Articles | Volume 11, issue 8
https://doi.org/10.5194/amt-11-4605-2018
https://doi.org/10.5194/amt-11-4605-2018
Research article
 | 
08 Aug 2018
Research article |  | 08 Aug 2018

Long-term evaluation of air sensor technology under ambient conditions in Denver, Colorado

Stephen Feinberg, Ron Williams, Gayle S. W. Hagler, Joshua Rickard, Ryan Brown, Daniel Garver, Greg Harshfield, Phillip Stauffer, Erick Mattson, Robert Judge, and Sam Garvey

Related authors

Improving the quantification of peak concentrations for air quality sensors via data weighting
Caroline Frischmon, Jonathan Silberstein, Annamarie Guth, Erick Mattson, Jack Porter, and Michael Hannigan
Atmos. Meas. Tech., 18, 3147–3159, https://doi.org/10.5194/amt-18-3147-2025,https://doi.org/10.5194/amt-18-3147-2025, 2025
Short summary

Cited articles

Crilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R., Young, S., Lewis, A. C., and Pope, F. D.: Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring, Atmos. Meas. Tech., 11, 709–720, https://doi.org/10.5194/amt-11-709-2018, 2018. 
Cross, E. S., Williams, L. R., Lewis, D. K., Magoon, G. R., Onasch, T. B., Kaminsky, M. L., Worsnop, D. R., and Jayne, J. T.: Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements, Atmos. Meas. Tech., 10, 3575–3588, https://doi.org/10.5194/amt-10-3575-2017, 2017. 
Gao, M., Cao, J., and Seto, E.: A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi'an, China, Environ. Pollut., 199, 56–65, https://doi.org/10.1016/j.envpol.2015.01.013, 2015. 
Hagan, D. H., Isaacman-VanWertz, G., Franklin, J. P., Wallace, L. M. M., Kocar, B. D., Heald, C. L., and Kroll, J. H.: Calibration and assessment of electrochemical air quality sensors by co-location with regulatory-grade instruments, Atmos. Meas. Tech., 11, 315–328, https://doi.org/10.5194/amt-11-315-2018, 2018. 
Download
Short summary
Air pollution sensors are quickly proliferating for use in a wide variety of applications, with a low price point that supports use in high-density networks, citizen science, and individual consumer use. We evaluated the performance of particulate matter, ozone, and nitrogen dioxide sensors in Denver, Colorado, over a period of seven months. We found that these sensors could vary greatly in their performance, but some were able to replicate trends measured by traditional instruments.
Share