Articles | Volume 9, issue 8
Atmos. Meas. Tech., 9, 3769–3791, 2016
https://doi.org/10.5194/amt-9-3769-2016
Atmos. Meas. Tech., 9, 3769–3791, 2016
https://doi.org/10.5194/amt-9-3769-2016

Research article 17 Aug 2016

Research article | 17 Aug 2016

Recommendations for processing atmospheric attenuated backscatter profiles from Vaisala CL31 ceilometers

Simone Kotthaus et al.

Related authors

Modelling spatiotemporal variations of the canopy layer urban heat island in Beijing at the neighbourhood scale
Michael Biggart, Jenny Stocker, Ruth M. Doherty, Oliver Wild, David Carruthers, Sue Grimmond, Yiqun Han, Pingqing Fu, and Simone Kotthaus
Atmos. Chem. Phys., 21, 13687–13711, https://doi.org/10.5194/acp-21-13687-2021,https://doi.org/10.5194/acp-21-13687-2021, 2021
Short summary
Sensitivity to the sources of uncertainties in the modeling of atmospheric CO2 concentration within and in the vicinity of Paris
Jinghui Lian, François-Marie Bréon, Grégoire Broquet, Thomas Lauvaux, Bo Zheng, Michel Ramonet, Irène Xueref-Remy, Simone Kotthaus, Martial Haeffelin, and Philippe Ciais
Atmos. Chem. Phys., 21, 10707–10726, https://doi.org/10.5194/acp-21-10707-2021,https://doi.org/10.5194/acp-21-10707-2021, 2021
Short summary
Observations of speciated isoprene nitrates in Beijing: implications for isoprene chemistry
Claire E. Reeves, Graham P. Mills, Lisa K. Whalley, W. Joe F. Acton, William J. Bloss, Leigh R. Crilley, Sue Grimmond, Dwayne E. Heard, C. Nicholas Hewitt, James R. Hopkins, Simone Kotthaus, Louisa J. Kramer, Roderic L. Jones, James D. Lee, Yanhui Liu, Bin Ouyang, Eloise Slater, Freya Squires, Xinming Wang, Robert Woodward-Massey, and Chunxiang Ye
Atmos. Chem. Phys., 21, 6315–6330, https://doi.org/10.5194/acp-21-6315-2021,https://doi.org/10.5194/acp-21-6315-2021, 2021
Short summary
PARAFOG v2.0: a near real-time decision tool to support nowcasting fog formation events at local scales
Jean-François Ribaud, Martial Haeffelin, Jean-Charles Dupont, Marc-Antoine Drouin, Felipe Toledo, and Simone Kotthaus
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-99,https://doi.org/10.5194/amt-2021-99, 2021
Revised manuscript accepted for AMT
Short summary
Measurement report: Comparison of wintertime individual particles at ground level and above the mixed layer in urban Beijing
Wenhua Wang, Longyi Shao, Claudio Mazzoleni, Yaowei Li, Simone Kotthaus, Sue Grimmond, Janarjan Bhandari, Jiaoping Xing, Xiaolei Feng, Mengyuan Zhang, and Zongbo Shi
Atmos. Chem. Phys., 21, 5301–5314, https://doi.org/10.5194/acp-21-5301-2021,https://doi.org/10.5194/acp-21-5301-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Instruments and Platforms
Polarization lidar for detecting dust orientation: system design and calibration
Alexandra Tsekeri, Vassilis Amiridis, Alexandros Louridas, George Georgoussis, Volker Freudenthaler, Spiros Metallinos, George Doxastakis, Josef Gasteiger, Nikolaos Siomos, Peristera Paschou, Thanasis Georgiou, George Tsaknakis, Christos Evangelatos, and Ioannis Binietoglou
Atmos. Meas. Tech., 14, 7453–7474, https://doi.org/10.5194/amt-14-7453-2021,https://doi.org/10.5194/amt-14-7453-2021, 2021
Short summary
Accuracy in starphotometry
Liviu Ivănescu, Konstantin Baibakov, Norman T. O'Neill, Jean-Pierre Blanchet, and Karl-Heinz Schulz
Atmos. Meas. Tech., 14, 6561–6599, https://doi.org/10.5194/amt-14-6561-2021,https://doi.org/10.5194/amt-14-6561-2021, 2021
Short summary
Rethinking the correction for absorbing aerosols in the OMI- and TROPOMI-like surface UV algorithms
Antti Arola, William Wandji Nyamsi, Antti Lipponen, Stelios Kazadzis, Nickolay A. Krotkov, and Johanna Tamminen
Atmos. Meas. Tech., 14, 4947–4957, https://doi.org/10.5194/amt-14-4947-2021,https://doi.org/10.5194/amt-14-4947-2021, 2021
Short summary
Mie–Raman–fluorescence lidar observations of aerosols during pollen season in the north of France
Igor Veselovskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Marie Choël, Nicolas Visez, and Mikhail Korenskiy
Atmos. Meas. Tech., 14, 4773–4786, https://doi.org/10.5194/amt-14-4773-2021,https://doi.org/10.5194/amt-14-4773-2021, 2021
Short summary
Satellite imagery and products of the 16–17 February 2020 Saharan Air Layer dust event over the eastern Atlantic: impacts of water vapor on dust detection and morphology
Lewis Grasso, Daniel Bikos, Jorel Torres, John F. Dostalek, Ting-Chi Wu, John Forsythe, Heather Q. Cronk, Curtis J. Seaman, Steven D. Miller, Emily Berndt, Harry G. Weinman, and Kennard B. Kasper
Atmos. Meas. Tech., 14, 1615–1634, https://doi.org/10.5194/amt-14-1615-2021,https://doi.org/10.5194/amt-14-1615-2021, 2021
Short summary

Cited articles

Campbell, J. R., Hlavka, D. L., Welton, E. J., Flynn, C. J., Turner, D. D., Spinhirne, J. D., Scott, V. S., and Hwang, I. H.: Full-Time, Eye-Safe Cloud and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program Sites: Instruments and Data Processing, J. Atmos. Ocean. Technol., 19, 431–442, https://doi.org/10.1175/1520-0426(2002)019<0431:FTESCA>2.0.CO;2, 2002.
Cao, N., Zhu, C., Kai, Y., and Yan, P.: A method of background noise reduction in lidar data, Appl. Phys. B, 113, 115–123, https://doi.org/10.1007/s00340-013-5447-9, 2013.
de Haij, M., Wauben, W., and Klein Baltink, H.: Determination of mixing layer height from ceilometer backscatter profiles, edited by: Slusser, J. R., Schäfer, K., and Comerón, A., Remote Sens., 63620R–63620R–12, https://doi.org/10.1117/12.691050, 2006.
Emeis, S.: Surface-Based Remote Sensing of the Atmospheric Boundary Layer, Springer Science & Business Media, https://doi.org/10.1007/978-90-481-9340-0, ISBN-13: 978-90-481-9339-4, 174 pp., 2010.
Download
Short summary
Ceilometers lidars are useful to study clouds, aerosol layers and atmospheric boundary layer structures. As sensor optics and acquisition algorithms can strongly influence the observations, sensor specifics need to be incorporated into the physical interpretation. Here, recommendations are made for the operation and processing of profile observations from the widely deployed Vaisala CL31 ceilometer. Proposed corrections are shown to increase data quality and even data availability at times.