Articles | Volume 11, issue 4
https://doi.org/10.5194/amt-11-2225-2018
https://doi.org/10.5194/amt-11-2225-2018
Research article
 | 
18 Apr 2018
Research article |  | 18 Apr 2018

Aggregated particles caused by instrument artifact

Ashley M. Pierce, S. Marcela Loría-Salazar, W. Patrick Arnott, Grant C. Edwards, Matthieu B. Miller, and Mae S. Gustin

Related authors

Evaluating the PurpleAir monitor as an aerosol light scattering instrument
James R. Ouimette, William C. Malm, Bret A. Schichtel, Patrick J. Sheridan, Elisabeth Andrews, John A. Ogren, and W. Patrick Arnott
Atmos. Meas. Tech., 15, 655–676, https://doi.org/10.5194/amt-15-655-2022,https://doi.org/10.5194/amt-15-655-2022, 2022
Short summary
Evaluation of cation exchange membrane performance under exposure to high Hg0 and HgBr2 concentrations
Matthieu B. Miller, Sarrah M. Dunham-Cheatham, Mae Sexauer Gustin, and Grant C. Edwards
Atmos. Meas. Tech., 12, 1207–1217, https://doi.org/10.5194/amt-12-1207-2019,https://doi.org/10.5194/amt-12-1207-2019, 2019
Short summary
Reactive mercury flux measurements using cation exchange membranes
Matthieu B. Miller, Mae S. Gustin, and Grant C. Edwards
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-360,https://doi.org/10.5194/amt-2018-360, 2018
Revised manuscript not accepted
Short summary
Global evaluation and calibration of a passive air sampler for gaseous mercury
David S. McLagan, Carl P. J. Mitchell, Alexandra Steffen, Hayley Hung, Cecilia Shin, Geoff W. Stupple, Mark L. Olson, Winston T. Luke, Paul Kelley, Dean Howard, Grant C. Edwards, Peter F. Nelson, Hang Xiao, Guey-Rong Sheu, Annekatrin Dreyer, Haiyong Huang, Batual Abdul Hussain, Ying D. Lei, Ilana Tavshunsky, and Frank Wania
Atmos. Chem. Phys., 18, 5905–5919, https://doi.org/10.5194/acp-18-5905-2018,https://doi.org/10.5194/acp-18-5905-2018, 2018
Short summary
Mercury fluxes over an Australian alpine grassland and observation of nocturnal atmospheric mercury depletion events
Dean Howard and Grant C. Edwards
Atmos. Chem. Phys., 18, 129–142, https://doi.org/10.5194/acp-18-129-2018,https://doi.org/10.5194/acp-18-129-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Instruments and Platforms
Characterisation of particle single-scattering albedo with a modified airborne dual-wavelength CAPS monitor
Chenjie Yu, Edouard Pangui, Kevin Tu, Mathieu Cazaunau, Maxime Feingesicht, Landsheere Xavier, Thierry Bourrianne, Vincent Michoud, Christopher Cantrell, Timothy B. Onasch, Andrew Freedman, and Paola Formenti
Atmos. Meas. Tech., 17, 3419–3437, https://doi.org/10.5194/amt-17-3419-2024,https://doi.org/10.5194/amt-17-3419-2024, 2024
Short summary
Use of an uncrewed aerial system to investigate aerosol direct and indirect radiative forcing effects in the marine atmosphere
Patricia K. Quinn, Timothy S. Bates, Derek J. Coffman, James E. Johnson, and Lucia M. Upchurch
Atmos. Meas. Tech., 17, 3157–3170, https://doi.org/10.5194/amt-17-3157-2024,https://doi.org/10.5194/amt-17-3157-2024, 2024
Short summary
Characterization of the airborne aerosol inlet and transport system used during the A-LIFE aircraft field experiment
Manuel Schöberl, Maximilian Dollner, Josef Gasteiger, Petra Seibert, Anne Tipka, and Bernadett Weinzierl
Atmos. Meas. Tech., 17, 2761–2776, https://doi.org/10.5194/amt-17-2761-2024,https://doi.org/10.5194/amt-17-2761-2024, 2024
Short summary
Large-scale automated emission measurement of individual vehicles with point sampling
Markus Knoll, Martin Penz, Hannes Juchem, Christina Schmidt, Denis Pöhler, and Alexander Bergmann
Atmos. Meas. Tech., 17, 2481–2505, https://doi.org/10.5194/amt-17-2481-2024,https://doi.org/10.5194/amt-17-2481-2024, 2024
Short summary
Development of a cascade impactor optimized for size-fractionated analysis of aerosol metal content by total reflection X-ray fluorescence spectroscopy (TXRF)
Claudio Crazzolara and Andreas Held
Atmos. Meas. Tech., 17, 2183–2194, https://doi.org/10.5194/amt-17-2183-2024,https://doi.org/10.5194/amt-17-2183-2024, 2024
Short summary

Cited articles

Buseck, P. R. and Schwartz, S. E.: 4.04 – Tropospheric aerosols, in: Treatise on Geochemistry, edited by: Holland, H. D. and Turekian, K. K., Pergamon, Oxford, 91–142, 2003. 
CA (2014 Large Fires List): available at: http://cdfdata.fire.ca.gov/incidents/incidents_statsevents\#2014 (last access: October 2017), 2017. 
Chakrabarty, R. K., Beres, N. D., Moosmuller, H., China, S., Mazzoleni, C., Dubey, M. K., Liu, L., and Mishchenko, M. I.: Soot superaggregates from flaming wildfires and their direct radiative forcing, Sci. Rep.-UK, 4, 5508, https://doi.org/10.1038/srep05508, 2014. 
Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: Thermodynamic model of the system H+-NH4+-SO42--NO3--H2O at tropospheric temperatures, J. Phys. Chem.-US, 102, 2137–2154, https://doi.org/10.1021/jp973042r, 1998. 
Davis, J. R.: Corrosion of Aluminum and Aluminum Alloys, A S M International, Materials Park, OH, USA, 1999. 
Download
Short summary
This paper investigates the possible sources of anomalous particulate matter collected at a high-elevation site during June to November 2014. Particles were collected on a sample filter that were > 2.5 µm in aerodynamic diameter, on a system that theoretically should not collect particulate matter that large. These samples indicated that either the observed particles had unique dimensions and behavior or that there was an issue with the particulate monitor inlet setup.