Articles | Volume 11, issue 2
Atmos. Meas. Tech., 11, 835–859, 2018
https://doi.org/10.5194/amt-11-835-2018
Atmos. Meas. Tech., 11, 835–859, 2018
https://doi.org/10.5194/amt-11-835-2018
Research article
14 Feb 2018
Research article | 14 Feb 2018

Improved cloud-phase determination of low-level liquid and mixed-phase clouds by enhanced polarimetric lidar

Robert A. Stillwell et al.

Related authors

MicroPulse DIAL (MPD) – a diode-laser-based lidar architecture for quantitative atmospheric profiling
Scott M. Spuler, Matthew Hayman, Robert A. Stillwell, Joshua Carnes, Todd Bernatsky, and Kevin S. Repasky
Atmos. Meas. Tech., 14, 4593–4616, https://doi.org/10.5194/amt-14-4593-2021,https://doi.org/10.5194/amt-14-4593-2021, 2021
Short summary
First Look at the Occurrence of Horizontally Oriented Ice Crystals over Summit, Greenland
Sebastian Cole, Ryan R. Neely III., and Robert A. Stillwell
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-1134,https://doi.org/10.5194/acp-2016-1134, 2017
Preprint withdrawn
Low-Level, Liquid-Only and Mixed-Phase Cloud Identification by Polarimetric Lidar
Robert A. Stillwell, Ryan R. Neely III, Jeffrey P. Thayer, Matthew D. Shupe, and Michael O'Neill
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-303,https://doi.org/10.5194/amt-2016-303, 2016
Revised manuscript not accepted
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Instruments and Platforms
Locations for the best lidar view of mid-level and high clouds
Matthias Tesche and Vincent Noel
Atmos. Meas. Tech., 15, 4225–4240, https://doi.org/10.5194/amt-15-4225-2022,https://doi.org/10.5194/amt-15-4225-2022, 2022
Short summary
Passive ground-based remote sensing of radiation fog
Heather Guy, David D. Turner, Von P. Walden, Ian M. Brooks, and Ryan R. Neely
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-12,https://doi.org/10.5194/amt-2022-12, 2022
Revised manuscript accepted for AMT
Short summary
VELOX – a new thermal infrared imager for airborne remote sensing of cloud and surface properties
Michael Schäfer, Kevin Wolf, André Ehrlich, Christoph Hallbauer, Evelyn Jäkel, Friedhelm Jansen, Anna Elizabeth Luebke, Joshua Müller, Jakob Thoböll, Timo Röschenthaler, Bjorn Stevens, and Manfred Wendisch
Atmos. Meas. Tech., 15, 1491–1509, https://doi.org/10.5194/amt-15-1491-2022,https://doi.org/10.5194/amt-15-1491-2022, 2022
Short summary
Above-aircraft cirrus cloud and aerosol optical depth from hyperspectral irradiances measured by a total-diffuse radiometer
Matthew S. Norgren, John Wood, K. Sebastian Schmidt, Bastiaan van Diedenhoven, Snorre A. Stamnes, Luke D. Ziemba, Ewan C. Crosbie, Michael A. Shook, A. Scott Kittelman, Samuel E. LeBlanc, Stephen Broccardo, Steffen Freitag, and Jeffrey S. Reid
Atmos. Meas. Tech., 15, 1373–1394, https://doi.org/10.5194/amt-15-1373-2022,https://doi.org/10.5194/amt-15-1373-2022, 2022
Short summary
Impact of second-trip echoes for space-borne high-pulse-repetition-frequency nadir-looking W-band cloud radars
Alessandro Battaglia
Atmos. Meas. Tech., 14, 7809–7820, https://doi.org/10.5194/amt-14-7809-2021,https://doi.org/10.5194/amt-14-7809-2021, 2021
Short summary

Cited articles

Albrecht, B. and Cox, S. K.: Procedures for Improving Pyrgeometer Performance, J. Appl. Meteorol., 16, 188–197, https://doi.org/10.1175/1520-0450(1977)016<0190:PFIPP>2.0.CO;2, 1977.
Alvarez, J. M., Vaughan, M. A., Hostetler, C. A., Hunt, W. H., and Winker, D. M.: Calibration Technique for Polarization-Sensitive Lidars, J. Atmos. Ocean. Tech., 23, 683–699, https://doi.org/10.1175/JTECH1872.1, 2006.
Bendix, J.: A Satellite-Based Climatology of Fog and Low-Level Stratus in Germany and Adjacent Areas, Atmos. Res., 64, 3–18, https://doi.org/10.1016/S0169-8095(02)00075-3, 2002.
Bennartz, R., Shupe, M. D., Turner, D. D., Walden, V. P., Steffen, K., Cox, C. J., Kulie, M. S., Miller, N. B., and Pettersen, C.: July 2012 Greenland Melt Extent Enhanced by Low-Level Liquid Clouds, Nature, 496, 83–86, https://doi.org/10.1038/nature12002, 2013.
Biele, J., Beyerle, G., and Baumgarten, G.: Polarization Lidar: Correction of Instrumental Effects, Opt. Express, 7, 427–435, https://doi.org/10.1364/OE.7.000427, 2000.
Download
Short summary
This work focuses on making unambiguous measurements of Arctic cloud phase and assessing those measurements within the context of cloud radiative effects. It is found that effects related to lidar data recording systems can cause retrieval ambiguities that alter the interpretation of cloud phase in as much as 30 % of the available data. This misinterpretation of cloud-phase data can cause a misinterpretation of the effect of cloud phase on the surface radiation budget by as much as 10 to 30 %.