Articles | Volume 11, issue 3
https://doi.org/10.5194/amt-11-1689-2018
https://doi.org/10.5194/amt-11-1689-2018
Research article
 | 
27 Mar 2018
Research article |  | 27 Mar 2018

Atmospheric characterization through fused mobile airborne and surface in situ surveys: methane emissions quantification from a producing oil field

Ira Leifer, Christopher Melton, Marc L. Fischer, Matthew Fladeland, Jason Frash, Warren Gore, Laura T. Iraci, Josette E. Marrero, Ju-Mee Ryoo, Tomoaki Tanaka, and Emma L. Yates

Related authors

Long-term atmospheric emissions for the Coal Oil Point natural marine hydrocarbon seep field, offshore California
Ira Leifer, Christopher Melton, and Donald R. Blake
Atmos. Chem. Phys., 21, 17607–17629, https://doi.org/10.5194/acp-21-17607-2021,https://doi.org/10.5194/acp-21-17607-2021, 2021
Short summary
Satellite ice extent, sea surface temperature, and atmospheric methane trends in the Barents and Kara Seas
Ira Leifer, F. Robert Chen, Thomas McClimans, Frank Muller Karger, and Leonid Yurganov
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-237,https://doi.org/10.5194/tc-2018-237, 2018
Revised manuscript not accepted
Short summary
Satellite ice extent, sea surface temperature, and atmospheric methane trends in the Barents and Kara seas
Ira Leifer, F. Robert Chen, Thomas McClimans, Frank Muller Karger, and Leonid Yurganov
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-75,https://doi.org/10.5194/tc-2018-75, 2018
Revised manuscript has not been submitted
Short summary
Methane emissions from a Californian landfill, determined from airborne remote sensing and in situ measurements
Sven Krautwurst, Konstantin Gerilowski, Haflidi H. Jonsson, David R. Thompson, Richard W. Kolyer, Laura T. Iraci, Andrew K. Thorpe, Markus Horstjann, Michael Eastwood, Ira Leifer, Samuel A. Vigil, Thomas Krings, Jakob Borchardt, Michael Buchwitz, Matthew M. Fladeland, John P. Burrows, and Heinrich Bovensmann
Atmos. Meas. Tech., 10, 3429–3452, https://doi.org/10.5194/amt-10-3429-2017,https://doi.org/10.5194/amt-10-3429-2017, 2017
Short summary
Sonar gas flux estimation by bubble insonification: application to methane bubble flux from seep areas in the outer Laptev Sea
Ira Leifer, Denis Chernykh, Natalia Shakhova, and Igor Semiletov
The Cryosphere, 11, 1333–1350, https://doi.org/10.5194/tc-11-1333-2017,https://doi.org/10.5194/tc-11-1333-2017, 2017
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Instruments and Platforms
In-flight characterization of a compact airborne quantum cascade laser absorption spectrometer
Linda Ort, Lenard Lukas Röder, Uwe Parchatka, Rainer Königstedt, Daniel Crowley, Frank Kunz, Ralf Wittkowski, Jos Lelieveld, and Horst Fischer
Atmos. Meas. Tech., 17, 3553–3565, https://doi.org/10.5194/amt-17-3553-2024,https://doi.org/10.5194/amt-17-3553-2024, 2024
Short summary
Full characterization and calibration of a transfer standard monitor for atmospheric radon measurements
Roger Curcoll, Claudia Grossi, Stefan Röttger, and Arturo Vargas
Atmos. Meas. Tech., 17, 3047–3065, https://doi.org/10.5194/amt-17-3047-2024,https://doi.org/10.5194/amt-17-3047-2024, 2024
Short summary
Observing low-altitude features in ozone concentrations in a shoreline environment via uncrewed aerial systems
Josie K. Radtke, Benjamin N. Kies, Whitney A. Mottishaw, Sydney M. Zeuli, Aidan T. H. Voon, Kelly L. Koerber, Grant W. Petty, Michael P. Vermeuel, Timothy H. Bertram, Ankur R. Desai, Joseph P. Hupy, R. Bradley Pierce, Timothy J. Wagner, and Patricia A. Cleary
Atmos. Meas. Tech., 17, 2833–2847, https://doi.org/10.5194/amt-17-2833-2024,https://doi.org/10.5194/amt-17-2833-2024, 2024
Short summary
An integrated uncrewed aerial vehicle platform with sensing and sampling systems for the measurement of air pollutant concentrations
Chen-Wei Liang and Chang-Hung Shen
Atmos. Meas. Tech., 17, 2671–2686, https://doi.org/10.5194/amt-17-2671-2024,https://doi.org/10.5194/amt-17-2671-2024, 2024
Short summary
Design and evaluation of a low-cost sensor node for near-background methane measurement
Daniel Furuta, Bruce Wilson, Albert A. Presto, and Jiayu Li
Atmos. Meas. Tech., 17, 2103–2121, https://doi.org/10.5194/amt-17-2103-2024,https://doi.org/10.5194/amt-17-2103-2024, 2024
Short summary

Cited articles

Allen, G.: Biogeochemistry: Rebalancing the global methane budget, Nature, 538, 46–48, 2016.
State of the Air: Chicago, IL, American Lung Association: 157 pp., www.lung.org/assets/documents/healthy-air/state-of-the-air/sota-2016-full.pdf (last access: March 2018), 2016.
Bao, J. W., Michelson, S. A., Persson, P. O. G., Djalalova, I. V., and Wilczak, J. M.: Observed and WRF-simulated low-level winds in a high-ozone episode during the Central California Ozone Study, J. Appl. Meteorol. Clim., 47, 2372–2394, 2008.
Boucouvala, D. and Bornstein, R.: Analysis of transport patterns during an SCOS97-NARSTO episode, Atmos. Environment, 37, Supplement 2, 73–94, 2003.
Download
Short summary
Airborne/mobile-surface data were collected to derive active oil field trace gas emissions near Bakersfield, CA, characterizing the atmosphere from the surface to above the planetary boundary layer (PBL) by combining downwind concentration anomaly (plume) above background with normal winds. Air–surface comparison for a mountain profile (0.1–2.2 km) confirmed surface winds. Annualized oil field emissions were 31.3±16 Gg CH4 and 2.4±1.2 Tg CO2. The PBL was not well mixed even 10–20 km downwind.