferred from in situ data. Using a set of 15 experiments, we found that the elevated uptake over Europe could largely be explained by mis-fitting data due to regional XCO2 biases: 50–80 % of the elevated European uptake is due to retrievals outside the immediate European; and a varying monthly bias of up to 0.5 ppm for XCO2 retrievals over Europe could explain most of the remainder.
T. Ning, J. Wang, G. Elgered, G. Dick, J. Wickert, M. Bradke, M. Sommer, R. Querel, and D. Smale
Atmos. Meas. Tech., 9, 79–92, https://doi.org/10.5194/amt-9-79-2016, https://doi.org/10.5194/amt-9-79-2016, 2016
Short summary
Short summary
Integrated water vapour (IWV) obtained from GNSS is to be developed into a GRUAN data product. In addition to the actual measurement, this data product needs to provide an estimate of the measurement uncertainty at the same time resolution as the actual measurement. The method developed in the paper fulfils the requirement by assigning a specific uncertainty to each data point. The method is also valuable for all applications of GNSS IWV data in atmospheric research and weather forecast.
M. Iarlori, F. Madonna, V. Rizi, T. Trickl, and A. Amodeo
Atmos. Meas. Tech., 8, 5157–5176, https://doi.org/10.5194/amt-8-5157-2015, https://doi.org/10.5194/amt-8-5157-2015, 2015
Short summary
Short summary
Smoothing filters applied on lidar profiles reduce the resolution to a value indicated as the effective resolution (ERes). Several approaches to ERes estimation are investigated. The key result is an operative ERes calculation by ready-to-use equations. The presented procedures to assess the ERes are of general validity. The ERes equations are deemed to be used in automatic tools like the Single Calculus Chain. Several filters already employed in the lidar community are also critically analyzed.
M. Fujiwara, T. Hibino, S. K. Mehta, L. Gray, D. Mitchell, and J. Anstey
Atmos. Chem. Phys., 15, 13507–13518, https://doi.org/10.5194/acp-15-13507-2015, https://doi.org/10.5194/acp-15-13507-2015, 2015
Short summary
Short summary
This paper evaluates the temperature response in the troposphere and the stratosphere to the three major volcanic eruptions between the 1960s and the 1990s by comparing nine reanalysis data sets. It was found that the volcanic temperature response patterns differ among the major eruptions and that in general, more recent reanalysis data sets show a more consistent response pattern.
H. Lindqvist, C. W. O'Dell, S. Basu, H. Boesch, F. Chevallier, N. Deutscher, L. Feng, B. Fisher, F. Hase, M. Inoue, R. Kivi, I. Morino, P. I. Palmer, R. Parker, M. Schneider, R. Sussmann, and Y. Yoshida
Atmos. Chem. Phys., 15, 13023–13040, https://doi.org/10.5194/acp-15-13023-2015, https://doi.org/10.5194/acp-15-13023-2015, 2015
Short summary
Short summary
Atmospheric carbon dioxide concentration varies seasonally mainly due to plant photosynthesis in the Northern Hemisphere. We found that the satellite GOSAT can capture this variability from space to within 1ppm. We also found that models can differ by more than 1ppm. This implies that the satellite measurements could be useful in evaluating models and their prior estimates of carbon dioxide sources and sinks.
R. J. Parker, H. Boesch, K. Byckling, A. J. Webb, P. I. Palmer, L. Feng, P. Bergamaschi, F. Chevallier, J. Notholt, N. Deutscher, T. Warneke, F. Hase, R. Sussmann, S. Kawakami, R. Kivi, D. W. T. Griffith, and V. Velazco
Atmos. Meas. Tech., 8, 4785–4801, https://doi.org/10.5194/amt-8-4785-2015, https://doi.org/10.5194/amt-8-4785-2015, 2015
Short summary
Short summary
Atmospheric CH4 is an important greenhouse gas. Long-term global observations are necessary to understand its behaviour, with satellite observations playing a key role. The "proxy" retrieval method is one of the most successful but relies on the contribution from atmospheric CO2 models. This work assesses the significance of the uncertainty from the model CO2 within the retrieval and determines that despite this uncertainty the data are still valuable for determining sources and sinks of CH4.
Y. Inai, M. Shiotani, M. Fujiwara, F. Hasebe, and H. Vömel
Atmos. Meas. Tech., 8, 4043–4054, https://doi.org/10.5194/amt-8-4043-2015, https://doi.org/10.5194/amt-8-4043-2015, 2015
Short summary
Short summary
For conventional soundings, the pressure bias of radiosonde leads to an altitude misestimation, which can lead to offsets in any meteorological profile. Therefore, we must take this issue into account to improve historical data sets.
A. Ostler, R. Sussmann, P. K. Patra, P. O. Wennberg, N. M. Deutscher, D. W. T. Griffith, T. Blumenstock, F. Hase, R. Kivi, T. Warneke, Z. Wang, M. De Mazière, J. Robinson, and H. Ohyama
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-20395-2015, https://doi.org/10.5194/acpd-15-20395-2015, 2015
Preprint withdrawn
Short summary
Short summary
We find that stratospheric model-transport errors are common for chemical transport models that are used for inverse estimates of CH4 emissions. These model-transport errors cause latitudinal as well as seasonal biases in simulated stratospheric and, hence, column-averaged CH4 mixing ratios (XCH4). Such a model bias corresponds to an overestimation of arctic and mid-latitude CH4 emissions if inversion studies do not apply an ad hoc bias correction before inverting fluxes from XCH4 observations.
J. Heymann, M. Reuter, M. Hilker, M. Buchwitz, O. Schneising, H. Bovensmann, J. P. Burrows, A. Kuze, H. Suto, N. M. Deutscher, M. K. Dubey, D. W. T. Griffith, F. Hase, S. Kawakami, R. Kivi, I. Morino, C. Petri, C. Roehl, M. Schneider, V. Sherlock, R. Sussmann, V. A. Velazco, T. Warneke, and D. Wunch
Atmos. Meas. Tech., 8, 2961–2980, https://doi.org/10.5194/amt-8-2961-2015, https://doi.org/10.5194/amt-8-2961-2015, 2015
Short summary
Short summary
Long-term data sets of global atmospheric carbon dioxide concentrations based on observations from different satellite instruments may suffer from inconsistencies originating from the use of different retrieval algorithms. This issue has been addressed by applying the Bremen Optimal Estimation DOAS retrieval algorithm to SCIAMACHY and TANSO-FTS observations. Detailed comparisons with TCCON and CarbonTracker show good consistency between the SCIAMACHY and TANSO-FTS data sets.
I. Ialongo, J. Hakkarainen, R. Kivi, P. Anttila, N. A. Krotkov, K. Yang, C. Li, S. Tukiainen, S. Hassinen, and J. Tamminen
Atmos. Meas. Tech., 8, 2279–2289, https://doi.org/10.5194/amt-8-2279-2015, https://doi.org/10.5194/amt-8-2279-2015, 2015
Short summary
Short summary
The SO2 observations from OMI and OMPS satellite instruments are compared to ground-based measurements during the Icelandic Holuhraun fissure eruption in September 2014. The best agreement with the Brewer observations in Sodankylä, Finland can be found, assuming the SO2 predominantly located in the lowest levels of the atmosphere. The analysis of the SO2 surface concentrations in northern Finland supports the hypothesis that the volcanic plume was located very close to the surface.
I. Dharssi, B. Candy, and P. Steinle
SOIL Discuss., https://doi.org/10.5194/soild-2-505-2015, https://doi.org/10.5194/soild-2-505-2015, 2015
Manuscript not accepted for further review
F. Madonna, F. Amato, J. Vande Hey, and G. Pappalardo
Atmos. Meas. Tech., 8, 2207–2223, https://doi.org/10.5194/amt-8-2207-2015, https://doi.org/10.5194/amt-8-2207-2015, 2015
Short summary
Short summary
This work is the first time that three different commercial ceilometers with an advanced Raman lidar are compared over a period of 6 months. The comparison of the attenuated backscatter profiles from a multi-wavelength Raman lidar and three ceilometers (CHM15k, CS135s, CT25K) reveals differences due to the expected discrepancy in the SNR, but also due to effect of changes in the ambient temperature on the stability of ceilometer calibration over short and mid-term.
A. Keppens, J.-C. Lambert, J. Granville, G. Miles, R. Siddans, J. C. A. van Peet, R. J. van der A, D. Hubert, T. Verhoelst, A. Delcloo, S. Godin-Beekmann, R. Kivi, R. Stübi, and C. Zehner
Atmos. Meas. Tech., 8, 2093–2120, https://doi.org/10.5194/amt-8-2093-2015, https://doi.org/10.5194/amt-8-2093-2015, 2015
Short summary
Short summary
This work thoroughly discusses a methodology, as summarized in a flowchart, for the round-robin evaluation and geophysical validation of nadir ozone profile retrievals and applies the proposed best practice to a pair of optimal-estimation algorithms run on exactly the same level-1 radiance measurements. The quality assessment combines data set content studies, information content studies, and comparisons with ground-based reference measurements.
S. Barthlott, M. Schneider, F. Hase, A. Wiegele, E. Christner, Y. González, T. Blumenstock, S. Dohe, O. E. García, E. Sepúlveda, K. Strong, J. Mendonca, D. Weaver, M. Palm, N. M. Deutscher, T. Warneke, J. Notholt, B. Lejeune, E. Mahieu, N. Jones, D. W. T. Griffith, V. A. Velazco, D. Smale, J. Robinson, R. Kivi, P. Heikkinen, and U. Raffalski
Atmos. Meas. Tech., 8, 1555–1573, https://doi.org/10.5194/amt-8-1555-2015, https://doi.org/10.5194/amt-8-1555-2015, 2015
M. Antón, D. Loyola, R. Román, and H. Vömel
Atmos. Meas. Tech., 8, 1135–1145, https://doi.org/10.5194/amt-8-1135-2015, https://doi.org/10.5194/amt-8-1135-2015, 2015
Short summary
Short summary
The main goal of this article was to validate the total water vapour column (TWVC) measured by the Global Ozone Monitoring Experiment-2 (GOME-2) satellite sensor highly accurate sounding measurements. The smallest relative differences found in this satellite-sounding comparison (below 10%) were achieved for those cloud-free cases with satellite SZA below 50º which can be considered as a good result for satellite retrievals.
D. Cimini, M. Nelson, J. Güldner, and R. Ware
Atmos. Meas. Tech., 8, 315–333, https://doi.org/10.5194/amt-8-315-2015, https://doi.org/10.5194/amt-8-315-2015, 2015
Short summary
Short summary
Forecast indices commonly used in operational meteorology can be computed from temperature and humidity profiles retrieved from a ground-based microwave radiometer.
The values of radiometer-derived forecast indices agree well with values computed from radiosondes (correlation usually above 0.8).
Radiometer-derived forecast indices offer the advantage (with respect to radiosondes) of nearly continuous data, capturing the entire diurnal cycle and providing fresh and timely data to forecasters.
M. Reuter, M. Buchwitz, M. Hilker, J. Heymann, O. Schneising, D. Pillai, H. Bovensmann, J. P. Burrows, H. Bösch, R. Parker, A. Butz, O. Hasekamp, C. W. O'Dell, Y. Yoshida, C. Gerbig, T. Nehrkorn, N. M. Deutscher, T. Warneke, J. Notholt, F. Hase, R. Kivi, R. Sussmann, T. Machida, H. Matsueda, and Y. Sawa
Atmos. Chem. Phys., 14, 13739–13753, https://doi.org/10.5194/acp-14-13739-2014, https://doi.org/10.5194/acp-14-13739-2014, 2014
Short summary
Short summary
Current knowledge about the European terrestrial biospheric carbon sink relies upon bottom-up and global surface flux inverse model estimates using in situ measurements. Our analysis of five satellite data sets comprises a regional inversion designed to be insensitive to potential retrieval biases and transport errors. We show that the satellite-derived sink is larger (1.0±0.3GtC/a) than previous estimates (0.4±0.4GtC/a).
R. J. Dirksen, M. Sommer, F. J. Immler, D. F. Hurst, R. Kivi, and H. Vömel
Atmos. Meas. Tech., 7, 4463–4490, https://doi.org/10.5194/amt-7-4463-2014, https://doi.org/10.5194/amt-7-4463-2014, 2014
K. M. Willett, R. J. H. Dunn, P. W. Thorne, S. Bell, M. de Podesta, D. E. Parker, P. D. Jones, and C. N. Williams Jr.
Clim. Past, 10, 1983–2006, https://doi.org/10.5194/cp-10-1983-2014, https://doi.org/10.5194/cp-10-1983-2014, 2014
Short summary
Short summary
We have developed HadISDH, a new gridded global land monthly mean climate montitoring product for humidity and temperature from 1973 to then end of 2013 (updated annually) based entirely on in situ observations. Uncertainty estimates are provided. Over the period of record significant warming and increases in water vapour have taken place. The specific humidity trends have slowed since a peak in 1998 concurrent with decreasing relative humidity from 2000 onwards.
F. Madonna, M. Rosoldi, J. Güldner, A. Haefele, R. Kivi, M. P. Cadeddu, D. Sisterson, and G. Pappalardo
Atmos. Meas. Tech., 7, 3813–3823, https://doi.org/10.5194/amt-7-3813-2014, https://doi.org/10.5194/amt-7-3813-2014, 2014
Short summary
Short summary
The paper provides the community with criteria to quantify the value of complementary climate measurements and to assess how the uncertainty in a measurement of an ECV is reduced by measurement complementarity. The study demonstrates the potential of entropy and mutual correlation, defined in information theory as metrics for quantifying synergies, and shows that the random uncertainties of a single instrument time series of TCWV can be strongly reduced by including complementary measurements.
A. Agustí-Panareda, S. Massart, F. Chevallier, S. Boussetta, G. Balsamo, A. Beljaars, P. Ciais, N. M. Deutscher, R. Engelen, L. Jones, R. Kivi, J.-D. Paris, V.-H. Peuch, V. Sherlock, A. T. Vermeulen, P. O. Wennberg, and D. Wunch
Atmos. Chem. Phys., 14, 11959–11983, https://doi.org/10.5194/acp-14-11959-2014, https://doi.org/10.5194/acp-14-11959-2014, 2014
Short summary
Short summary
This paper presents a new operational CO2 forecast product as part of the Copernicus Atmospheric Services suite of atmospheric composition products, using the state-of-the-art numerical weather prediction model from the European Centre of Medium-Range Weather Forecasts.
The evaluation with independent observations shows that the forecast has skill in predicting the synoptic variability of CO2. The online simulation of CO2 fluxes from vegetation contributes to this skill.
D. W. Fahey, R.-S. Gao, O. Möhler, H. Saathoff, C. Schiller, V. Ebert, M. Krämer, T. Peter, N. Amarouche, L. M. Avallone, R. Bauer, Z. Bozóki, L. E. Christensen, S. M. Davis, G. Durry, C. Dyroff, R. L. Herman, S. Hunsmann, S. M. Khaykin, P. Mackrodt, J. Meyer, J. B. Smith, N. Spelten, R. F. Troy, H. Vömel, S. Wagner, and F. G. Wienhold
Atmos. Meas. Tech., 7, 3177–3213, https://doi.org/10.5194/amt-7-3177-2014, https://doi.org/10.5194/amt-7-3177-2014, 2014
K. Willett, C. Williams, I. T. Jolliffe, R. Lund, L. V. Alexander, S. Brönnimann, L. A. Vincent, S. Easterbrook, V. K. C. Venema, D. Berry, R. E. Warren, G. Lopardo, R. Auchmann, E. Aguilar, M. J. Menne, C. Gallagher, Z. Hausfather, T. Thorarinsdottir, and P. W. Thorne
Geosci. Instrum. Method. Data Syst., 3, 187–200, https://doi.org/10.5194/gi-3-187-2014, https://doi.org/10.5194/gi-3-187-2014, 2014
K. M. Saad, D. Wunch, G. C. Toon, P. Bernath, C. Boone, B. Connor, N. M. Deutscher, D. W. T. Griffith, R. Kivi, J. Notholt, C. Roehl, M. Schneider, V. Sherlock, and P. O. Wennberg
Atmos. Meas. Tech., 7, 2907–2918, https://doi.org/10.5194/amt-7-2907-2014, https://doi.org/10.5194/amt-7-2907-2014, 2014
N. Rastak, S. Silvergren, P. Zieger, U. Wideqvist, J. Ström, B. Svenningsson, M. Maturilli, M. Tesche, A. M. L. Ekman, P. Tunved, and I. Riipinen
Atmos. Chem. Phys., 14, 7445–7460, https://doi.org/10.5194/acp-14-7445-2014, https://doi.org/10.5194/acp-14-7445-2014, 2014
E. Ricciardelli, D. Cimini, F. Di Paola, F. Romano, and M. Viggiano
Hydrol. Earth Syst. Sci., 18, 2559–2576, https://doi.org/10.5194/hess-18-2559-2014, https://doi.org/10.5194/hess-18-2559-2014, 2014
M. Wiegner, F. Madonna, I. Binietoglou, R. Forkel, J. Gasteiger, A. Geiß, G. Pappalardo, K. Schäfer, and W. Thomas
Atmos. Meas. Tech., 7, 1979–1997, https://doi.org/10.5194/amt-7-1979-2014, https://doi.org/10.5194/amt-7-1979-2014, 2014
A. Fassò, R. Ignaccolo, F. Madonna, B. B. Demoz, and M. Franco-Villoria
Atmos. Meas. Tech., 7, 1803–1816, https://doi.org/10.5194/amt-7-1803-2014, https://doi.org/10.5194/amt-7-1803-2014, 2014
M. Mielke, N. S. Zinoviev, K. Dethloff, A. Rinke, V. J. Kustov, A. P. Makshtas, V. T. Sokolov, R. Neuber, M. Maturilli, D. Klaus, D. Handorf, and J. Graeser
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-11855-2014, https://doi.org/10.5194/acpd-14-11855-2014, 2014
Revised manuscript has not been submitted
I. Engel, B. P. Luo, S. M. Khaykin, F. G. Wienhold, H. Vömel, R. Kivi, C. R. Hoyle, J.-U. Grooß, M. C. Pitts, and T. Peter
Atmos. Chem. Phys., 14, 3231–3246, https://doi.org/10.5194/acp-14-3231-2014, https://doi.org/10.5194/acp-14-3231-2014, 2014
J.-U. Grooß, I. Engel, S. Borrmann, W. Frey, G. Günther, C. R. Hoyle, R. Kivi, B. P. Luo, S. Molleker, T. Peter, M. C. Pitts, H. Schlager, G. Stiller, H. Vömel, K. A. Walker, and R. Müller
Atmos. Chem. Phys., 14, 1055–1073, https://doi.org/10.5194/acp-14-1055-2014, https://doi.org/10.5194/acp-14-1055-2014, 2014
J. X. Warner, R. Yang, Z. Wei, F. Carminati, A. Tangborn, Z. Sun, W. Lahoz, J.-L. Attié, L. El Amraoui, and B. Duncan
Atmos. Chem. Phys., 14, 103–114, https://doi.org/10.5194/acp-14-103-2014, https://doi.org/10.5194/acp-14-103-2014, 2014
J. Warner, F. Carminati, Z. Wei, W. Lahoz, and J.-L. Attié
Atmos. Chem. Phys., 13, 12469–12479, https://doi.org/10.5194/acp-13-12469-2013, https://doi.org/10.5194/acp-13-12469-2013, 2013
R. M. Zbinden, V. Thouret, P. Ricaud, F. Carminati, J.-P. Cammas, and P. Nédélec
Atmos. Chem. Phys., 13, 12363–12388, https://doi.org/10.5194/acp-13-12363-2013, https://doi.org/10.5194/acp-13-12363-2013, 2013
S. M. Khaykin, I. Engel, H. Vömel, I. M. Formanyuk, R. Kivi, L. I. Korshunov, M. Krämer, A. D. Lykov, S. Meier, T. Naebert, M. C. Pitts, M. L. Santee, N. Spelten, F. G. Wienhold, V. A. Yushkov, and T. Peter
Atmos. Chem. Phys., 13, 11503–11517, https://doi.org/10.5194/acp-13-11503-2013, https://doi.org/10.5194/acp-13-11503-2013, 2013
D. Cimini, F. Romano, E. Ricciardelli, F. Di Paola, M. Viggiano, F. S. Marzano, V. Colaiuda, E. Picciotti, G. Vulpiani, and V. Cuomo
Atmos. Meas. Tech., 6, 3181–3196, https://doi.org/10.5194/amt-6-3181-2013, https://doi.org/10.5194/amt-6-3181-2013, 2013
D. Cimini, F. De Angelis, J.-C. Dupont, S. Pal, and M. Haeffelin
Atmos. Meas. Tech., 6, 2941–2951, https://doi.org/10.5194/amt-6-2941-2013, https://doi.org/10.5194/amt-6-2941-2013, 2013
M. von Hobe, S. Bekki, S. Borrmann, F. Cairo, F. D'Amato, G. Di Donfrancesco, A. Dörnbrack, A. Ebersoldt, M. Ebert, C. Emde, I. Engel, M. Ern, W. Frey, S. Genco, S. Griessbach, J.-U. Grooß, T. Gulde, G. Günther, E. Hösen, L. Hoffmann, V. Homonnai, C. R. Hoyle, I. S. A. Isaksen, D. R. Jackson, I. M. Jánosi, R. L. Jones, K. Kandler, C. Kalicinsky, A. Keil, S. M. Khaykin, F. Khosrawi, R. Kivi, J. Kuttippurath, J. C. Laube, F. Lefèvre, R. Lehmann, S. Ludmann, B. P. Luo, M. Marchand, J. Meyer, V. Mitev, S. Molleker, R. Müller, H. Oelhaf, F. Olschewski, Y. Orsolini, T. Peter, K. Pfeilsticker, C. Piesch, M. C. Pitts, L. R. Poole, F. D. Pope, F. Ravegnani, M. Rex, M. Riese, T. Röckmann, B. Rognerud, A. Roiger, C. Rolf, M. L. Santee, M. Scheibe, C. Schiller, H. Schlager, M. Siciliani de Cumis, N. Sitnikov, O. A. Søvde, R. Spang, N. Spelten, F. Stordal, O. Sumińska-Ebersoldt, A. Ulanovski, J. Ungermann, S. Viciani, C. M. Volk, M. vom Scheidt, P. von der Gathen, K. Walker, T. Wegner, R. Weigel, S. Weinbruch, G. Wetzel, F. G. Wienhold, I. Wohltmann, W. Woiwode, I. A. K. Young, V. Yushkov, B. Zobrist, and F. Stroh
Atmos. Chem. Phys., 13, 9233–9268, https://doi.org/10.5194/acp-13-9233-2013, https://doi.org/10.5194/acp-13-9233-2013, 2013
Y. Kasai, H. Sagawa, D. Kreyling, E. Dupuy, P. Baron, J. Mendrok, K. Suzuki, T. O. Sato, T. Nishibori, S. Mizobuchi, K. Kikuchi, T. Manabe, H. Ozeki, T. Sugita, M. Fujiwara, Y. Irimajiri, K. A. Walker, P. F. Bernath, C. Boone, G. Stiller, T. von Clarmann, J. Orphal, J. Urban, D. Murtagh, E. J. Llewellyn, D. Degenstein, A. E. Bourassa, N. D. Lloyd, L. Froidevaux, M. Birk, G. Wagner, F. Schreier, J. Xu, P. Vogt, T. Trautmann, and M. Yasui
Atmos. Meas. Tech., 6, 2311–2338, https://doi.org/10.5194/amt-6-2311-2013, https://doi.org/10.5194/amt-6-2311-2013, 2013
Y. Inai, F. Hasebe, M. Fujiwara, M. Shiotani, N. Nishi, S.-Y. Ogino, H. Vömel, S. Iwasaki, and T. Shibata
Atmos. Chem. Phys., 13, 8623–8642, https://doi.org/10.5194/acp-13-8623-2013, https://doi.org/10.5194/acp-13-8623-2013, 2013
J.-P. Pommereau, F. Goutail, F. Lefèvre, A. Pazmino, C. Adams, V. Dorokhov, P. Eriksen, R. Kivi, K. Stebel, X. Zhao, and M. van Roozendael
Atmos. Chem. Phys., 13, 5299–5308, https://doi.org/10.5194/acp-13-5299-2013, https://doi.org/10.5194/acp-13-5299-2013, 2013
G. Pappalardo, L. Mona, G. D'Amico, U. Wandinger, M. Adam, A. Amodeo, A. Ansmann, A. Apituley, L. Alados Arboledas, D. Balis, A. Boselli, J. A. Bravo-Aranda, A. Chaikovsky, A. Comeron, J. Cuesta, F. De Tomasi, V. Freudenthaler, M. Gausa, E. Giannakaki, H. Giehl, A. Giunta, I. Grigorov, S. Groß, M. Haeffelin, A. Hiebsch, M. Iarlori, D. Lange, H. Linné, F. Madonna, I. Mattis, R.-E. Mamouri, M. A. P. McAuliffe, V. Mitev, F. Molero, F. Navas-Guzman, D. Nicolae, A. Papayannis, M. R. Perrone, C. Pietras, A. Pietruczuk, G. Pisani, J. Preißler, M. Pujadas, V. Rizi, A. A. Ruth, J. Schmidt, F. Schnell, P. Seifert, I. Serikov, M. Sicard, V. Simeonov, N. Spinelli, K. Stebel, M. Tesche, T. Trickl, X. Wang, F. Wagner, M. Wiegner, and K. M. Wilson
Atmos. Chem. Phys., 13, 4429–4450, https://doi.org/10.5194/acp-13-4429-2013, https://doi.org/10.5194/acp-13-4429-2013, 2013
F. Hasebe, Y. Inai, M. Shiotani, M. Fujiwara, H. Vömel, N. Nishi, S.-Y. Ogino, T. Shibata, S. Iwasaki, N. Komala, T. Peter, and S. J. Oltmans
Atmos. Chem. Phys., 13, 4393–4411, https://doi.org/10.5194/acp-13-4393-2013, https://doi.org/10.5194/acp-13-4393-2013, 2013
M. Maturilli, A. Herber, and G. König-Langlo
Earth Syst. Sci. Data, 5, 155–163, https://doi.org/10.5194/essd-5-155-2013, https://doi.org/10.5194/essd-5-155-2013, 2013
G. A. Morris, G. Labow, H. Akimoto, M. Takigawa, M. Fujiwara, F. Hasebe, J. Hirokawa, and T. Koide
Atmos. Chem. Phys., 13, 1243–1260, https://doi.org/10.5194/acp-13-1243-2013, https://doi.org/10.5194/acp-13-1243-2013, 2013
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Instruments and Platforms
An introduction of the Three-Dimensional Precipitation Particle Imager (3D-PPI)
SAMURAI-S: Sonic Anemometer on a MUlti-Rotor drone for Atmospheric turbulence Investigation in a Sling load configuration
A novel assessment of the vertical velocity correction for non-orthogonal sonic anemometers
Improving the accuracy in particle concentration measurements of a balloon-borne optical particle counter UCASS
Method development and application for the analysis of chiral organic marker species in ice cores
The ratio of transverse to longitudinal turbulent velocity statistics for aircraft measurements
A New Versatile Dropsonde for Atmospheric Soundings with HALO – The KITsonde
High-resolution wind speed measurements with quadcopter uncrewed aerial systems: calibration and verification in a wind tunnel with an active grid
High-altitude balloon-launched uncrewed aircraft system measurements of atmospheric turbulence and qualitative comparison with infrasound microphone response
Evaluation of the hyperspectral radiometer (HSR1) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site
Cost-effective off-grid automatic precipitation samplers for pollutant and biogeochemical atmospheric deposition
Modelling of cup anemometry and dynamic overspeeding in average wind speed measurements
Introducing the Video In Situ Snowfall Sensor (VISSS)
Quality evaluation for measurements of wind field and turbulent fluxes from a UAV-based eddy covariance system
A new reference-quality precipitation gauge wind shield
Long-term airborne measurements of pollutants over the United Kingdom to support air quality model development and evaluation
Acquiring high-resolution wind measurements by modifying radiosonde sounding procedures
A new accurate low-cost instrument for fast synchronized spatial measurements of light spectra
Drone-based meteorological observations up to the tropopause – a concept study
A new airborne broadband radiometer system and an efficient method to correct dynamic thermal offsets
Toward quantifying turbulent vertical airflow and sensible heat flux in tall forest canopies using fiber-optic distributed temperature sensing
A fiber-optic distributed temperature sensor for continuous in situ profiling up to 2 km beneath constant-altitude scientific balloons
New Absolute Cavity Pyrgeometer equation by application of Kirchhoff's law and adding a convection term
The DataHawk2 uncrewed aircraft system for atmospheric research
The measurement of mean wind, variances, and covariances from an instrumented mobile car in a rural environment
ICE-CAMERA: a flatbed scanner to study inland Antarctic polar precipitation
3D trajectories and velocities of rainfall drops in a multifractal turbulent wind field
Towards vertical wind and turbulent flux estimation with multicopter uncrewed aircraft systems
Instabilities, Dynamics, and Energetics accompanying Atmospheric Layering (IDEAL): high-resolution in situ observations and modeling in and above the nocturnal boundary layer
Infrasound measurement system for real-time in situ tornado measurements
Quantifying the coastal urban surface layer structure using distributed temperature sensing in Helsinki, Finland
On the quality of RS41 radiosonde descent data
Idealized simulation study of the relationship of disdrometer sampling statistics with the precision of precipitation rate measurement
Use of thermal signal for the investigation of near-surface turbulence
Drone measurements of surface-based winter temperature inversions in the High Arctic at Eureka
Ground mobile observation system for measuring multisurface microwave emissivity
A differential emissivity imaging technique for measuring hydrometeor mass and type
Effect of snow-covered ground albedo on the accuracy of air temperature measurements
Distributed wind measurements with multiple quadrotor unmanned aerial vehicles in the atmospheric boundary layer
The INFRA-EAR: a low-cost mobile multidisciplinary measurement platform for monitoring geophysical parameters
A dedicated robust instrument for water vapor generation at low humidity for use with a laser water isotope analyzer in cold and dry polar regions
Arctic observations and numerical simulations of surface wind effects on Multi-Angle Snowflake Camera measurements
The development of the “Storm Tracker” and its applications for atmospheric high-resolution upper-air observations
Use of automatic radiosonde launchers to measure temperature and humidity profiles from the GRUAN perspective
Using global reanalysis data to quantify and correct airflow distortion bias in shipborne wind speed measurements
The CopterSonde: an insight into the development of a smart unmanned aircraft system for atmospheric boundary layer research
Microphysical properties and fall speed measurements of snow ice crystals using the Dual Ice Crystal Imager (D-ICI)
The Disdrometer Verification Network (DiVeN): a UK network of laser precipitation instruments
The new BELUGA setup for collocated turbulence and radiation measurements using a tethered balloon: first applications in the cloudy Arctic boundary layer
Identification of platform exhaust on the RV Investigator
Jiayi Shi, Xichuan Liu, Lei Liu, Liying Liu, and Peng Wang
Atmos. Meas. Tech., 18, 2261–2278, https://doi.org/10.5194/amt-18-2261-2025, https://doi.org/10.5194/amt-18-2261-2025, 2025
Short summary
Short summary
The Three-Dimensional Precipitation Particle Imager (3D-PPI) was introduced as a new instrument to measure the three-dimensional shape, size, and falling velocity of precipitation particles. Field experiments of the 3D-PPI were conducted in Tulihe, China, during the winter of 2023 to 2024. More than 880 000 snowflakes in a typical snowfall case lasting 13 h were recorded. It shows potential applications in atmospheric science, polar research, and other fields.
Mauro Ghirardelli, Stephan T. Kral, Etienne Cheynet, and Joachim Reuder
Atmos. Meas. Tech., 18, 2103–2124, https://doi.org/10.5194/amt-18-2103-2025, https://doi.org/10.5194/amt-18-2103-2025, 2025
Short summary
Short summary
The SAMURAI-S system is an innovative measurement tool combining a high accuracy wind sensor with a multi-rotor drone to improve atmospheric turbulence observations. While traditional methods lack flexibility and accuracy in dynamic environments, SAMURAI-S provides high maneuverability and precise 3D wind measurements. The research demonstrated the system's ability to match the data quality of conventional methods, with a slight overestimation in vertical turbulence under higher wind conditions.
Kyaw Tha Paw U, Mary Rose Mangan, Jilmarie Stephens, Kosana Suvočarev, Jenae' Clay, Olmo Guerrero Medina, Emma Ware, Amanda Kerr-Munslow, James McGregor, John Kochendorfer, Megan McAuliffe, and Megan Metz
Atmos. Meas. Tech., 18, 1485–1497, https://doi.org/10.5194/amt-18-1485-2025, https://doi.org/10.5194/amt-18-1485-2025, 2025
Short summary
Short summary
Sonic anemometers measure wind velocity in three dimensions. They are used worldwide to help assess the trace gas exchange, critical to understanding climate change. However, their physical framework interferes with the flow they measure. We present a new way of correcting measurements from sonic anemometers of several types. The method uses measurements of vertical wind velocity and other turbulent velocities, compares their ratios, and from this yields correction factors for sonic anemometers.
Sina Jost, Ralf Weigel, Konrad Kandler, Luis Valero, Jessica Girdwood, Chris Stopford, Warren Stanley, Luca Katharina Eichhorn, Christian von Glahn, and Holger Tost
EGUsphere, https://doi.org/10.5194/egusphere-2025-451, https://doi.org/10.5194/egusphere-2025-451, 2025
Short summary
Short summary
For the balloon-borne detection of particles (diameter 0.4 < Dp < 40 µm), a Universal Cloud and Aerosol Sounding System (UCASS) was used, whose sample flow is determined by GPS-measured ascent rates. In flights, actual UCASS sample flows rarely match the ascent rates. Errors are minimized by real-time detection of the UCASS flows, e.g. by implementing a thermal flow sensor (TFS) within the UCASS. The TFSs were tested in flight, and calibrated at up to 10 m s-1 and at variable angles of attack.
Johanna Schäfer, Anja Beschnitt, François Burgay, Thomas Singer, Margit Schwikowski, and Thorsten Hoffmann
Atmos. Meas. Tech., 18, 421–430, https://doi.org/10.5194/amt-18-421-2025, https://doi.org/10.5194/amt-18-421-2025, 2025
Short summary
Short summary
Glaciers preserve organic compounds from atmospheric aerosols, which can serve as markers for emission sources. Most studies overlook the enantiomers of chiral compounds. We developed a two-dimensional liquid chromatography method to determine the chiral ratios of the monoterpene oxidation products cis-pinic acid and cis-pinonic acid in ice-core samples. Applied to samples from the Belukha Glacier (1870–1970 CE), the method revealed fluctuating chiral ratios for the analytes.
Jakub L. Nowak, Marie Lothon, Donald H. Lenschow, and Szymon P. Malinowski
Atmos. Meas. Tech., 18, 93–114, https://doi.org/10.5194/amt-18-93-2025, https://doi.org/10.5194/amt-18-93-2025, 2025
Short summary
Short summary
According to classical theory, the ratio of turbulence statistics corresponding to transverse and longitudinal wind velocity components equals 4/3 in the inertial range of scales. We analyse a large number of measurements obtained with three research aircraft during four field experiments in different locations and show that the observed ratios are almost always significantly smaller. We discuss potential reasons for this disagreement, but the actual explanation remains to be determined.
Christoph Kottmeier, Andreas Wieser, Ulrich Corsmeier, Norbert Kalthoff, Philipp Gasch, Bastian Kirsch, Dörthe Ebert, Zbigniew Ulanowski, Dieter Schell, Harald Franke, Florian Schmidmer, Johannes Frielingsdorf, Thomas Feuerle, and Rudolf Hankers
EGUsphere, https://doi.org/10.5194/egusphere-2024-2817, https://doi.org/10.5194/egusphere-2024-2817, 2024
Short summary
Short summary
A new aerological dropsonde system for research aircraft has been developed. The system allows to drop up to 4 sondes with one release container and data from up to 30 sondes can be transmitted simultaneously. The sondes enable high-resolution profiling of temperature, humidity, pressure, and wind. Additional sensors for radioactivity and particles have integrated and tested. Operations in different campaigns have confirmed the reliability of the system and the quality of data.
Johannes Kistner, Lars Neuhaus, and Norman Wildmann
Atmos. Meas. Tech., 17, 4941–4955, https://doi.org/10.5194/amt-17-4941-2024, https://doi.org/10.5194/amt-17-4941-2024, 2024
Short summary
Short summary
We use a fleet of multicopter drones to measure wind. To improve the accuracy of this wind measurement and to evaluate this improvement, we conducted experiments with the drones in a wind tunnel under various conditions. This wind tunnel can generate different kinds and intensities of wind. Here we measured with the drones and with other sensors as a reference and compared the results. We were able to improve our wind measurement and show how accurately it works in different situations.
Anisa N. Haghighi, Ryan D. Nolin, Gary D. Pundsack, Nick Craine, Aliaksei Stratsilatau, and Sean C. C. Bailey
Atmos. Meas. Tech., 17, 4863–4889, https://doi.org/10.5194/amt-17-4863-2024, https://doi.org/10.5194/amt-17-4863-2024, 2024
Short summary
Short summary
This work summarizes measurements conducted in June 2021 using a small, uncrewed, stratospheric glider that was launched from a weather balloon to altitudes up to 30 km above sea level. The aircraft conducted measurements of wind speed and direction, pressure, temperature, and humidity during its descent as well as measurements of infrasonic sound levels. These data were used to evaluate the atmospheric turbulence observed during the descent phase of the flight.
Kelly A. Balmes, Laura D. Riihimaki, John Wood, Connor Flynn, Adam Theisen, Michael Ritsche, Lynn Ma, Gary B. Hodges, and Christian Herrera
Atmos. Meas. Tech., 17, 3783–3807, https://doi.org/10.5194/amt-17-3783-2024, https://doi.org/10.5194/amt-17-3783-2024, 2024
Short summary
Short summary
A new hyperspectral radiometer (HSR1) was deployed and evaluated in the central United States (northern Oklahoma). The HSR1 total spectral irradiance agreed well with nearby existing instruments, but the diffuse spectral irradiance was slightly smaller. The HSR1-retrieved aerosol optical depth (AOD) also agreed well with other retrieved AODs. The HSR1 performance is encouraging: new hyperspectral knowledge is possible that could inform atmospheric process understanding and weather forecasting.
Alessia A. Colussi, Daniel Persaud, Melodie Lao, Bryan K. Place, Rachel F. Hems, Susan E. Ziegler, Kate A. Edwards, Cora J. Young, and Trevor C. VandenBoer
Atmos. Meas. Tech., 17, 3697–3718, https://doi.org/10.5194/amt-17-3697-2024, https://doi.org/10.5194/amt-17-3697-2024, 2024
Short summary
Short summary
A new modular and affordable instrument was developed to automatically collect wet deposition continuously with an off-grid solar top-up power package. Monthly collections were performed across the Newfoundland and Labrador Boreal Ecosystem Latitudinal Transect of experimental forest sites from 2015 to 2016. The proof-of-concept systems were validated with baseline measurements of pH and conductivity and then applied to dissolved organic carbon as an analyte of emerging biogeochemical interest.
Troels Friis Pedersen and Jan-Åke Dahlberg
Atmos. Meas. Tech., 17, 1441–1461, https://doi.org/10.5194/amt-17-1441-2024, https://doi.org/10.5194/amt-17-1441-2024, 2024
Short summary
Short summary
Accuracy is important in wind speed measurements with cup anemometers. Dynamic overspeeding is historically considered an inherent and significant error, supported by a two-cup drag model. But lower (and even zero) overspeeding might be present for low-to-medium turbulence intensities for conical cups with short arms. A parabolic torque model reveals various dynamic overspeeding characteristics of cup anemometers, but modelling of actual cup anemometers is best made with tabulated data.
Maximilian Maahn, Dmitri Moisseev, Isabelle Steinke, Nina Maherndl, and Matthew D. Shupe
Atmos. Meas. Tech., 17, 899–919, https://doi.org/10.5194/amt-17-899-2024, https://doi.org/10.5194/amt-17-899-2024, 2024
Short summary
Short summary
The open-source Video In Situ Snowfall Sensor (VISSS) is a novel instrument for characterizing particle shape, size, and sedimentation velocity in snowfall. It combines a large observation volume with relatively high resolution and a design that limits wind perturbations. The open-source nature of the VISSS hardware and software invites the community to contribute to the development of the instrument, which has many potential applications in atmospheric science and beyond.
Yibo Sun, Bilige Sude, Xingwen Lin, Bing Geng, Bo Liu, Shengnan Ji, Junping Jing, Zhiping Zhu, Ziwei Xu, Shaomin Liu, and Zhanjun Quan
Atmos. Meas. Tech., 16, 5659–5679, https://doi.org/10.5194/amt-16-5659-2023, https://doi.org/10.5194/amt-16-5659-2023, 2023
Short summary
Short summary
Unoccupied aerial vehicles (UAVs) provide a versatile platform for eddy covariance (EC) flux measurements at regional scales with low cost, transport, and infrastructural requirements. This study evaluates the measurement performance in the wind field and turbulent flux of a UAV-based EC system based on the data from a set of calibration flights and standard operational flights and concludes that the system can measure the georeferenced wind vector and turbulent flux with sufficient precision.
John Kochendorfer, Tilden P. Meyers, Mark E. Hall, Scott D. Landolt, Justin Lentz, and Howard J. Diamond
Atmos. Meas. Tech., 16, 5647–5657, https://doi.org/10.5194/amt-16-5647-2023, https://doi.org/10.5194/amt-16-5647-2023, 2023
Short summary
Short summary
A new wind shield has been designed to reduce the effects of precipitation gauge undercatch. Tested at three separate sites, it compared well to a well-established refence-quality precipitation wind shield. The new wind shield is smaller and more durable than other reference-quality shields, and it was designed for use in operational weather and climate networks.
Angela Mynard, Joss Kent, Eleanor R. Smith, Andy Wilson, Kirsty Wivell, Noel Nelson, Matthew Hort, James Bowles, David Tiddeman, Justin M. Langridge, Benjamin Drummond, and Steven J. Abel
Atmos. Meas. Tech., 16, 4229–4261, https://doi.org/10.5194/amt-16-4229-2023, https://doi.org/10.5194/amt-16-4229-2023, 2023
Short summary
Short summary
Air quality models are key in understanding complex air pollution processes and assist in developing strategies to mitigate the impacts of air pollution. The ability of regional air quality models to skilfully represent pollutant distributions aloft is important to enabling their skilful prediction at the surface. To assist in model development and evaluation, a long-term, quality-assured dataset of the 3-D distribution of key pollutants was collected over the United Kingdom (2019–2022).
Jens Faber, Michael Gerding, and Torsten Köpnick
Atmos. Meas. Tech., 16, 4183–4193, https://doi.org/10.5194/amt-16-4183-2023, https://doi.org/10.5194/amt-16-4183-2023, 2023
Short summary
Short summary
Weather forecasters around the world use uncrewed balloons to measure wind and temperature for their weather models. In these measurements, wind is recorded from the shift of the balloon by the moving air. However, the balloons and the measurement devices also move by themselves in still air. This creates artificial wind measurements that are normally removed from the data. We show new techniques to avoid these movements and increase the altitude resolution of the wind measurement by 6 times.
Bert G. Heusinkveld, Wouter B. Mol, and Chiel C. van Heerwaarden
Atmos. Meas. Tech., 16, 3767–3785, https://doi.org/10.5194/amt-16-3767-2023, https://doi.org/10.5194/amt-16-3767-2023, 2023
Short summary
Short summary
This paper presents a new instrument for fast measurements of solar irradiance in 18 wavebands (400–950 nm): GPS perfectly synchronizes 10 Hz measurement speed to universal time, low-cost (< EUR 200) complete standalone solution for realizing dense measurement grids to study cloud-shading dynamics, 940 nm waveband reveals atmospheric moisture column information, 11 wavebands to study photosynthetic active radiation and light interaction with vegetation, and good reflection spectra performance.
Konrad B. Bärfuss, Holger Schmithüsen, and Astrid Lampert
Atmos. Meas. Tech., 16, 3739–3765, https://doi.org/10.5194/amt-16-3739-2023, https://doi.org/10.5194/amt-16-3739-2023, 2023
Short summary
Short summary
The first atmospheric soundings with an electrically powered small uncrewed aircraft system (UAS) up to an altitude of 10 km are presented and assessed for quality, revealing the potential to augment atmospheric observations and fill observation gaps for numerical weather prediction. This is significant because of the need for high-resolution meteorological data, in particular in remote areas with limited in situ measurements, and for reference data for satellite measurement calibration.
André Ehrlich, Martin Zöger, Andreas Giez, Vladyslav Nenakhov, Christian Mallaun, Rolf Maser, Timo Röschenthaler, Anna E. Luebke, Kevin Wolf, Bjorn Stevens, and Manfred Wendisch
Atmos. Meas. Tech., 16, 1563–1581, https://doi.org/10.5194/amt-16-1563-2023, https://doi.org/10.5194/amt-16-1563-2023, 2023
Short summary
Short summary
Measurements of the broadband radiative energy budget from aircraft are needed to study the effect of clouds, aerosol particles, and surface conditions on the Earth's energy budget. However, the moving aircraft introduces challenges to the instrument performance and post-processing of the data. This study introduces a new radiometer package, outlines a greatly simplifying method to correct thermal offsets, and provides exemplary measurements of solar and thermal–infrared irradiance.
Mohammad Abdoli, Karl Lapo, Johann Schneider, Johannes Olesch, and Christoph K. Thomas
Atmos. Meas. Tech., 16, 809–824, https://doi.org/10.5194/amt-16-809-2023, https://doi.org/10.5194/amt-16-809-2023, 2023
Short summary
Short summary
In this study, we compute the distributed sensible heat flux using a distributed temperature sensing technique, whose magnitude, sign, and temporal dynamics compare reasonably well to estimates from classical eddy covariance measurements from sonic anemometry. Despite the remaining uncertainty in computed fluxes, the results demonstrate the potential of the novel method to compute spatially resolving sensible heat flux measurement and encourage further research.
J. Douglas Goetz, Lars E. Kalnajs, Terry Deshler, Sean M. Davis, Martina Bramberger, and M. Joan Alexander
Atmos. Meas. Tech., 16, 791–807, https://doi.org/10.5194/amt-16-791-2023, https://doi.org/10.5194/amt-16-791-2023, 2023
Short summary
Short summary
An instrument for in situ continuous 2 km vertical profiles of temperature below high-altitude balloons was developed for high-temporal-resolution measurements within the upper troposphere and lower stratosphere using fiber-optic distributed temperature sensing. The mechanical, electrical, and temperature calibration systems were validated from a short mid-latitude constant-altitude balloon flight within the lower stratosphere. The instrument observed small-scale and inertial gravity waves.
Bruce W. Forgan, Julian Gröbner, and Ibrahim Reda
Atmos. Meas. Tech., 16, 727–743, https://doi.org/10.5194/amt-16-727-2023, https://doi.org/10.5194/amt-16-727-2023, 2023
Short summary
Short summary
This paper investigates the Absolute Cavity Pyrgeometer (ACP) and its use in measuring atmospheric terrestrial irradiances traceable to the standard system of units (SI). This work fits into the objective of the Expert Team on Radiation References, established by the World Meteorological Organization (WMO), to develop and validate instrumentation that can be used as reference instruments for terrestrial radiation measurements.
Jonathan Hamilton, Gijs de Boer, Abhiram Doddi, and Dale A. Lawrence
Atmos. Meas. Tech., 15, 6789–6806, https://doi.org/10.5194/amt-15-6789-2022, https://doi.org/10.5194/amt-15-6789-2022, 2022
Short summary
Short summary
The DataHawk2 is a small, low-cost, rugged, uncrewed aircraft system (UAS) used to observe the thermodynamic and turbulence structures of the lower atmosphere, supporting an advanced understanding of the physical processes that regulate weather and climate. This paper discusses the development, performance, and sensing capabilities of the DataHawk2 using data collected during several recent field deployments.
Stefan J. Miller and Mark Gordon
Atmos. Meas. Tech., 15, 6563–6584, https://doi.org/10.5194/amt-15-6563-2022, https://doi.org/10.5194/amt-15-6563-2022, 2022
Short summary
Short summary
This research investigates the measurement of atmospheric turbulence using a low-cost instrumented car that travels at near-highway speeds and is impacted by upwind obstructions and other on-road traffic. We show that our car design can successfully measure the mean flow and atmospheric turbulence near the surface. We outline a technique to isolate and remove the effects of sporadic passing traffic from car-measured velocity variances and discuss potential measurement uncertainties.
Massimo Del Guasta
Atmos. Meas. Tech., 15, 6521–6544, https://doi.org/10.5194/amt-15-6521-2022, https://doi.org/10.5194/amt-15-6521-2022, 2022
Short summary
Short summary
Any instrument on the Antarctic plateau must cope with a harsh environment. Concordia station is a special place for testing new instruments. With low temperatures and weak winds, precipitation can be studied by simply collecting it on horizontal surfaces. This is typically done manually. ICE-CAMERA is intended as an automatic alternative. The combined construction of rugged equipment for taking photographs of particles and the adoption of machine learning techniques have served this purpose.
Auguste Gires, Ioulia Tchiguirinskaia, and Daniel Schertzer
Atmos. Meas. Tech., 15, 5861–5875, https://doi.org/10.5194/amt-15-5861-2022, https://doi.org/10.5194/amt-15-5861-2022, 2022
Short summary
Short summary
Weather radars measure rainfall in altitude whereas hydro-meteorologists are mainly interested in rainfall at ground level. During their fall, drops are advected by the wind which affects the location of the measured field. Governing equation linking acceleration, gravity, buoyancy, and drag force is updated to account for oblateness of drops. Then multifractal wind is used as input to explore velocities and trajectories of drops. Finally consequence on radar rainfall estimation is discussed.
Norman Wildmann and Tamino Wetz
Atmos. Meas. Tech., 15, 5465–5477, https://doi.org/10.5194/amt-15-5465-2022, https://doi.org/10.5194/amt-15-5465-2022, 2022
Short summary
Short summary
Multicopter uncrewed aerial systems (UAS, also known as drones) are very easy to use systems for collecting data in the lowest part of the atmosphere. Wind and turbulence are parameters that are particularly important for understanding the dynamics in the atmosphere. Only with three-dimensional measurements of the wind can a full understanding can be achieved. In this study, we show how even the vertical wind through the UAS can be measured with good accuracy.
Abhiram Doddi, Dale Lawrence, David Fritts, Ling Wang, Thomas Lund, William Brown, Dragan Zajic, and Lakshmi Kantha
Atmos. Meas. Tech., 15, 4023–4045, https://doi.org/10.5194/amt-15-4023-2022, https://doi.org/10.5194/amt-15-4023-2022, 2022
Short summary
Short summary
Small-scale turbulent structures are ubiquitous in the atmosphere, yet our understanding of their structure and dynamics is vastly incomplete. IDEAL aimed to improve our understanding of small-scale turbulent flow features in the lower atmosphere. A small, unmanned, fixed-wing aircraft was employed to make targeted observations of atmospheric columns. Measured data were used to guide atmospheric model simulations designed to describe the structure and dynamics of small-scale turbulence.
Brandon C. White, Brian R. Elbing, and Imraan A. Faruque
Atmos. Meas. Tech., 15, 2923–2938, https://doi.org/10.5194/amt-15-2923-2022, https://doi.org/10.5194/amt-15-2923-2022, 2022
Short summary
Short summary
Tornadic storms have been hypothesized to emit sound at frequencies below human hearing which animals and certain microphones can detect. This study covers the design, fabrication, and deployment of a specialized microphone that can be carried by first responders and storm chasers. The study also presents real-time processing methods, analyzes several recorded severe weather events including a tornado, and introduces a real-time web interface to allow for live monitoring of the mobile sensor.
Sasu Karttunen, Ewan O'Connor, Olli Peltola, and Leena Järvi
Atmos. Meas. Tech., 15, 2417–2432, https://doi.org/10.5194/amt-15-2417-2022, https://doi.org/10.5194/amt-15-2417-2022, 2022
Short summary
Short summary
To study the complex structure of the lowest tens of metres of atmosphere in urban areas, measurement methods with great spatial and temporal coverage are needed. In our study, we analyse measurements with a promising and relatively new method, distributed temperature sensing, capable of providing detailed information on the near-surface atmosphere. We present multiple ways to utilise these kinds of measurements, as well as important considerations for planning new studies using the method.
Bruce Ingleby, Martin Motl, Graeme Marlton, David Edwards, Michael Sommer, Christoph von Rohden, Holger Vömel, and Hannu Jauhiainen
Atmos. Meas. Tech., 15, 165–183, https://doi.org/10.5194/amt-15-165-2022, https://doi.org/10.5194/amt-15-165-2022, 2022
Short summary
Short summary
Radiosonde descent data could provide extra profiles of the atmosphere for forecasting and other uses. Descent data from Vaisala RS41 radiosondes have been compared with the ascent profiles and with ECMWF short-range forecasts. The agreement is mostly good. The descent rate is very variable and high descent rates cause temperature biases, especially at upper levels. Ascent winds are affected by pendulum motion; on average, the descent winds are smoother.
Karlie N. Rees and Timothy J. Garrett
Atmos. Meas. Tech., 14, 7681–7691, https://doi.org/10.5194/amt-14-7681-2021, https://doi.org/10.5194/amt-14-7681-2021, 2021
Short summary
Short summary
Monte Carlo simulations are used to establish baseline precipitation measurement uncertainties according to World Meteorological Organization standards. Measurement accuracy depends on instrument sampling area, time interval, and precipitation rate. Simulations are compared with field measurements taken by an emerging hotplate precipitation sensor. We find that the current collection area is sufficient for light rain, but a larger collection area is required to detect moderate to heavy rain.
Matthias Zeeman
Atmos. Meas. Tech., 14, 7475–7493, https://doi.org/10.5194/amt-14-7475-2021, https://doi.org/10.5194/amt-14-7475-2021, 2021
Short summary
Short summary
Understanding turbulence near the surface is important for many applications. In this work, methods for observing and analysing temperature structures in a near-surface volume were explored. Experiments were conducted to identify modes of organised motion. These help explain interactions between the vegetation and the atmosphere that are not currently well understood. Techniques used include fibre-optic sensing, thermal infrared imaging, signal decomposition, and machine learning.
Alexey B. Tikhomirov, Glen Lesins, and James R. Drummond
Atmos. Meas. Tech., 14, 7123–7145, https://doi.org/10.5194/amt-14-7123-2021, https://doi.org/10.5194/amt-14-7123-2021, 2021
Short summary
Short summary
Two commercial quadcopters (DJI Matrice 100 and M210 RTK) were equipped with an air temperature measurement system. They were flown at the Polar Environment Atmospheric Research Laboratory, Eureka, Nunavut, Canada, at 80° N latitude to study surface-based temperature inversion during February–March field campaigns in 2017 and 2020. It was demonstrated that the drones can be effectively used in the High Arctic to measure vertical temperature profiles up to 75 m off the ground.
Wenying He, Hongbin Chen, Yuejian Xuan, Jun Li, Minzheng Duan, and Weidong Nan
Atmos. Meas. Tech., 14, 7069–7078, https://doi.org/10.5194/amt-14-7069-2021, https://doi.org/10.5194/amt-14-7069-2021, 2021
Short summary
Short summary
Large microwave surface emissivities (ε) cause difficulties in widely using satellite microwave data over land. Usually, ground-based radiometers are fixed to a scan field to obtain the temporal evolution of ε over a single land-cover area. To obtain the long-term temporal evolution of ε over different land-cover surfaces simultaneously, we developed a ground mobile observation system to enhance in situ ε observations and presented some preliminary results.
Dhiraj K. Singh, Spencer Donovan, Eric R. Pardyjak, and Timothy J. Garrett
Atmos. Meas. Tech., 14, 6973–6990, https://doi.org/10.5194/amt-14-6973-2021, https://doi.org/10.5194/amt-14-6973-2021, 2021
Short summary
Short summary
This paper describes a new instrument for quantifying the physical characteristics of hydrometeors such as snow and rain. The device can measure the mass, size, density and type of individual hydrometeors as well as their bulk properties. The instrument is called the Differential Emissivity Imaging Disdrometer (DEID) and is composed of a thermal camera and hotplate. The DEID measures hydrometeors at sampling frequencies up to 1 Hz with masses and effective diameters greater than 1 µg and 200 µm.
Chiara Musacchio, Graziano Coppa, Gaber Begeš, Christina Hofstätter-Mohler, Laura Massano, Guido Nigrelli, Francesca Sanna, and Andrea Merlone
Atmos. Meas. Tech., 14, 6195–6212, https://doi.org/10.5194/amt-14-6195-2021, https://doi.org/10.5194/amt-14-6195-2021, 2021
Short summary
Short summary
In the context of the overhaul of the WMO/CIMO guide (no. 8) on instruments and methods of observation, we performed an experiment to quantify uncertainties in air temperature measurements due to reflected solar radiation from a snow-covered surface. Coupled sensors with different radiation shields were put under different ground conditions (grass vs. snow) for a whole winter. Results show that different shields may reduce the influence of backward radiation, which can produce errors up to 3 °C.
Tamino Wetz, Norman Wildmann, and Frank Beyrich
Atmos. Meas. Tech., 14, 3795–3814, https://doi.org/10.5194/amt-14-3795-2021, https://doi.org/10.5194/amt-14-3795-2021, 2021
Short summary
Short summary
A fleet of quadrotors is presented as a system to measure the spatial distribution of atmospheric boundary layer flow. The big advantage of this approach is that multiple and flexible measurement points in space can be sampled synchronously. The algorithm to calculate the horizontal wind is based on the principle of aerodynamic drag and the related quadrotor dynamics. The validation reveals that an average accuracy of < 0.3 m s−1 for the wind speed and < 8° for the wind direction was achieved.
Olivier F. C. den Ouden, Jelle D. Assink, Cornelis D. Oudshoorn, Dominique Filippi, and Läslo G. Evers
Atmos. Meas. Tech., 14, 3301–3317, https://doi.org/10.5194/amt-14-3301-2021, https://doi.org/10.5194/amt-14-3301-2021, 2021
Christophe Leroy-Dos Santos, Mathieu Casado, Frédéric Prié, Olivier Jossoud, Erik Kerstel, Morgane Farradèche, Samir Kassi, Elise Fourré, and Amaëlle Landais
Atmos. Meas. Tech., 14, 2907–2918, https://doi.org/10.5194/amt-14-2907-2021, https://doi.org/10.5194/amt-14-2907-2021, 2021
Short summary
Short summary
We developed an instrument that can generate water vapor at low humidity at a very stable level. This instrument was conceived to calibrate water vapor isotopic records obtained in very dry places such as central Antarctica. Here, we provide details on the instrument as well as results obtained for correcting water isotopic records for diurnal variability during a long field season at the Concordia station in East Antarctica.
Kyle E. Fitch, Chaoxun Hang, Ahmad Talaei, and Timothy J. Garrett
Atmos. Meas. Tech., 14, 1127–1142, https://doi.org/10.5194/amt-14-1127-2021, https://doi.org/10.5194/amt-14-1127-2021, 2021
Short summary
Short summary
Snow measurements are very sensitive to wind. Here, we compare airflow and snowfall simulations to Arctic observations for a Multi-Angle Snowflake Camera to show that measurements of fall speed, orientation, and size are accurate only with a double wind fence and winds below 5 m s−1. In this case, snowflakes tend to fall with a nearly horizontal orientation; the largest flakes are as much as 5 times more likely to be observed. Adjustments are needed for snow falling in naturally turbulent air.
Wei-Chun Hwang, Po-Hsiung Lin, and Hungjui Yu
Atmos. Meas. Tech., 13, 5395–5406, https://doi.org/10.5194/amt-13-5395-2020, https://doi.org/10.5194/amt-13-5395-2020, 2020
Short summary
Short summary
We have developed a small, light-weight (radiosonde of 20 g with battery), low-cost, and easy-to-use upper-air radiosonde system: the Storm Tracker. With the ability to receive multiple radiosondes simultaneously, the system enables high temporal and spatial resolution atmospheric observations. In the 2018 field campaign, the accuracy of the Storm tracker was tested using co-launched data with Vaisala RS41-SGP radiosondes, and the measurements show an overall good agreement.
Fabio Madonna, Rigel Kivi, Jean-Charles Dupont, Bruce Ingleby, Masatomo Fujiwara, Gonzague Romanens, Miguel Hernandez, Xavier Calbet, Marco Rosoldi, Aldo Giunta, Tomi Karppinen, Masami Iwabuchi, Shunsuke Hoshino, Christoph von Rohden, and Peter William Thorne
Atmos. Meas. Tech., 13, 3621–3649, https://doi.org/10.5194/amt-13-3621-2020, https://doi.org/10.5194/amt-13-3621-2020, 2020
Short summary
Short summary
Radiosondes are one of the primary sources of upper-air data for weather and climate monitoring. In the last two decades, technological progress made available automated radiosonde launchers (ARLs), which are able to replace measurements typically performed manually. This work presents a comparative analysis of the technical performance of the ARLs currently available on the market and contribute to define a strategy to achieve the full traceability of the ARL products.
Sebastian Landwehr, Iris Thurnherr, Nicolas Cassar, Martin Gysel-Beer, and Julia Schmale
Atmos. Meas. Tech., 13, 3487–3506, https://doi.org/10.5194/amt-13-3487-2020, https://doi.org/10.5194/amt-13-3487-2020, 2020
Short summary
Short summary
Shipborne wind speed measurements are relevant for field studies of air–sea interaction processes. Distortion of the airflow by the ship’s structure can, however, lead to errors. We estimate the flow distortion bias by comparing the observations to ERA-5 reanalysis data. The underlying assumptions are that the bias depends only on the relative orientation of the ship to the wind direction and that the ERA-5 wind speeds are (on average) representative of the true wind speed.
Antonio R. Segales, Brian R. Greene, Tyler M. Bell, William Doyle, Joshua J. Martin, Elizabeth A. Pillar-Little, and Phillip B. Chilson
Atmos. Meas. Tech., 13, 2833–2848, https://doi.org/10.5194/amt-13-2833-2020, https://doi.org/10.5194/amt-13-2833-2020, 2020
Short summary
Short summary
The CopterSonde is an unmanned aircraft system designed with the purpose of sampling thermodynamic and kinematic parameters of the lower Earth's atmosphere, with a focus on vertical profiles in the planetary boundary layer. By incorporating adaptive sampling techniques and optimizing the sensor placement, our study shows that CopterSonde can provide similar information as a radiosonde, but with more control of its sampling location at much higher temporal and spatial resolution.
Thomas Kuhn and Sandra Vázquez-Martín
Atmos. Meas. Tech., 13, 1273–1285, https://doi.org/10.5194/amt-13-1273-2020, https://doi.org/10.5194/amt-13-1273-2020, 2020
Short summary
Short summary
Directly measured shape and fall speed are two important parameters needed for models and remote sensing. This can be done by the new Dual Ice Crystal Imager (D-ICI) instrument, which takes two high-resolution pictures of falling snow crystals from two different angles. Fall speed is measured by doubly exposing the side-view picture. Size and shape are determined from the second picture providing the top view of the snow crystal. D-ICI has been tested on the ground in Kiruna, northern Sweden.
Ben S. Pickering, Ryan R. Neely III, and Dawn Harrison
Atmos. Meas. Tech., 12, 5845–5861, https://doi.org/10.5194/amt-12-5845-2019, https://doi.org/10.5194/amt-12-5845-2019, 2019
Short summary
Short summary
A new network of precipitation instruments has been established for the UK. The instruments are capable of detecting the fall velocity and diameter of each particle that falls through a laser beam. The particle characteristics are derived from the duration and amount of decrease in beam brightness as perceived by a receiving diode. A total of 14 instruments make up the network and all instruments upload 60 s frequency data in near-real time to a publicly available website with plots.
Ulrike Egerer, Matthias Gottschalk, Holger Siebert, André Ehrlich, and Manfred Wendisch
Atmos. Meas. Tech., 12, 4019–4038, https://doi.org/10.5194/amt-12-4019-2019, https://doi.org/10.5194/amt-12-4019-2019, 2019
Short summary
Short summary
In this study, we introduce the new tethered balloon system BELUGA, which includes different modular instrument packages for measuring turbulence and radiation in the atmospheric boundary layer. BELUGA was deployed in an Arctic field campaign in 2017, providing details of boundary layer processes in combination with low-level clouds. Those processes are still not fully understood and in situ measurements in the Arctic improve our understanding of the Arctic response in terms of global warming.
Ruhi S. Humphries, Ian M. McRobert, Will A. Ponsonby, Jason P. Ward, Melita D. Keywood, Zoe M. Loh, Paul B. Krummel, and James Harnwell
Atmos. Meas. Tech., 12, 3019–3038, https://doi.org/10.5194/amt-12-3019-2019, https://doi.org/10.5194/amt-12-3019-2019, 2019
Short summary
Short summary
Undertaking atmospheric observations from ships provides important data in regions where measurements are impossible by other means. However, making measurements so close to a diesel exhaust plume is difficult. In this paper, we describe an algorithm that utilises ongoing measurements of aerosol number concentrations, black carbon mass concentrations, and mixing ratios of carbon monoxide and carbon dioxide to accurately distinguish between exhaust and background data periods.
Cited articles
Angerer, B., Ladstädter, F., Scherllin-Pirscher, B., Schwärz, M., Steiner, A. K., Foelsche, U., and Kirchengast, G.: Quality aspects of the Wegener Center multi-satellite GPS radio occultation record OPSv5.6, Atmos. Meas. Tech., 10, 4845–4863, https://doi.org/10.5194/amt-10-4845-2017, 2017.
Anstey, J. A., Osprey, S. M., Alexander, J., Baldwin, M. P., Butchart, N., Gray, L., Kawatani, Y., Newman, P. A., and Richter, J. H.: Impacts, processes and projections of the quasi-biennial oscillation, Nat. Rev. Earth Environ., 3, 588–603, https://doi.org/10.1038/s43017-022-00323-7, 2022.
Anthes, R. A., Bernhardt, P. A., Chen, Y., Cucurull, L., Dymond, K. F., Ector, D., Healy, S. B., Ho, S.-P., Hunt, D. C., Kuo, Y.-H., Liu, H., Manning, K., McCormick, C., Meehan, T. K., Randel, W. J., Rocken, C., Schreiner, W. S., Sokolovskiy, S. V., Syndergaard, S., Thompson, D. C., Trenberth, K. E., Wee, T.-K., Yen, N. L., and Zeng, Z.: The COSMIC/FORMOSAT-3 Mission: Early Results, B. Am. Meteor. Soc., 89, 313–333, https://doi.org/10.1175/BAMS-89-3-313, 2008.
August, T., Klaes, D., Schlüssel, P., Hultberg, T., Crapeau, M., Arriaga, A., O'Carroll, A., Coppens, D., Munro, R., and Calbet, X.: IASI on Metop-A: Operational Level 2 retrievals after five years in orbit, J. Quant. Spectrosc. Ra., 113, 1340–1371, https://doi.org/10.1016/j.jqsrt.2012.02.028, 2012.
Auligné, T., McNally, A. P., and Dee, D. P.: Adaptive bias correction for satellite data in a numerical weather prediction system, Q. J. Roy. Meteor. Soc., 133, 631–642, https://doi.org/10.1002/qj.56, 2007.
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi, M.: The quasi-biennial oscillation, Rev. Geophys., 39, 179–229, https://doi.org/10.1029/1999RG000073, 2001.
Baldwin, M. P., Birner, T., Brasseur, G., Burrows, J., Butchart, N., Garcia, R., Geller, M., Gray, L., Hamilton, K., Harnik, N., Hegglin, M. I., Langematz, U., Robock, A., Sato, K., and Scaife, A. A.: 100 years of progress in understanding the stratosphere and mesosphere, Meteorol. Monogr., 59, 27.1–27.62, https://doi.org/10.1175/AMSMONOGRAPHS-D-19-0003.1, 2019.
Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A. H., Charlton-Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Garny, H., Gerber, E. P., Hegglin, M. I., Langematz, U., and Pedatella, N. M.: Sudden stratospheric warmings, Rev. Geophys., 59, e2020RG000708, https://doi.org/10.1029/2020RG000708, 2021.
Bell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Radu, R., Schepers, D., Soci, C., Villaume, S., Bidlot, J.-R., Haimberger, L., Woollen, J., Buontempo, C., and Thépaut, J.-N.: The ERA5 global reanalysis: Preliminary extension to 1950, Q. J. Roy. Meteor. Soc., 147, 4186–4227, https://doi.org/10.1002/qj.4174, 2021.
Benner, D. C., Devi, V. M., Sung, K., Brown, L. R., Miller, C. E., Payne, V. H., Drouin, B. J., Yu, S., Crawford, T. J., Mantz, A. W., Smith, M. A. H., and Gamache, R. R.: Line parameters including temperature dependences of air-and self-broadened line shapes of 12C16O2: 2.06-μm region, J. Mol. Spectrosc. 326, 21–47, https://doi.org/10.1016/j.jms.2016.02.012, 2016.
Berg, W., Bilanow, S., Chen, R., Datta, S., Draper, D., Ebrahimi, H., Farrar, S., Jones, W. L., Kroodsma, R., McKague, D., Payne, V., Wang, J., Wilheit, T., and Yang, J. X.: Intercalibration of the GPM Microwave Radiometer Constellation, J. Atmos. Ocean. Tech., 33, 2639–2654, https://doi.org/10.1175/JTECH-D-16-0100.1, 2016.
Bodeker, G. E., Bojinski, S., Cimini, D., Dirksen, R. J., Haeffelin, M., Hannigan, J. W., Hurst, D. F., Leblanc, T., Madonna, F., Maturilli, M., Mikalsen, A. C., Philipona, R., Reale, T., Seidel, D. J., Tan, D. G. H., Thorne, P. W., Vömel, H., and Wang, J.: Reference Upper-Air Observations for Climate: From Concept to Reality, B. Am. Meteor. Soc., 97, 123–135, https://doi.org/10.1175/bams-d-14-00072.1, 2016.
Bormann, N, Lawrence, H., and J. Farnan, J: Global observing system experiments in the ECMWF assimilation system, in: ECMWF Technical Memoranda, 839, 24 pp., https://doi.org/10.21957/sr184iyz, 2019.
Brogniez, H., English, S., Mahfouf, J.-F., Behrendt, A., Berg, W., Boukabara, S., Buehler, S. A., Chambon, P., Gambacorta, A., Geer, A., Ingram, W., Kursinski, E. R., Matricardi, M., Odintsova, T. A., Payne, V. H., Thorne, P. W., Tretyakov, M. Yu., and Wang, J.: A review of sources of systematic errors and uncertainties in observations and simulations at 183 GHz, Atmos. Meas. Tech., 9, 2207–2221, https://doi.org/10.5194/amt-9-2207-2016, 2016.
Brossi, S., Wienhold, F. G., Poltera, Y., Peter, T., Brossi, S., and Brossi, T.: Peltier Cooled Frost Point Hygrometer (PCFH), 15th Implementation and Coordination Meeting, Bern (CH), 11–15 March 2024, https://www.gruan.org/community/meetings/icm-15 (last access: 17 May 2024), 2024.
Brunamonti, S., Jorge, T., Oelsner, P., Hanumanthu, S., Singh, B. B., Kumar, K. R., Sonbawne, S., Meier, S., Singh, D., Wienhold, F. G., Luo, B. P., Boettcher, M., Poltera, Y., Jauhiainen, H., Kayastha, R., Karmacharya, J., Dirksen, R., Naja, M., Rex, M., Fadnavis, S., and Peter, T.: Balloon-borne measurements of temperature, water vapor, ozone and aerosol backscatter on the southern slopes of the Himalayas during StratoClim 2016–2017, Atmos. Chem. Phys., 18, 15937–15957, https://doi.org/10.5194/acp-18-15937-2018, 2018.
Calbet, X., Kivi, R., Tjemkes, S., Montagner, F., and Stuhlmann, R.: Matching radiative transfer models and radiosonde data from the EPS/Metop Sodankylä campaign to IASI measurements, Atmos. Meas. Tech., 4, 1177–1189, https://doi.org/10.5194/amt-4-1177-2011, 2011.
Calbet, X., Peinado-Galan, N., Rípodas, P., Trent, T., Dirksen, R., and Sommer, M.: Consistency between GRUAN sondes, LBLRTM and IASI, Atmos. Meas. Tech., 10, 2323–2335, https://doi.org/10.5194/amt-10-2323-2017, 2017.
Calbet, X., Peinado-Galan, N., DeSouza-Machado, S., Kursinski, E. R., Oria, P., Ward, D., Otarola, A., Rípodas, P., and Kivi, R.: Can turbulence within the field of view cause significant biases in radiative transfer modeling at the 183 GHz band?, Atmos. Meas. Tech., 11, 6409–6417, https://doi.org/10.5194/amt-11-6409-2018, 2018.
Calbet, X., Carbajal Henken, C., DeSouza-Machado, S., Sun, B., and Reale, T.: Horizontal small-scale variability of water vapor in the atmosphere: implications for intercomparison of data from different measuring systems, Atmos. Meas. Tech., 15, 7105–7118, https://doi.org/10.5194/amt-15-7105-2022, 2022.
Cameron, J. and Bell, W.: The testing and implementation of Variational Bias Correction (VarBC) in the Met Office global NWP system, Wea. Sci. Tech. Rep., 631, Met Office, 22 pp., https://library.metoffice.gov.uk/Portal/Default/en-GB/RecordView/Index/633663 (last access: 24 May 2024), 2018.
Cao, C., Weinreb, M., and Xu, H.: Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the intersatellite calibration of radiometers, J. Atmos. Ocean. Tech., 21, 537–542, https://doi.org/10.1175/1520-0426(2004)021<0537:PSNOAP>2.0.CO;2, 2004.
Carminati, F., Migliorini, S., Ingleby, B., Bell, W., Lawrence, H., Newman, S., Hocking, J., and Smith, A.: Using reference radiosondes to characterise NWP model uncertainty for improved satellite calibration and validation, Atmos. Meas. Tech., 12, 83–106, https://doi.org/10.5194/amt-12-83-2019, 2019.
Chen, D., Rojas, M., Samset, B. H., Cobb, K., Diongue Niang, A., Edwards, P., Emori, S., Faria, S. H., Hawkins, E., Hope, P., Huybrechts, P., Meinshausen, M., Mustafa, S. K., Plattner, G.-K., and Tréguier, A.-M.: Framing, context, and methods, in Climate change 2021: The physical science basis. Contribution of Working Group I to the sixth assessment report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 147–286, https://doi.org/10.1017/9781009157896.003, 2021.
Cimini, D., Serio, C., Masiello, G., Mastro, P., Ricciardelli, E., Di Paola, F., Larosa, S., Gallucci, D., Hultberg, T., August, T., and Romano, F.: Spectrum synergy for investigating cloud microphysics, B. Am. Meteor. Soc., 104, E606–E622, https://doi.org/10.1175/BAMS-D-22-0008.1, 2023.
Cimini, D., Barlakas, V., Carminati, F., De Angelis, F., Di Paola, F., Fassò, A., Gallucci, D., Gentile, S., Hewison, T., Larosa, S., Madonna, F., Mattioli, V., Montopoli, M., Romano, F., Rosoldi, M., Viggiano, M., Von Engeln, A., and Ricciardelli, E.: Anatomy of the uncertainty of satellite vicarious calibration using radiosondes: concepts and preliminary results for microwave radiometric observations, B. Atmos. Sci. Technol., 5, 9, https://doi.org/10.1007/s42865-024-00073-y, 2024.
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058, 2005.
Copernicus Climate Change Service, Climate Data Store: ERA5 hourly data on pressure levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2023.
Dabas, A., Denneulin, M. L., Flamant, P., Loth, C., Garnier, A., and Dolfi-Bouteyre, A.: Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects, Tellus A, 60A, 206–215, https://doi.org/10.1111/j.1600-0870.2007.00284.x, 2008.
Danzer, J., Healy, S. B., and Culverwell, I. D.: A simulation study with a new residual ionospheric error model for GPS radio occultation climatologies, Atmos. Meas. Tech., 8, 3395–3404, https://doi.org/10.5194/amt-8-3395-2015, 2015.
Dee, D. P. and Uppala, S.: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis, Q. J. Roy. Meteor. Soc., 135, 1830–1841, https://doi.org/10.1002/qj.493, 2009.
Devi, V. M., Benner, D. C., Sung, K., Brown, L. R., Crawford, T. J., Miller, C. E., Drouin, B. J., Payne, V. H., Yu, S., Smith, M. A. H., Mantz, A. W., and Gamache, R. R.: Line parameters including temperature dependences of self- and foreign-broadened line shapes of 12C16O2: 1.6-μm region, J. Quant. Spectrosc. Ra., 177, 117–144, https://doi.org/10.1016/j.jqsrt.2015.12.020, 2016.
Dirksen, R. J., Sommer, M., Immler, F. J., Hurst, D. F., Kivi, R., and Vömel, H.: Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde, Atmos. Meas. Tech., 7, 4463–4490, https://doi.org/10.5194/amt-7-4463-2014, 2014.
Dirksen, R., Haefele, A., Vogt, F. P. A., Sommer, M., von Rohden, C., Martucci, G., Romanens, G., Felix, C., Modolo, L., Vömel, H., Simeonov, T., Peter Oelsner, P., Edwards, D., Oakley, T., Gardiner, T., and Ansari, M. I.: Report of WMO's 2022 upper-air instrument intercomparison campaign, World Meteorological Organization Instruments and Observing Methods, Report No. 143, 400 pp., https://library.wmo.int/idurl/4/68808 (last access: 21 March 2024), 2024.
Dörnbrack, A., Gisinger, S., Kaifler, N., Portele, T. C., Bramberger, M., Rapp, M., Gerding, M., Faber, J., Žagar, N., and Jelić, D.: Gravity waves excited during a minor sudden stratospheric warming, Atmos. Chem. Phys., 18, 12915–12931, https://doi.org/10.5194/acp-18-12915-2018, 2018.
Drouin, B. J., Benner, D. C., Brown, L. R., Cich, M. J., Crawford, T. J., Devi, V. M., Guillaume, A., Hodges, J. T., Mlawer, E. J., Robichaud, D. J., Oyafuso, F., Payne, V. H., Sung, K., Wishnow, E. H., and Yu, S.: Multispectrum analysis of the oxygen A-band, J. Quant. Spectrosc. Ra., 186, 118–138, https://doi.org/10.1016/j.jqsrt.2016.03.037, 2017.
Durre, I., Xungang, Y., Vose, R. S., Applequist, S., and Arnfield, J.: Integrated Global Radiosonde Archive (IGRA), Version 2, NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V5X63K0Q, 2016.
Durre, I., Yin, X., Vose, R. S., Applequist, S., and Arnfield, J.: Enhancing the data coverage in the Integrated Global Radiosonde Archive, J. Atmos. Ocean. Tech., 35, 1753–1770, https://doi.org/10.1175/JTECH-D-17-0223.1, 2018.
Edwards, P. N.: A Vast Machine, Computer models, climate data, and the politics of global warming, MIT Press, Cambridge, USA, 518 pp., https://mitpress.mit.edu/9780262518635/a-vast-machine/ (last access: 1 July 2025), 2010.
Elson, L. S.: Ageostrophic motions in the stratosphere from satellite observations, J. Atmos. Sci., 43, 409–418, https://doi.org/10.1175/1520-0469(1986)043<0409:AMITSF>2.0.CO;2, 1986.
Essa, Y. H., Cagnazzo, C., Madonna, F., Cristofanelli, P., Yang, C., Serva, F., Caporaso, L., and Santoleri, R.: Intercomparison of atmospheric upper-air temperature from recent global reanalysis datasets, Front. Earth Sci., 10, 935139, https://doi.org/10.3389/feart.2022.935139, 2022.
Eswaraiah, S., Kumar, K.N., Kim, Y. H., Chalapathi, G. V., Lee, W., Jiang, G., Yan, C., Yang, G., Ratnam, M. V., Prasanth, P. V., Rao, S. V. B., and Thyagarajan, K.: Low-latitude mesospheric signatures observed during the 2017 sudden stratospheric warming using the fuke meteor radar and ERA-5, J. Atmos. Sol.-Terr. Phy., 207, 105352, https://doi.org/10.1016/j.jastp.2020.105352, 2020.
EUMETSAT: The case for EPS/METOP second-generation: Cost benefit analysis, Full Report, 36 pp., https://www.eumetsat.int/media/16881 (last access: 17 May 2024), 2014.
Eyre, J. R.: Observation bias correction schemes in data assimilation systems: a theoretical study of some of their properties, Q. J. Roy. Meteor. Soc., 142, 2284–2291, https://doi.org/10.1002/qj.2819, 2016.
Flamant, P. H., Lever, V., Martinet, P., Flament, T., Cuesta, J., Dabas, A., Olivier, M., Huber, D., Trapon, D., and Lacour, A.: ADM-Aeolus L2A Algorithm Theoretical Baseline Document, Particle spin-off products, AE-TN-IPSL-GS-001, Version 6.0, ESA, https://earth.esa.int/eogateway/documents/d/earth-online/aeolus-level-2a-algorithm-theoretical-baseline-document-sca-and-mle-products (last access: 25 June 2025), 2022.
Foken, T. (Ed.): Springer Handbook of Atmospheric Measurements, Springer Nature, Switzerland, 1748 pp., https://doi.org/10.1007/978-3-030-52171-4, 2021.
Francis, D. J., Fowler, A. M., Lawless, A. S., Eyre, J., and Migliorini, S.: The effective use of anchor observations in variational bias correction in the presence of model bias, Q. J. Roy. Meteor. Soc., 149, 1789–1809, https://doi.org/10.1002/qj.4482, 2023.
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106, 2003.
Fujiwara, M., Shiotani, M., Hasebe, F., Vömel, H., Oltmans, S. J., Ruppert, P. W., Horinouchi, T., and Tsuda, T.: Performance of the Meteolabor ”Snow White” chilled-mirror hygrometer in the tropical troposphere: Comparisons with the Vaisala RS80 A/H-Humicap sensors, J. Atmos. Ocean. Tech., 20, 1534–1542, https://doi.org/10.1175/1520-0426(2003)020<1534:POTMSW>2.0.CO;2, 2003.
Fujiwara, M., Wong, S.-L., Choo, L., Bodeker, G., Newman, P. A., Coy, L., Anstey, J. A., Kunze, M., and Langematz, U.: Singapore upper air station visited by SPARC researchers, SPARC Newsletter, 54, 42–47, https://www.sparc-climate.org/publications/newsletter/sparc-newsletter-no-54/ (last access: 26 April 2023), 2020.
Gallucci, D., Cimini, D., Turner, E., Fox, S., Rosenkranz, P. W., Tretyakov, M. Y., Mattioli, V., Larosa, S., and Romano, F.: Uncertainty in simulated brightness temperature due to sensitivity to atmospheric gas spectroscopic parameters from the centimeter- to submillimeter-wave range, Atmos. Chem. Phys., 24, 7283–7308, https://doi.org/10.5194/acp-24-7283-2024, 2024.
GCOS (Global Climate Observing System): Guide to the GCOS surface and upper-air networks: GSN and GUAN, WMO/TD No. 1106; GCOS No. 73, https://library.wmo.int/index.php?lvl=notice_display&id=11179 (last access: 14 November 2022), 2002.
GCOS (Global Climate Observing System): GCOS Reference Upper-Air Network (GRUAN): justification, requirements, siting and instrumentation options, WMO/TD No. 1379; GCOS No. 112, https://library.wmo.int/index.php?lvl=notice_display&id=12841 (last access: 14 November 2022), 2007.
GCOS (Global Climate Observing System): Guide to the GCOS Surface Network (GSN) and GCOS Upper-Air Network (GUAN) (2010 Update of GCOS-73), WMO/TD No. 1558; GCOS No. 73, https://library.wmo.int/index.php?lvl=notice_display&id=12885 (last access: 14 November 2022), 2010.
Geller, M. A., Alexander, M. J., Love, P. T., Bacmeister, J., Ern, M., Hertzog, A., Manzini, E., Preusse, P., Sato, K., Scaife, A. A., and Zhou, T.: A comparison between gravity wave momentum fluxes in observations and climate models, J. Climate, 26, 6383–6405, https://doi.org/10.1175/JCLI-D-12-00545.1, 2013.
Geller, M. A., Love, P. T., Ingleby, B., and Yin, X.: New availability of high vertical-resolution radiosonde data for research, SPARC Newsletter, 56, 14–15, https://www.sparc-climate.org/publications/newsletter/sparc-newsletter-no-56/ (last access: 14 December 2023), 2021.
Gulev, S.K., Thorne, P. W., Ahn, J., Dentener, F. J., Domingues, C. M., Gerland, S., Gong, D., Kaufman, D. S., Nnamchi, H. C., Quaas, J., Rivera, J. A., Sathyendranath, S., Smith, S. L., Trewin, B., von Schuckmann, K., and Vose, R. S.: Changing state of the climate system, in: Climate change 2021: The physical science basis. Contribution of Working Group I to the sixth assessment report of the Intergovernmental Panel on Climate Change edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 287–422, https://doi.org/10.1017/9781009157896.004, 2021.
Haimberger, L., Tavolato, C., and Sperka, S.: Homogenization of the global radiosonde temperature dataset through combined comparison with reanalysis background series and neighboring stations, J. Climate, 25, 8108–8131, https://doi.org/10.1175/JCLI-D-11-00668.1, 2012.
Hajj, G. A., Kursinski, E. R., Romans, L. J., Bertiger, W. I., and Leroy, S. S.: A technical description of atmospheric sounding by GPS occultation, J. Atmos. Sol.-Terr. Phy., 64, 451–469, https://doi.org/10.1016/S1364-6826(01)00114-6, 2002.
Hall, E. G., Jordan, A. F., Hurst, D. F., Oltmans, S. J., Vömel, H., Kühnreich, B., and Ebert, V.: Advancements, measurement uncertainties, and recent comparisons of the NOAA frost point hygrometer, Atmos. Meas. Tech., 9, 4295–4310, https://doi.org/10.5194/amt-9-4295-2016, 2016.
Haynes, P., Hitchcock, P., Hitchman, M., Yoden, S., Hendon, H., Kiladis, G., Kodera, K., and Simpson, I.: The Influence of the Stratosphere on the Tropical Troposphere, J. Meteorol. Soc. Jpn., 99, 803–845, https://doi.org/10.2151/jmsj.2021-040, 2021.
He, H., Kramer, R. J., Soden, B. J., and Jeevanjee, N.: State dependence of CO2 forcing and its implications for climate sensitivity, Science, 382, 6674, 1051–1056, https://doi.org/10.1126/science.abq6872, 2023.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hitchman, M. H., Yoden, S., Haynes, P. H., Kumar, V., and Tegtmeier, S.: An observational history of the direct influence of the stratospheric Quasi-Biennial Oscillation on the tropical and subtropical upper troposphere and lower stratosphere, J. Meteorol. Soc. Jpn., 99, 239–267, https://doi.org/10.2151/jmsj.2021-012, 2021.
Hocking, W. K., Röttger, J., Palmer, R. D., Sato, T., and Chilson, P. B.: Atmospheric radar: Application and science of MST radars in the Earth's mesosphere, stratosphere, troposphere, and weakly ionized regions, Cambridge University Press, Cambridge, https://doi.org/10.1017/9781316556115, 2016.
Holmlund, K., Bojkov, B., Klaes, D., and Schlüssel, P.: The Joint Polar System: Towards the Second Generation EUMETSAT Polar System, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2779–2782, https://doi.org/10.1109/IGARSS.2017.8127574, 2017.
Hoshino, S., Sugidachi, T., Shimizu, K., Kobayashi, E., Fujiwara, M., and Iwabuchi, M.: Comparison of GRUAN data products for Meisei iMS-100 and Vaisala RS92 radiosondes at Tateno, Japan, Atmos. Meas. Tech., 15, 5917–5948, https://doi.org/10.5194/amt-15-5917-2022, 2022a.
Hoshino, S., Sugidachi, T., Shimizu, K., Kobayashi, E., Fujiwara, M., and Iwabuchi, M.: iMS-100 GRUAN Data Product Version 2 (IMS-100-GDP.2), Tateno Aerological Observatory (JMA) [data set], https://doi.org/10.5676/GRUAN/IMS-100-GDP.2, 2022b.
Hufnagl, L., Eichinger, R., Garny, H., Birner, T., Kuchař, A., Jöckel, P., and Graf, P.: Stratospheric ozone changes damp the CO2-induced acceleration of the Brewer–Dobson circulation, J. Climate, 36, 3305–3320, https://doi.org/10.1175/JCLI-D-22-0512.1, 2023.
Hurst, D. F., Fujiwara, M., and Oltmans, S.: Chapter 3. Frost point hygrometers, in Field Measurements for Passive Environmental Remote Sensing, edited by: Nalli, N. R., Elsevier, Radarweg, Netherlands, 37–55, https://doi.org/10.1016/B978-0-12-823953-7.00015-0, 2023.
Immler, F. J., Dykema, J., Gardiner, T., Whiteman, D. N., Thorne, P. W., and Vömel, H.: Reference Quality Upper-Air Measurements: guidance for developing GRUAN data products, Atmos. Meas. Tech., 3, 1217–1231, https://doi.org/10.5194/amt-3-1217-2010, 2010.
Ingleby, B.: Status and impact of radiosonde and surface observing systems, presented at The 2022 WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observation (TECO-2022), 10–13 October 2022, Paris, France, WMO IOM Report No. 139, https://library.wmo.int/idurl/4/41688 (last access: 25 June 2025), 2022.
Ingleby, B., Pauley, P., Kats, A., Ator, J., Keyser, D., Doerenbecher, A., Fucile, E., Hasegawa, J., Toyoda, E., Kleinert, T., Qu, W., James, J. St., Tennant, W., and Weedon, R.: Progress toward high-resolution, real-time radiosonde reports, B. Am. Meteor. Soc., 97, 2149–2161, https://doi.org/10.1175/BAMS-D-15-00169.1, 2016.
IPCC (Intergovernmental Panel on Climate Change): Climate change 2021: The physical science basis, Contribution of Working Group I to the sixth assessment report of the Intergovernmental Panel on Climate Change edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp., https://doi.org/10.1017/9781009157896, 2021.
Jeevanjee, N., Seeley, J. T., Paynter, D., and Fueglistaler, S.: An analytical model for spatially varying clear-sky CO2 forcing, J. Climate, 34, 9463–9480, https://doi.org/10.1175/JCLI-D-19-0756.1, 2021.
Kalisch, S. and Chun, H.-Y.: AIRS satellite observations of gravity waves during the 2009 sudden stratospheric warming event, J. Geophys. Res.-Atmos., 126, e2020JD034073, https://doi.org/10.1029/2020JD034073, 2021.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, B. Am. Meteor. Soc., 77, 437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Karpechko, A. Y., Charlton-Perez, A., Balmaseda, M., Tyrrell, N., and Vitart, F.: Predicting sudden stratospheric warming 2018 and its climate impacts with a multimodel ensemble, Geophys. Res. Lett., 45, 13–538, https://doi.org/10.1029/2018GL081091, 2018.
Kawatani, Y., Hamilton, K., Miyazaki, K., Fujiwara, M., and Anstey, J. A.: Representation of the tropical stratospheric zonal wind in global atmospheric reanalyses, Atmos. Chem. Phys., 16, 6681–6699, https://doi.org/10.5194/acp-16-6681-2016, 2016.
Kiefer, M., Hurst, D. F., Stiller, G. P., Lossow, S., Vömel, H., Anderson, J., Azam, F., Bertaux, J.-L., Blanot, L., Bramstedt, K., Burrows, J. P., Damadeo, R., Dinelli, B. M., Eriksson, P., García-Comas, M., Gille, J. C., Hervig, M., Kasai, Y., Khosrawi, F., Murtagh, D., Nedoluha, G. E., Noël, S., Raspollini, P., Read, W. G., Rosenlof, K. H., Rozanov, A., Sioris, C. E., Sugita, T., von Clarmann, T., Walker, K. A., and Weigel, K.: The SPARC water vapour assessment II: biases and drifts of water vapour satellite data records with respect to frost point hygrometer records, Atmos. Meas. Tech., 16, 4589–4642, https://doi.org/10.5194/amt-16-4589-2023, 2023.
Kidston, J., Scaife, A. A., Hardiman, S. C., Mitchell, D. M., Butchart, N., Baldwin, M. P., and Gray, L. J.: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather, Nat. Geosci., 8, 433–440, 2015, https://doi.org/10.1038/NGEO2424, 2015.
Kinoshita, T., Ogino, S.-Y.,Suzuki, J., Shirooka, R., Sugidachi, T., Shimizu, K., and Hitchman, M. H.: Toward standard radiosonde observations of waves and the mean state in the 30–40 km altitude range using 3-kg balloons, J. Atmos. Ocean. Tech., 39, 849–860, https://doi.org/10.1175/JTECH-D-21-0011.1, 2022.
Kizu, N., Sugidachi, T., Kobayashi, E., Hoshino, S., Shimizu, K., Maeda, R., and Fujiwara, M.: Technical characteristics and GRUAN data processing for the Meisei RS-11G and iMS-100 radiosondes, GRUAN Lead Centre, GRUAN Technical Document No. 5, GRUAN-TD-5, 152 pp., https://www.gruan.org/documentation/gruan/td/gruan-td-5/ (last access: 21 April 2023), 2018.
Kizu, N., Sugidachi, T., Kobayashi, E., Hoshino, S., Shimizu, K., Maeda, R., and Fujiwara, M.: RS-11G GRUAN Data Product Version 1 (RS-11G-GDP.1), Tateno Aerological Observatory (JMA) [data set], https://doi.org/10.5676/GRUAN/RS-11G-GDP.1, 2019.
Kobayashi, E., Hoshino, S., Iwabuchi, M., Sugidachi, T., Shimizu, K., and Fujiwara, M.: Comparison of the GRUAN data products for Meisei RS-11G and Vaisala RS92-SGP radiosondes at Tateno (36.06° N, 140.13° E), Japan, Atmos. Meas. Tech., 12, 3039–3065, https://doi.org/10.5194/amt-12-3039-2019, 2019.
Kosaka, Y., Kobayashi, S., Harada, Y., Kobayashi, C., Naoe, H., Yoshimoto, K., Harada, M., Goto, N., Chiba, J., Miyaoka, K., Sekiguchi, R., Deushi, M., Kamahori, H., Nakaegawa, T., Tanaka, T. Y., Tokuhiro, T., Sato, Y., Matsushita, Y., and Onogi, K.: The JRA-3Q reanalysis, J. Meteor. Soc. Jpn., 102, 49–109, https://doi.org/10.2151/jmsj.2024-004, 2024.
Kräuchi, A., Philipona, R., Romanens, G., Hurst, D. F., Hall, E. G., and Jordan, A. F.: Controlled weather balloon ascents and descents for atmospheric research and climate monitoring, Atmos. Meas. Tech., 9, 929–938, https://doi.org/10.5194/amt-9-929-2016, 2016.
Kunkee, D. B., Poe, G. A., Boucher, D. J., Swadley, S. D., Hong, Y., Wessel, J. E., and Uliana, E. A.: Design and evaluation of the first Special Sensor Microwave Imager/Sounder, IEEE T. Geosci. Remote, 46, 863–883, https://doi.org/10.1109/TGRS.2008.917980, 2008.
Laloyaux, P., Bonavita, M., Dahoui, M., Farnan, J., Healy, S., Hólm, E., and Lang, S. T. K.: Towards an unbiased stratospheric analysis, Q. J. Roy. Meteor. Soc., 146, 2392–2409, https://doi.org/10.1002/qj.3798, 2020.
Larar, A. M., Smith, W. L., Zhou, D. K., Liu, X., Revercomb, H., Taylor, J. P., Newman, S. M., and Schlüssel, P.: IASI spectral radiance validation inter-comparisons: case study assessment from the JAIVEx field campaign, Atmos. Chem. Phys., 10, 411–430, https://doi.org/10.5194/acp-10-411-2010, 2010.
Larosa, S., Cimini, D., Gallucci, D., Nilo, S. T., and Romano, F.: PyRTlib: an educational Python-based library for non-scattering atmospheric microwave radiative transfer computations, Geosci. Model Dev., 17, 2053–2076, https://doi.org/10.5194/gmd-17-2053-2024, 2024.
Lee, S.-W., Kim, S., Lee, Y.-S., Choi, B. I., Kang, W., Oh, Y. K., Park, S., Yoo, J.-K., Lee, J., Lee, S., Kwon, S., and Kim, Y.-G.: Radiation correction and uncertainty evaluation of RS41 temperature sensors by using an upper-air simulator, Atmos. Meas. Tech., 15, 1107–1121, https://doi.org/10.5194/amt-15-1107-2022, 2022a.
Lee, S.-W., Kim, S., Lee, Y.-S., Yoo, J.-K., Lee, S., Kwon, S., Choi, B. I., So, J., and Kim, Y.-G.: Laboratory characterisation and intercomparison sounding test of dual thermistor radiosondes for radiation correction, Atmos. Meas. Tech., 15, 2531–2545, https://doi.org/10.5194/amt-15-2531-2022, 2022b.
Lorenc, A. C., Ballard, S. P., Bell, R. S., Ingleby, N. B., Andrews, P. L. F., Barker, D. M., Bray, J. R., Clayton, A. M., Dalby, T., Li, D., Payne, T. J., and Saunders, F. W.: The Met. Office global three-dimensional variational data assimilation scheme, Q. J. Roy. Meteor. Soc., 126, 2991–3012, https://doi.org/10.1002/qj.49712657002, 2000.
Lorenc, A. C., Bowler, N. E., Clayton, A. M., Pring, S. R., and Fairbairn, D.: Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NWP, Mon. Weather Rev., 143, 212–229, https://doi.org/10.1175/MWR-D-14-00195.1, 2015.
Madonna, F., Proto, M., Rosoldi, M., Tramutola, E., Gagliardi, S., SY, S., Gardiner, T., Thorne, P., and Fassò, A.: In situ observations of meteorological variables from the Integrated Global Radiosounding Archive and the Radiosounding Harmonization dataset from 1978 onward, Climate Data Store [data set], https://doi.org/10.24381/cds.f101d0bf, 2019.
Madonna, F., Kivi, R., Dupont, J.-C., Ingleby, B., Fujiwara, M., Romanens, G., Hernandez, M., Calbet, X., Rosoldi, M., Giunta, A., Karppinen, T., Iwabuchi, M., Hoshino, S., von Rohden, C., and Thorne, P. W.: Use of automatic radiosonde launchers to measure temperature and humidity profiles from the GRUAN perspective, Atmos. Meas. Tech., 13, 3621–3649, https://doi.org/10.5194/amt-13-3621-2020, 2020.
Madonna, F., Tramutola, E., SY, S., Serva, F., Proto, M., Rosoldi, M., Gagliardi, S., Amato, F., Marra, F., Fassò, A., Gardiner, T., and Thorne, P. W.: The new Radiosounding HARMonization (RHARM) data set of homogenized radiosounding temperature, humidity, and wind profiles with uncertainties, J. Geophys. Res.-Atmos., 127, e2021JD035220, https://doi.org/10.1029/2021JD035220, 2022.
Madonna, F., Essa, Y. H., Marra, F., Serva, F., Gardiner, T., Sarakhs, F. K., Tramutola, E., and Rosoldi, M.: Uncertainties on climate extreme indices estimated from U.S. Climate Reference Network (USCRN) near-surface temperatures, J. Geophys. Res.-Atmos., 128, e2022JD038057, https://doi.org/10.1029/2022JD038057, 2023.
Manney, G. L., Butler, A. H., Wargan, K., and Grooß, J.-U.: Introduction to special collection “The exceptional Arctic stratospheric polar vortex in 2019/2020: Causes and consequences”, J. Geophys. Res.-Atmos., 127, e2022JD037381, https://doi.org/10.1029/2022JD037381, 2022.
Mitnik, L. M., Kuleshov, V. P., Pichugin, M. K., and Mitnik, M. L.: Sudden stratospheric warming in 2015–2016: Study with satellite passive microwave data and ERA5 reanalysis, IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018, 5556–5559, https://doi.org/10.1109/IGARSS.2018.8517495, 2018.
Müller, R: Calibration and verification of remote sensing instruments and observations, Remote Sens., 6, 5692–5695, https://doi.org/10.3390/rs6065692, 2014.
Nash, J. and Brownscombe, J. L.: Validation of the stratospheric sounding unit, Adv. Space Res., 2, 59–62, https://doi.org/10.1016/0273-1177(82)90122-3, 1983.
Nash, J., Oakley, T., Vömel, H., and Li, W.: WMO intercomparison of high quality radiosonde observing systems, Yangjiang, China, 12 July–3 August 2010, World Meteorological Organization Instruments and Observing Methods, Report IOM-107, WMO/TD No. 1580, https://library.wmo.int/idurl/4/50499 (last access: 13 December 2023), 2011.
Newman, S., Carminati, F., Lawrence, H., Bormann, N., Salonen, K., and Bell, W.: Assessment of new satellite missions within the framework of numerical weather prediction, Remote Sens., 12, 1580, https://doi.org/10.3390/rs12101580, 2020.
Nie, Y., Scaife, A. A., Ren, H.-L., Comer, R. E., Andrews, M. B., Davis, P., and Martin, N.: Stratospheric initial conditions provide seasonal predictability of the North Atlantic and Arctic Oscillations, Environ. Res. Lett., 14, 034006, https://doi.org/10.1088/1748-9326/ab0385, 2019.
Nimac, I., Danzer, J., and Kirchengast, G.: The added value and potential of long-term radio occultation data for climatological wind field monitoring, Atmos. Meas. Tech., 18, 265–286, https://doi.org/10.5194/amt-18-265-2025, 2025.
Noersomadi and Tsuda, T.: Comparison of three retrievals of COSMIC GPS radio occultation results in the tropical upper troposphere and lower stratosphere, Earth Planets Space, 69, 125, https://doi.org/10.1186/s40623-017-0710-7, 2017.
Numerical Prediction Division, Information Infrastructure Department: The Japanese Reanalysis for Three Quarters of a Century, Data Integration and Analysis System (DIAS) [data set], https://doi.org/10.20783/DIAS.645, 2022.
Okui, H. and Sato, K.: Characteristics and sources of gravity waves in the summer stratosphere based on long-term and high-resolution radiosonde observations, SOLA, 16, 64–69, https://doi.org/10.2151/sola.2020-011, 2020.
Oyafuso, F., Payne, V. H., Drouin, B. J., Devi, V. M., Benner, D. C., Sung, K., Yu, S., Gordon, I. E., Kochanov, R., Tan, Y., Crisp, D., Mlawer, E. J., and Guillaume, A.: High accuracy absorption coefficients for the Orbiting Carbon Observatory-2 (OCO-2) mission: Validation of updated carbon dioxide cross-sections using atmospheric spectra absorption coefficients for the OCO-2 mission, J. Quant. Spectrosc. Ra., 203, 213–223, https://doi.org/10.1016/j.jqsrt.2017.06.012, 2017.
Pauley, P. M. and Ingleby, B.: Assimilation of in-situ observations, in: Data assimilation for atmospheric, oceanic and hydrologic applications, Vol. IV, edited by: Park, S. K. and Xu, L., Springer Cham, 293–371, https://doi.org/10.1007/978-3-030-77722-7_12, 2022.
Philipona, R., Kräuchi, A., and Brocard, E.: Solar and thermal radiation profiles and radiative forcing measured through the atmosphere, Geophys. Res. Lett., 39, L13806, https://doi.org/10.1029/2012GL052087, 2012.
Philipona, R., Kräuchi, A., Kivi, R., Peter, T., Wild, M., Dirksen, R., Fujiwara, M., Sekiguchi, M., Hurst, D. F., and Becker, R.: Balloon-borne radiation measurements demonstrate radiative forcing by water vapor and clouds, Meteorol. Z., 29, 501–509, https://doi.org/10.1127/metz/2020/1044, 2020.
Polichtchouk, I., Bechtold, P., Bonavita, M., Forbes, R., Healy, S., Hogan, R., Laloyaux, P., Rennie, M., Stockdale, T., Wedi, N., Diamantakis, M., Flemming, J., English, S., Isaksen, L., Vána, F., Gisinger, S., and Byrne, N.: Stratospheric modelling and assimilation, ECMWF Tech. Memo., 877, 61 pp., https://doi.org/10.21957/25hegfoq, 2021.
Rawlins, F., Ballard, S. P., Bovis, K. J., Clayton, A. M., Li, D., Inverarity, G. W., Lorenc, A. C., and Payne, T. J.: The Met Office global four-dimensional variational data assimilation scheme, Q. J. Roy. Meteor. Soc., 133, 347–362, https://doi.org/10.1002/qj.32, 2007.
Reale, T., Sun, B., Tilley, F. H., and Pettey, M.: The NOAA Products Validation System (NPROVS), J. Atmos. Ocean. Tech., 29, 629–645, https://doi.org/10.1175/JTECH-D-11-00072.1, 2012.
Rennie, M. P., Isaksen, L.,Weiler, F., de Kloe, J., Kanitz, T., and Reitebuch, O.: The impact of Aeolus wind retrievals on ECMWF global weather forecasts, Q. J. Roy. Meteor. Soc., 147, 3555–3586, https://doi.org/10.1002/qj.4142, 2021.
Rodgers, C. D.: Inverse methods for atmospheres: Theories and practice, World Scientific Pub., Singapore, 256 pp., https://doi.org/10.1142/3171, 2000.
Rosenkranz, P.: Line-by-line microwave radiative transfer (non-scattering) [software], http://cetemps.aquila.infn.it/mwrnet/lblmrt_ns.html (last access: 29 February 2024), 2017.
Rosenkranz, P. W.: Water vapor microwave continuum absorption: A comparison of measurements and models, Radio Sci., 33, 919–928, https://doi.org/10.1029/98RS01182, 1998.
Rosenkranz, P. W. and Cimini, D.: Speed dependence of 22- and 118-GHz line shapes for tropospheric remote sensing, IEEE T. Geosci. Remote, 57, 9702–9708, https://doi.org/10.1109/TGRS.2019.2928570, 2019.
Rothman, L. S., Gordon, I. E., Babikov, Y., Barbe, A., Chris Benner, D., Bernath, P. F., Birk, M., Bizzocchi, L., Boudon, V., Brown, L. R., Campargue, A., Chance, K., Cohen, E. A., Coudert, L. H., Devi, V. M., Drouin, B. J., Fayt, A., Flaud, J.-M., Gamache, R. R., Harrison, J. J., Hartmann, J.-M., Hill, C., Hodges, J. T., Jacquemart, D., Jolly, A., Lamouroux, J., Le Roy, R. J., Li, G., Long, D. A., Lyulin, O. M., Mackie, C. J., Massie, S. T., Mikhailenko, S., Müller, H. S. P., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E. R., Richard, C., Smith, M. A. H., Starikova, E., Sung, K., Tashkun, S., Tennyson, J., Toon, G. C., Tyuterev, Vl. G., and Wagner, G.: The HITRAN 2012 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 130, 4–50, https://doi.org/10.1016/j.jqsrt.2013.07.002, 2013.
Ruston, B., Bowler, N., Healy, S., and Shao, H.: GNSS-RO sounding in the troposphere and stratosphere, in Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. IV), edited by:Park S. K. and Xu L., 373–395, https://doi.org/10.1007/978-3-030-77722-7_13, 2022.
Sato, K., Tomikawa, Y., Kohma, M., Yasui, R., Koshin, D., Okui, H., Watanabe, S., Miyazaki, K., Tsutsumi, M., Murphy, D., Meek, C., Tian, Y., Ern, M., Baumgarten, G., Chau, J. L., Chu, X., Collins, R., Espy, P. J., Hashiguchi, H., Kavanagh, A. J., Latteck, R., Lübken, F., Milla, M., Nozawa, S., Ogawa, Y., Shiokawa, K., Alexander, M. J., Nakamura, T., and Ward, W. E.: Interhemispheric Coupling Study by Observations and Modelling (ICSOM): Concept, campaigns, and initial results, J. Geophys. Res.-Atmos., 128, e2022JD038249, https://doi.org/10.1029/2022JD038249, 2023.
Santer, B. D., Po-Chedley, S., Zhao, L., Zou, C.-Z., Fu, Q., Solomon, S., Thompson, D. W. J., Mears, C., and Taylor, K. E.: Exceptional stratospheric contribution to human fingerprints on atmospheric temperature, Proc. Nat. Academy Sci., 120, e2300758120, https://doi.org/10.1073/pnas.2300758120, 2023.
Saunders, R. W., Blackmore, T. A., Candy, B., Francis, P. N., and Hewison, T. J.: Monitoring satellite radiance biases using NWP models, IEEE T. Geosci. Remote, 51, 1124–1138, https://doi.org/10.1109/TGRS.2012.2229283, 2013.
Saunders, R., Hocking, J., Turner, E., Rayer, P., Rundle, D., Brunel, P., Vidot, J., Roquet, P., Matricardi, M., Geer, A., Bormann, N., and Lupu, C.: An update on the RTTOV fast radiative transfer model (currently at version 12), Geosci. Model Dev., 11, 2717–2737, https://doi.org/10.5194/gmd-11-2717-2018, 2018.
Scaife, A. A., Karpechko, A. Y., Baldwin, M. P., Brookshaw, A., Butler, A. H., Eade, R., Gordon, M., MacLachlan, C., Martin, N., Dunstone, N., and Smith, D.: Seasonal winter forecasts and the stratosphere, Atmos. Sci. Let., 17, 51–56, https://doi.org/10.1002/asl.598, 2016.
Schmidlin, F. J., Luers, J. K., and Huffman, P. D.: Preliminary estimates of radiosonde thermistor errors, NASA Technical Paper, 2637, 15 pp., https://ntrs.nasa.gov/citations/19870002653 (last access: 25 June 2025), 1986.
Schreiner, W. S., Weiss, J. P., Anthes, R. A., Braun, J., Chu, V., Fong, J., Hunt, D., Kuo, Y.-H., Meehan, T., Serafino, W., Sjoberg, J., Sokolovskiy, S., Talaat, E., Wee, T. K., and Zeng, Z.: COSMIC-2 radio occultation constellation: First results, Geophys. Res. Lett., 47, e2019GL086841, https://doi.org/10.1029/2019GL086841, 2020.
Seidel, D. J., Berger, F. H., Diamond, H. J., Dykema, J., Goodrich, D., Immler, F., Murray, W., Peterson, T., Sisterson, D., Sommer, M., Thorne, P., Vömel, H., and Wang, J.: Reference Upper-Air Observations for Climate: Rationale, Progress, and Plans, B. Am. Meteor. Soc., 90, 361–369, https://doi.org/10.1175/2008BAMS2540.1, 2009.
Seidel, D. J., Sun, B., Pettey, M., and Reale, A.: Global radiosonde balloon drift statistics, J. Geophys. Res., 116, D07102, https://doi.org/10.1029/2010JD014891, 2011.
Soden, B. J., Collins, W. D., and Feldman, D. R.: Reducing uncertainties in climate models, Science, 361, 6400, 326–327, https://doi.org/10.1126/science.aau1864, 2018.
Sommer, M., Dirksen, R., and Immler, F.: RS92 GRUAN Data Product Version 2 (RS92-GDP.2), GRUAN Lead Centre (DWD) [data set], https://doi.org/10.5676/GRUAN/RS92-GDP.2, 2012.
Sommer, M., von Rohden, C., Simeonov, T., Dirksen, R., Fiedler-Krüger, M., Friedrich, H., Körner, S., Naebert, T., Oelsner, P., and Tietz, R.: RS41 GRUAN Data Product Version 1 (RS41-GDP.1), GRUAN Lead Centre (DWD) [data set], https://doi.org/10.5676/GRUAN/RS41-GDP.1, 2022.
Sommer, M., von Rohden, C., Simeonov, T., Oelsner, P., Naebert, T., Romanens, G., Jauhiainen, H., Survo, P., and Dirksen, R.: GRUAN characterisation and data processing of the Vaisala RS41 radiosonde, GRUAN Lead Centre, GRUAN Technical Document No. 8, GRUAN-TD-8, 206 pp., https://www.gruan.org/documentation/gruan/td/gruan-td-8 (last access: 8 October 2023), 2023.
Son, S.-W., Tandon, N. F., and Polvani, L. M.: The fine-scale structure of the global tropopause derived from COSMIC GPS radio occultation measurements, J. Geophys. Res., 116, D20113, https://doi.org/10.1029/2011JD016030, 2011.
SPARC (Stratosphere-troposphere Processes And their Role in Climate): Upper tropospheric and stratospheric water vapour, edited by: Kley, D., Russell III, J. M., and Phillips, C., WCRP-113, WMO/TD-No. 1043, SPARC Report No. 2, https://www.sparc-climate.org/publications/sparc-reports/sparc-report-no-2/ (last access: 15 December 2023), 2000.
SPARC (Stratosphere–troposphere Processes And their Role in Climate): SPARC Reanalysis Intercomparison Project (S-RIP) Final Report, edited by: Fujiwara, M. Manney, G. L., Gray, L. J., and Wright, J. S., SPARC Report No. 10, WCRP-6/2021, 612 pp., https://doi.org/10.17874/800dee57d13, 2022.
Spencer, R. W., Christy, J. R., and Grody, N. C.: Global Atmospheric Temperature Monitoring with Satellite Microwave Measurements: Method and Results 1979–84, J. Climate, 3, 1111–1128, https://doi.org/10.1175/1520-0442(1990)003<1111:GATMWS>2.0.CO;2, 1990.
Steiner, A. K., Ladstädter, F., Ao, C. O., Gleisner, H., Ho, S.-P., Hunt, D., Schmidt, T., Foelsche, U., Kirchengast, G., Kuo, Y.-H., Lauritsen, K. B., Mannucci, A. J., Nielsen, J. K., Schreiner, W., Schwärz, M., Sokolovskiy, S., Syndergaard, S., and Wickert, J.: Consistency and structural uncertainty of multi-mission GPS radio occultation records, Atmos. Meas. Tech., 13, 2547–2575, https://doi.org/10.5194/amt-13-2547-2020, 2020a.
Steiner, A. K., Ladstädter, F., Randel, W. J., Maycock, A. C., Fu, Q., Claud, C., Gleisner, H., Haimberger, L., Ho, S.-P., Keckhut, P., Leblanc, T., Mears, C., Polvani, L. M., D. Santer, B. D., Schmidt, T., Sofieva, V., Wing, R., and Zou, C.-Z.: Observed temperature changes in the troposphere and stratosphere from 1979 to 2018, J. Climate, 33, 8165–8194, https://doi.org/10.1175/JCLI-D-19-0998.1, 2020b.
Sugidachi, T., Fujiwara, M., Shimizu, K., Ogino, S.-Y., Suzuki, J., and Dirksen, R. J.: Development of a Peltier-based chilled-mirror hygrometer, SKYDEW, for tropospheric and lower-stratospheric water vapor measurements, Atmos. Meas. Tech., 18, 509–531, https://doi.org/10.5194/amt-18-509-2025, 2025.
Sun, B., Reale, A., Schroeder, S., Seidel, D. J., and Ballish, B.: Toward improved corrections for radiation induced biases in radiosonde temperature observations, J. Geophys. Res.-Atmos., 118, 1–13, https://doi.org/10.1002/jgrd.50369, 2013.
Sun, B., Reale, T., Schroeder, S., Pettey, M., and Smith, R.: On the accuracy of Vaisala RS41 versus RS92 upper-air temperature observations, J. Atmos. Ocean. Tech., 36, 635–653, https://doi.org/10.1175/JTECH-D-18-0081.1, 2019.
Sun, B., Calbet, X., Reale, A., Schroeder, S., Bali, M., Smith, R., and Pettey, M.: Accuracy of Vaisala RS41 and RS92 upper tropospheric humidity compared to satellite hyperspectral infrared measurements, Remote Sens., 13, 173, https://doi.org/10.3390/rs13020173, 2021.
Sun, B., Reale, A., Pettey, M., Smith, R., and Brown, C.: Chapter 16. The NOAA sounding Products Validation System (NPROVS), in: Field Measurements for Passive Environmental Remote Sensing, edited by: Nalli, N. R., Elsevier, Radarweg, Netherlands, 281–296, https://doi.org/10.1016/B978-0-12-823953-7.00009-5, 2023.
Suortti, T., Karhu, J., Kivi, R., Kyrö, E., Rosen, J., Kjome, N., Larsen, N., Neuber, R., Khattatov, V., Rudakov, V., Yushkov, V., and Nakane, H.: Evolution of the Arctic stratospheric aerosol mixing ratio measured with balloon-borne aerosol backscatter sondes for years 1988–2000, J. Geophys. Res., 106, 20759–20766, https://doi.org/10.1029/2000JD000180, 2001.
SY, S., Madonna, F., Rosoldi, M., Tramutola, E., Gagliardi, S., Proto, M., and Pappalardo, G.: Sensitivity of trends to estimation methods and quantification of subsampling effects in global radiosounding temperature and humidity time series, Int. J. Climatol., 41, 1–23, https://doi.org/10.1002/joc.6827, 2020.
Tenti, G., Boley, C. D., and Desai, R. C.: On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases, Can. J. Phys., 52, 285–290, https://doi.org/10.1139/p74-041, 1974.
Tradowsky, J. S.: Radio occultation measurements as the primary anchor in a hierarchy of anchor observations for numerical weather predictions, EUMETSAT ROM SAF CDOP-3, Visiting Scientist Report 37, SAF/ROM/DMI/REP/VS/37, https://www.romsaf.org/Publications/reports/romsaf_vs37_rep_v10.pdf (last access: 16 December 2023), 2019.
Tradowsky, J. S., Burrows, C. P., Healy, S. B., and Eyre, J. R.: A new method to correct radiosonde temperature biases using radio occultation data, J. Appl. Meteorol. Clim., 56, 1643–1661, https://doi.org/10.1175/jamc-d-16-0136.1, 2017.
Tripathi, O. P., Baldwin, M. P., Charlton-Perez, A., Charron, M., Eckermann, S. D., Gerber, E. P., Harrison, R. G., Jackson, D. R., Kim, B.-M., Kuroda, Y., Lang, A., Mahmood, S., Mizuta, R., Roff, G., Sigmond, M., and Son, S.-W.: The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts, Q. J. Roy. Meteor. Soc., 141, 987–1003, 2015.
Tsuda, T., Murayama, Y., Wiryosumarto, H., Harijono, S. W. B., and Kato, S.: Radiosonde observations of equatorial atmosphere dynamics over Indonesia: 2. Characteristics of gravity waves, J. Geophys. Res., 99, 10507–10516, https://doi.org/10.1029/94JD00354, 1994.
Tsuda, T., Lin, X., Hayashi, H., and Noersomadi: Analysis of vertical wave number spectrum of atmospheric gravity waves in the stratosphere using COSMIC GPS radio occultation data, Atmos. Meas. Tech., 4, 1627–1636, https://doi.org/10.5194/amt-4-1627-2011, 2011.
Visioni, D., Kravitz, B., Robock, A., Tilmes, S., Haywood, J., Boucher, O., Lawrence, M., Irvine, P., Niemeier, U., Xia, L., Chiodo, G., Lennard, C., Watanabe, S., Moore, J. C., and Muri, H.: Opinion: The scientific and community-building roles of the Geoengineering Model Intercomparison Project (GeoMIP) – past, present, and future, Atmos. Chem. Phys., 23, 5149–5176, https://doi.org/10.5194/acp-23-5149-2023, 2023.
Vömel, H. and Fujiwara, M.: Chapter 46. Aerological measurements, in: Springer Handbook of Atmospheric Measurements, edited by: Foken, T., Springer Nature, Switzerland, 1247–1280, https://doi.org/10.1007/978-3-030-52171-4_46, 2021.
Vömel, H. and Ingleby, B.: Chapter 2. Balloon-borne radiosondes, in Field Measurements for Passive Environmental Remote Sensing, edited by: Nalli, N. R., Elsevier, Radarweg, Netherlands, 23–35, https://doi.org/10.1016/B978-0-12-823953-7.00010-1, 2023.
Vömel, H., Fujiwara, M., Shiotani, M., Hasebe, F., Oltmans, S. J., and Barnes, J. E.: The behavior of the Snow White chilled-mirror hygrometer in extremely dry conditions, J. Atmos. Ocean. Tech., 20, 1560–1567, https://doi.org/10.1175/1520-0426(2003)020<1560:TBOTSW>2.0.CO;2, 2003.
Vömel, H., David, D. E., and Smith, K.: Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations, J. Geophys. Res., 112, D08305, https://doi.org/10.1029/2006JD007224, 2007.
Vömel, H., Naebert, T., Dirksen, R., and Sommer, M.: An update on the uncertainties of water vapor measurements using cryogenic frost point hygrometers, Atmos. Meas. Tech., 9, 3755–3768, https://doi.org/10.5194/amt-9-3755-2016, 2016.
Vömel, H., Evan, S., and Tully, M.: Water vapor injection into the stratosphere by Hunga Tonga-Hunga Ha'apai, Science, 377, 1444–1447, https://doi.org/10.1126/science.abq2299, 2022.
von Rohden, C., Sommer, M., Naebert, T., Motuz, V., and Dirksen, R. J.: Laboratory characterisation of the radiation temperature error of radiosondes and its application to the GRUAN data processing for the Vaisala RS41, Atmos. Meas. Tech., 15, 383–405, https://doi.org/10.5194/amt-15-383-2022, 2022.
Wang, J., Zhang, L., Dai, A., Immler, F., Sommer, M., and Vömel, H.: Radiation dry bias correction of Vaisala RS92 humidity data and its impacts on historical radiosonde data, J. Atmos. Ocean. Tech., 30, 197–214, https://doi.org/10.1175/JTECH-D-12-00113.1, 2013.
Wang, L., Goldberg, M., Wu, X., Cao, C., Iacovazzi Jr., R. A., Yu, F., and Li, Y.: Consistency assessment of Atmospheric Infrared Sounder and Infrared Atmospheric Sounding Interferometer radiances: Double differences versus simultaneous nadir overpasses, J. Geophys. Res., 116, D11111, https://doi.org/10.1029/2010JD014988, 2011.
Weatherhead, E.C., Bodeker, G. E., Fassò, A., Chang, K., Lazo, J. K., Clack, C. T., Hurst, D. F., Hassler, B., English, J. M., and Yorgun, S.: Spatial coverage of monitoring networks: A climate observing system simulation experiment, J. Appl. Meteorol. Clim., 56, 3211–3228, https://doi.org/10.1175/JAMC-D-17-0040.1, 2017.
Wee, T.-K., Anthes, R. A., Hunt, D. C., Schreiner, W. S., and Kuo, Y.-H.: Atmospheric GNSS RO 1D-Var in use at UCAR: Description and validation, Remote Sens., 14, 5614, https://doi.org/10.3390/rs14215614, 2022.
Whiteman, D. N., Russo, F., Demoz, B., Miloshevich, L. M., Veselovskii, I., Hannon, S., Wang, Z., Vömel, H., Schmidlin, F., Lesht, B., Moore, P. J., Beebe, A. S., Gambacorta, A., and Barnet, C.: Analysis of Raman lidar and radiosonde measurements from the AWEX-G field campaign and its relation to Aqua validation, J. Geophys. Res., 111, D09S09, https://doi.org/10.1029/2005JD006429, 2006.
Whiteman, D. N., Vermeesch, K. C., Oman, L. D., and Weatherhead, E. C.: The relative importance of random error and observation frequency in detecting trends in upper tropospheric water vapor, J. Geophys. Res., 116, D21118, https://doi.org/10.1029/2011JD016610, 2011.
WMO (World Meteorological Organization): World Meteorological Congress: Abridged final report of the extraordinary session, WMO No. 1281, https://library.wmo.int/index.php?lvl=notice_display&id=22034 (last access: 15 November 2022), 2021a.
WMO (World Meteorological Organization): Ozonesonde measurement principles and best operational practices: ASOPOS 2.0 (Assessment of Standard Operating Procedures for Ozonesondes) August 2021, GAW Report No. 268, 172 pp., https://library.wmo.int/index.php?lvl=notice_display&id=21986 (last access: 23 April 2023), 2021b.
Yin, X.: ECMWF Upper Air BUFR data, NOAA National Centers for Environmental Information [data set], https://www.ncei.noaa.gov/data/ecmwf-global-upper-air-bufr/ (last access: 31 May 2024), 2017.
Zhou, C., Wang, J., Dai, A., and Thorne, P. W.: A new approach to homogenize global subdaily radiosonde temperature data from 1958 to 2018, J. Climate, 34, 1163–1183, https://doi.org/10.1175/JCLI-D-20-0352.1, 2021.
Zou, C.-Z., Goldberg, M. D., and Hao, X.: New generation of U.S. satellite microwave sounder achieves high radiometric stability performance for reliable climate change detection, Sci. Adv., 4, eaau0, https://doi.org/10.1126/sciadv.aau0049, 2018.
Short summary
We assess and illustrate the benefits of high-altitude attainment of balloon-borne radiosonde soundings up to and beyond 10 hPa level from various aspects. We show that the extra costs and technical challenges involved in consistent attainment of high ascents are more than outweighed by the benefits for a broad variety of real-time and delayed-mode applications. Consistent attainment of high ascents should therefore be pursued across the balloon observational network.
We assess and illustrate the benefits of high-altitude attainment of balloon-borne radiosonde...