Articles | Volume 11, issue 2
https://doi.org/10.5194/amt-11-763-2018
https://doi.org/10.5194/amt-11-763-2018
Research article
 | 
08 Feb 2018
Research article |  | 08 Feb 2018

Sensitivity of airborne radio occultation to tropospheric properties over ocean and land

Feiqin Xie, Loknath Adhikari, Jennifer S. Haase, Brian Murphy, Kuo-Nung Wang, and James L. Garrison

Related authors

Assessing the Ducting Phenomenon and its Impact on GNSS Radio Occultation Refractivity Retrievals over the Northeast Pacific Ocean using Radiosondes and Global Reanalysis
Thomas E. Winning, Feiqin Xie, and Kevin J. Nelson
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-150,https://doi.org/10.5194/amt-2023-150, 2023
Revised manuscript accepted for AMT
Short summary
GNSS radio occultation soundings from commercial off-the-shelf receivers on board balloon platforms
Kevin J. Nelson, Feiqin Xie, Bryan C. Chan, Ashish Goel, Jonathan Kosh, Tyler G. R. Reid, Corey R. Snyder, and Paul M. Tarantino
Atmos. Meas. Tech., 16, 941–954, https://doi.org/10.5194/amt-16-941-2023,https://doi.org/10.5194/amt-16-941-2023, 2023
Short summary
Evaluating the lower-tropospheric COSMIC GPS radio occultation sounding quality over the Arctic
Xiao Yu, Feiqin Xie, and Chi O. Ao
Atmos. Meas. Tech., 11, 2051–2066, https://doi.org/10.5194/amt-11-2051-2018,https://doi.org/10.5194/amt-11-2051-2018, 2018
Short summary
Correcting negatively biased refractivity below ducts in GNSS radio occultation: an optimal estimation approach towards improving planetary boundary layer (PBL) characterization
Kuo-Nung Wang, Manuel de la Torre Juárez, Chi O. Ao, and Feiqin Xie
Atmos. Meas. Tech., 10, 4761–4776, https://doi.org/10.5194/amt-10-4761-2017,https://doi.org/10.5194/amt-10-4761-2017, 2017
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Closing the gap in the tropics: the added value of radio-occultation data for wind field monitoring across the Equator
Julia Danzer, Magdalena Pieler, and Gottfried Kirchengast
Atmos. Meas. Tech., 17, 4979–4995, https://doi.org/10.5194/amt-17-4979-2024,https://doi.org/10.5194/amt-17-4979-2024, 2024
Short summary
Verification of weather-radar-based hail metrics with crowdsourced observations from Switzerland
Jérôme Kopp, Alessandro Hering, Urs Germann, and Olivia Martius
Atmos. Meas. Tech., 17, 4529–4552, https://doi.org/10.5194/amt-17-4529-2024,https://doi.org/10.5194/amt-17-4529-2024, 2024
Short summary
Atmospheric motion vector (AMV) error characterization and bias correction by leveraging independent lidar data: a simulation using an observing system simulation experiment (OSSE) and optical flow AMVs
Hai Nguyen, Derek Posselt, Igor Yanovsky, Longtao Wu, and Svetla Hristova-Veleva
Atmos. Meas. Tech., 17, 3103–3119, https://doi.org/10.5194/amt-17-3103-2024,https://doi.org/10.5194/amt-17-3103-2024, 2024
Short summary
Description and validation of the Japanese algorithm for radiative flux and heating rate products with all four EarthCARE instruments: Pre-launch test with A-Train
Akira Yamauchi, Kentaroh Suzuki, Eiji Oikawa, Miho Sekiguchi, Takashi Nagao, and Haruma Ishida
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-78,https://doi.org/10.5194/amt-2024-78, 2024
Revised manuscript accepted for AMT
Short summary
Rotary-wing drone-induced flow – comparison of simulations with lidar measurements
Liqin Jin, Mauro Ghirardelli, Jakob Mann, Mikael Sjöholm, Stephan Thomas Kral, and Joachim Reuder
Atmos. Meas. Tech., 17, 2721–2737, https://doi.org/10.5194/amt-17-2721-2024,https://doi.org/10.5194/amt-17-2721-2024, 2024
Short summary

Cited articles

Adhikari, L., Xie, F., and Haase, J. S.: Application of the full spectrum inversion algorithm to simulated airborne GPS radio occultation signals, Atmos. Meas. Tech., 9, 5077–5087, https://doi.org/10.5194/amt-9-5077-2016, 2016. 
Anthes, R. A.: Exploring Earth's atmosphere with radio occultation: contributions to weather, climate and space weather, Atmos. Meas. Tech., 4, 1077–1103, https://doi.org/10.5194/amt-4-1077-2011, 2011. 
Ao, C. O.: Effect of ducting on radio occultation measurements: An assessment based on high-resolution radiosonde soundings, Radio Sci., 42, RS2008, https://doi.org/10.1029/2006RS003485, 2007. 
Ao, C. O., Meehan, T. K., Hajj, G. A., Mannucci, A. J., and Beyerle, G.: Lower troposphere refractivity bias in GPS occultation retrievals, J. Geophys. Res., 108, 4577, https://doi.org/10.1029/2002JD003216, 2003. 
Download
Short summary
The GPS signal going through the atmosphere will experience refraction or bending, which can be precisely measured and used to infer the atmospheric properties. This paper demonstrates that high-quality atmospheric measurement with less than ~ 0.4 K is achievable from a GPS recording system with a simple antenna mounted on top of an aircraft cruising at ~ 13 km. Such a simple airborne GPS system can be implemented on commercial aircraft to provide valuable data for weather models in the future.