Articles | Volume 12, issue 3
https://doi.org/10.5194/amt-12-1673-2019
https://doi.org/10.5194/amt-12-1673-2019
Research article
 | 
15 Mar 2019
Research article |  | 15 Mar 2019

A new method of inferring the size, number density, and charge of mesospheric dust from its in situ collection by the DUSTY probe

Ove Havnes, Tarjei Antonsen, Gerd Baumgarten, Thomas W. Hartquist, Alexander Biebricher, Åshild Fredriksen, Martin Friedrich, and Jonas Hedin

Related authors

Multi-scale measurements of mesospheric aerosols and electrons during the MAXIDUSTY campaign
Tarjei Antonsen, Ove Havnes, and Andres Spicher
Atmos. Meas. Tech., 12, 2139–2153, https://doi.org/10.5194/amt-12-2139-2019,https://doi.org/10.5194/amt-12-2139-2019, 2019
Short summary
A comparison of overshoot modelling with observations of polar mesospheric summer echoes at radar frequencies of 56 and 224 MHz
O. Havnes, H. Pinedo, C. La Hoz, A. Senior, T. W. Hartquist, M. T. Rietveld, and M. J. Kosch
Ann. Geophys., 33, 737–747, https://doi.org/10.5194/angeo-33-737-2015,https://doi.org/10.5194/angeo-33-737-2015, 2015
Short summary

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Spatial analysis of PM2.5 using a concentration similarity index applied to air quality sensor networks
Rósín Byrne, John C. Wenger, and Stig Hellebust
Atmos. Meas. Tech., 17, 5129–5146, https://doi.org/10.5194/amt-17-5129-2024,https://doi.org/10.5194/amt-17-5129-2024, 2024
Short summary
A novel probabilistic source apportionment approach: Bayesian auto-correlated matrix factorization
Anton Rusanen, Anton Björklund, Manousos I. Manousakas, Jianhui Jiang, Markku T. Kulmala, Kai Puolamäki, and Kaspar R. Daellenbach
Atmos. Meas. Tech., 17, 1251–1277, https://doi.org/10.5194/amt-17-1251-2024,https://doi.org/10.5194/amt-17-1251-2024, 2024
Short summary
Towards a hygroscopic growth calibration for low-cost PM2.5 sensors
Milan Y. Patel, Pietro F. Vannucci, Jinsol Kim, William M. Berelson, and Ronald C. Cohen
Atmos. Meas. Tech., 17, 1051–1060, https://doi.org/10.5194/amt-17-1051-2024,https://doi.org/10.5194/amt-17-1051-2024, 2024
Short summary
Enhancing characterization of organic nitrogen components in aerosols and droplets using high-resolution aerosol mass spectrometry
Xinlei Ge, Yele Sun, Justin Trousdell, Mindong Chen, and Qi Zhang
Atmos. Meas. Tech., 17, 423–439, https://doi.org/10.5194/amt-17-423-2024,https://doi.org/10.5194/amt-17-423-2024, 2024
Short summary
Machine learning approaches for automatic classification of single-particle mass spectrometry data
Guanzhong Wang, Heinrich Ruser, Julian Schade, Johannes Passig, Thomas Adam, Günther Dollinger, and Ralf Zimmermann
Atmos. Meas. Tech., 17, 299–313, https://doi.org/10.5194/amt-17-299-2024,https://doi.org/10.5194/amt-17-299-2024, 2024
Short summary

Cited articles

Amyx, K., Sternovsky, Z., Knappmiller, S., Robertson, S., Horányi, M., and Gumbel, J.: In-situ measurement of smoke particles in the wintertime polar mesosphere between 80 and 85 km altitude, J. Atmos. Sol.-Terr. Phy., 70, 61–70, 2008. 
Antonsen, T. and Havnes, O.: On the detection of mesospheric meteoric smoke particles embedded in noctilucent cloud particles with rocket-borne dust probes, Rev. Sci. Instrum., 86, 033305, https://doi.org/10.1063/1.4914394, 2015. 
Antonsen, T., Havnes, O., and Mann, I.: Estimates of the Size Distribution of Meteoric Smoke Particles From Rocket-Borne Impact Probes, J. Geophys. Res, 122, 12353–12365, https://doi.org/10.1002/2017JD027220, 2017. 
Asmus, H., Robertson, S., Dickson, S., Friedrich, M., and Megner, L.: Charge balance for the mesosphere with meteoric dust particles, J. Atmos. Sol.-Terr. Phy., 127, 137–149, https://doi.org/10.1016/j.jastp.2014.07.010, 2015. 
Backhouse, T. W.: The luminous cirrus cloud of June and July, Meteorol. Mag., 20, 133, 1885. 
Download
Short summary
We present a new method of analyzing data from rocket-borne aerosol detectors of the Faraday cup type (DUSTY). By using models for how aerosols are charged in the mesosphere and how they interact in a collision with the probes, fundamental parameters like aerosol radius, charge, and number density can be derived. The resolution can be down to ~ 10 cm, which is much lower than other available methods. The theory is furthermore used to analyze DUSTY data from the 2016 rocket campaign MAXIDUSTY.