Articles | Volume 11, issue 3
Atmos. Meas. Tech., 11, 1313–1331, 2018
https://doi.org/10.5194/amt-11-1313-2018
Atmos. Meas. Tech., 11, 1313–1331, 2018
https://doi.org/10.5194/amt-11-1313-2018

Research article 05 Mar 2018

Research article | 05 Mar 2018

Shipborne Wind Measurement and Motion-induced Error Correction of a Coherent Doppler Lidar over the Yellow Sea in 2014

Xiaochun Zhai et al.

Related authors

Rayleigh wind retrieval for the ALADIN airborne demonstrator of the Aeolus mission using simulated response calibration
Xiaochun Zhai, Uwe Marksteiner, Fabian Weiler, Christian Lemmerz, Oliver Lux, Benjamin Witschas, and Oliver Reitebuch
Atmos. Meas. Tech., 13, 445–465, https://doi.org/10.5194/amt-13-445-2020,https://doi.org/10.5194/amt-13-445-2020, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
Atmospheric observations with E-band microwave links – challenges and opportunities
Martin Fencl, Michal Dohnal, Pavel Valtr, Martin Grabner, and Vojtěch Bareš
Atmos. Meas. Tech., 13, 6559–6578, https://doi.org/10.5194/amt-13-6559-2020,https://doi.org/10.5194/amt-13-6559-2020, 2020
Short summary
Tomographic retrieval algorithm of OH concentration profiles using double spatial heterodyne spectrometers
Yuan An, Jinji Ma, Yibo Gao, Wei Xiong, and Xianhua Wang
Atmos. Meas. Tech., 13, 6521–6542, https://doi.org/10.5194/amt-13-6521-2020,https://doi.org/10.5194/amt-13-6521-2020, 2020
Short summary
Wuhan MST radar: technical features and validation of wind observations
Lei Qiao, Gang Chen, Shaodong Zhang, Qi Yao, Wanlin Gong, Mingkun Su, Feilong Chen, Erxiao Liu, Weifan Zhang, Huangyuan Zeng, Xuesi Cai, Huina Song, Huan Zhang, and Liangliang Zhang
Atmos. Meas. Tech., 13, 5697–5713, https://doi.org/10.5194/amt-13-5697-2020,https://doi.org/10.5194/amt-13-5697-2020, 2020
A Compact Rayleigh Autonomous Lidar (CORAL) for the middle atmosphere
Bernd Kaifler and Natalie Kaifler
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-418,https://doi.org/10.5194/amt-2020-418, 2020
Revised manuscript accepted for AMT
Short summary
Towards accurate and practical drone-based wind measurements with an ultrasonic anemometer
William Thielicke, Waldemar Hübert, and Ulrich Müller
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-258,https://doi.org/10.5194/amt-2020-258, 2020
Revised manuscript accepted for AMT
Short summary

Cited articles

Achtert, P., Brooks, I. M., Brooks, B. J., Moat, B. I., Prytherch, J., Persson, P. O. G., and Tjernström, M.: Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar, Atmos. Meas. Tech., 8, 4993–5007, https://doi.org/10.5194/amt-8-4993-2015, 2015. 
Axford, D.: On the accuracy of wind measurements using an inertial platform in an aircraft, and an example of a measurement of the vertical mesostructure of the atmosphere, J. Appl. Meteorol., 7, 645–666, 1968. 
Anctil, F., Donelan, M. A., Drennan, W. M., and Graber, H. C.: Eddy-correlation measurements of air-sea fluxes from a discus buoy, J. Atmos. Ocean. Tech., 11, 1144–1150, 1994. 
Banakh, V. and Smalikho, I.: Coherent Doppler wind lidars in a turbulent atmosphere, Artech House, Chap. 1.2, 1–10, 2013. 
Bradley, E. F., Coppin, P., and Godfrey, J.: Measurements of sensible and latent heat flux in the western equatorial Pacific Ocean, J. Geophys. Res.-Oceans, 96, 3375–3389, 1991. 
Download
Short summary
A Doppler wind lidar attitude correction method is presented. This algorithm-based method relaxes the requirements for mechanical stability and active compensation mechanisms. A shipborne wind measurement campaign was carried out in the Yellow Sea, 2014. Comparison between lidar and radiosonde wind measurements shows good consistency, indicating that the method can provide continuous and high spatio-temporal resolution measurement of atmospheric turbulence processes in the marine boundary layer.