Articles | Volume 6, issue 9
https://doi.org/10.5194/amt-6-2339-2013
https://doi.org/10.5194/amt-6-2339-2013
Research article
 | 
11 Sep 2013
Research article |  | 11 Sep 2013

A chemical analyzer for charged ultrafine particles

S. G. Gonser and A. Held

Related authors

Ion – particle interactions during particle formation and growth at a coniferous forest site in central Europe
S. G. Gonser, F. Klein, W. Birmili, J. Größ, M. Kulmala, H. E. Manninen, A. Wiedensohler, and A. Held
Atmos. Chem. Phys., 14, 10547–10563, https://doi.org/10.5194/acp-14-10547-2014,https://doi.org/10.5194/acp-14-10547-2014, 2014

Related subject area

Subject: Aerosols | Technique: Laboratory Measurement | Topic: Instruments and Platforms
Exploring non-soluble particles in hailstones through innovative confocal laser and scanning electron microscopy techniques
Anthony C. Bernal Ayala, Angela K. Rowe, Lucia E. Arena, William O. Nachlas, and Maria L. Asar
Atmos. Meas. Tech., 17, 5561–5579, https://doi.org/10.5194/amt-17-5561-2024,https://doi.org/10.5194/amt-17-5561-2024, 2024
Short summary
A comprehensive evaluation of enhanced temperature influence on gas and aerosol chemistry in the lamp-enclosed oxidation flow reactor (OFR) system
Tianle Pan, Andrew T. Lambe, Weiwei Hu, Yicong He, Minghao Hu, Huaishan Zhou, Xinming Wang, Qingqing Hu, Hui Chen, Yue Zhao, Yuanlong Huang, Doug R. Worsnop, Zhe Peng, Melissa A. Morris, Douglas A. Day, Pedro Campuzano-Jost, Jose-Luis Jimenez, and Shantanu H. Jathar
Atmos. Meas. Tech., 17, 4915–4939, https://doi.org/10.5194/amt-17-4915-2024,https://doi.org/10.5194/amt-17-4915-2024, 2024
Short summary
An oxidation flow reactor for simulating and accelerating secondary aerosol formation in aerosol liquid water and cloud droplets
Ningjin Xu, Chen Le, David R. Cocker, Kunpeng Chen, Ying-Hsuan Lin, and Don R. Collins
Atmos. Meas. Tech., 17, 4227–4243, https://doi.org/10.5194/amt-17-4227-2024,https://doi.org/10.5194/amt-17-4227-2024, 2024
Short summary
Surface equilibrium vapor pressure of organic nanoparticles measured from the dynamic-aerosol-size electrical mobility spectrometer
Ella Häkkinen, Huan Yang, Runlong Cai, and Juha Kangasluoma
Atmos. Meas. Tech., 17, 4211–4225, https://doi.org/10.5194/amt-17-4211-2024,https://doi.org/10.5194/amt-17-4211-2024, 2024
Short summary
Rapid quantitative analysis of SVOCs in indoor surface film using Direct Analysis in Real Time mass spectrometry: A case study on phthalates
Ying Zhou, Longkun He, Jiang Tan, Jiang Zhou, and Yingjun Liu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-104,https://doi.org/10.5194/amt-2024-104, 2024
Revised manuscript accepted for AMT
Short summary

Cited articles

Allan, J. D., Delia, A. E., Coe, H., Bower, K. N., Alfarra, M. R., Jimenez, J. L., Middlebrook, A. M., Drewnick, F., Onasch, T. B., Canagaratna, M. R., Jayne, J. T., and Worsnop, D. R.: A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data, J. Aerosol Sci., 35, 909–922, 2004.
Bahreini, R., Keywood, M. D., Ng, N. L., Varutbangkul, V., Gao, S., Flagan, R. C., Seinfeld, J. H., Worsnop, D. R., and Jimenez, J. L.: Measurement of secondary organic aerosol from oxidation of cycloalkenes, terpenes, and m-xylene using an Aerodyne aerosol mass spectrometer, Environ. Sci. Technol., 39, 5674–5688, 2005.
Barsanti, K. C., McMurry, P. H., and Smith, J. N.: The potential contribution of organic salts to new particle growth, Atmos. Chem. Phys., 9, 2949–2957, https://doi.org/10.5194/acp-9-2949-2009, 2009.
Chen, J. and Davidson, J. H.: Ozone production in the positive DC corona discharge: Model and comparison to experiments, Plasma Chem. Plasma P., 22, 495–522, 2002.
Chen, D. R. and Pui, D. Y. H.: A high efficiency, high throughput unipolar aerosol charger for nanoparticles, J. Nanopart. Res., 1, 115–126, 1999.