Articles | Volume 12, issue 5
Atmos. Meas. Tech., 12, 2949–2966, 2019
https://doi.org/10.5194/amt-12-2949-2019
Atmos. Meas. Tech., 12, 2949–2966, 2019
https://doi.org/10.5194/amt-12-2949-2019

Research article 29 May 2019

Research article | 29 May 2019

Quantification of CO2 and CH4 emissions over Sacramento, California, based on divergence theorem using aircraft measurements

Ju-Mee Ryoo et al.

Related authors

A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeast Atlantic during 2016–2018
Ju-Mee Ryoo, Leonhard Pfister, Rei Ueyama, Paquita Zuidema, Robert Wood, Ian Chang, and Jens Redemann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-274,https://doi.org/10.5194/acp-2021-274, 2021
Preprint under review for ACP
Short summary
An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021,https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Exploring the elevated water vapor signal associated with the free-tropospheric biomass burning plume over the southeast Atlantic Ocean
Kristina Pistone, Paquita Zuidema, Robert Wood, Michael Diamond, Arlindo M. da Silva, Gonzalo Ferrada, Pablo Saide, Rei Ueyama, Ju-Mee Ryoo, Leonhard Pfister, James Podolske, David Noone, Ryan Bennett, Eric Stith, Gregory Carmichael, Jens Redemann, Connor Flynn, Samuel LeBlanc, Michal Segal-Rozenhaimer, and Yohei Shinozuka
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1322,https://doi.org/10.5194/acp-2020-1322, 2021
Revised manuscript under review for ACP
Short summary
Modeling the smoky troposphere of the southeast Atlantic: a comparison to ORACLES airborne observations from September of 2016
Yohei Shinozuka, Pablo E. Saide, Gonzalo A. Ferrada, Sharon P. Burton, Richard Ferrare, Sarah J. Doherty, Hamish Gordon, Karla Longo, Marc Mallet, Yan Feng, Qiaoqiao Wang, Yafang Cheng, Amie Dobracki, Steffen Freitag, Steven G. Howell, Samuel LeBlanc, Connor Flynn, Michal Segal-Rosenhaimer, Kristina Pistone, James R. Podolske, Eric J. Stith, Joseph Ryan Bennett, Gregory R. Carmichael, Arlindo da Silva, Ravi Govindaraju, Ruby Leung, Yang Zhang, Leonhard Pfister, Ju-Mee Ryoo, Jens Redemann, Robert Wood, and Paquita Zuidema
Atmos. Chem. Phys., 20, 11491–11526, https://doi.org/10.5194/acp-20-11491-2020,https://doi.org/10.5194/acp-20-11491-2020, 2020
Short summary
Intercomparison of lidar, aircraft, and surface ozone measurements in the San Joaquin Valley during the California Baseline Ozone Transport Study (CABOTS)
Andrew O. Langford, Raul J. Alvarez II, Guillaume Kirgis, Christoph J. Senff, Dani Caputi, Stephen A. Conley, Ian C. Faloona, Laura T. Iraci, Josette E. Marrero, Mimi E. McNamara, Ju-Mee Ryoo, and Emma L. Yates
Atmos. Meas. Tech., 12, 1889–1904, https://doi.org/10.5194/amt-12-1889-2019,https://doi.org/10.5194/amt-12-1889-2019, 2019
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Instruments and Platforms
Long-term NOx measurements in the remote marine tropical troposphere
Simone T. Andersen, Lucy J. Carpenter, Beth S. Nelson, Luis Neves, Katie A. Read, Chris Reed, Martyn Ward, Matthew J. Rowlinson, and James D. Lee
Atmos. Meas. Tech., 14, 3071–3085, https://doi.org/10.5194/amt-14-3071-2021,https://doi.org/10.5194/amt-14-3071-2021, 2021
Short summary
Study on the measurement of isoprene by differential optical absorption spectroscopy
Song Gao, Shanshan Wang, Chuanqi Gu, Jian Zhu, Ruifeng Zhang, Yanlin Guo, Yuhao Yan, and Bin Zhou
Atmos. Meas. Tech., 14, 2649–2657, https://doi.org/10.5194/amt-14-2649-2021,https://doi.org/10.5194/amt-14-2649-2021, 2021
Airborne measurements of oxygen concentration from the surface to the lower stratosphere and pole to pole
Britton B. Stephens, Eric J. Morgan, Jonathan D. Bent, Ralph F. Keeling, Andrew S. Watt, Stephen R. Shertz, and Bruce C. Daube
Atmos. Meas. Tech., 14, 2543–2574, https://doi.org/10.5194/amt-14-2543-2021,https://doi.org/10.5194/amt-14-2543-2021, 2021
Short summary
Improvements to a laser-induced fluorescence instrument for measuring SO2 – impact on accuracy and precision
Pamela S. Rickly, Lu Xu, John D. Crounse, Paul O. Wennberg, and Andrew W. Rollins
Atmos. Meas. Tech., 14, 2429–2439, https://doi.org/10.5194/amt-14-2429-2021,https://doi.org/10.5194/amt-14-2429-2021, 2021
Short summary
The improved comparative reactivity method (ICRM): measurements of OH reactivity under high-NOx conditions in ambient air
Wenjie Wang, Jipeng Qi, Jun Zhou, Bin Yuan, Yuwen Peng, Sihang Wang, Suxia Yang, Jonathan Williams, Vinayak Sinha, and Min Shao
Atmos. Meas. Tech., 14, 2285–2298, https://doi.org/10.5194/amt-14-2285-2021,https://doi.org/10.5194/amt-14-2285-2021, 2021
Short summary

Cited articles

Andres, R. J., Fielding, D. J., Marland, G., Boden, T. A., Kumar, N., and Kearney, A. T.: Carbon dioxide emissions from fossil-fuel use, 1751–1950, Tellus, 51, 759–765, 1999. 
Andrews, C.: Greenhouse gas emissions along the rural to urban gradient, J. Environ. Plann. Manage., 51, 847–870, 2008. 
Baray, S., Darlington, A., Gordon, M., Hayden, K. L., Leithead, A., Li, S.-M., Liu, P. S. K., Mittermeier, R. L., Moussa, S. G., O'Brien, J., Staebler, R., Wolde, M., Worthy, D., and McLaren, R.: Quantification of methane sources in the Athabasca Oil Sands Region of Alberta by aircraft mass balance, Atmos. Chem. Phys., 18, 7361–7378, https://doi.org/10.5194/acp-18-7361-2018, 2018. 
Boden, T. A., Marland, G., and Andres, R. J.: Global, Regional, and National Fossil-Fuel CO2 Emissions, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USA, https://doi.org/10.3334/CDIAC/00001_V2010, 2010. 
California Air Resources Board: California greenhouse gas emission inventory – 2015 edition, available at: http://www.arb.ca.gov/cc/inventory/data/data.htm (last access: 11 July 2018), 2015. 
Download
Short summary
We designed cylindrical flights and computed the emission fluxes using a kriging method and Gauss's theorem over Sacramento, California. Differences in wind treatment and background affect the emission estimates by a factor of 1.5 to 7. The effects of the vertical layer average and the vertical mass transfer on the emission estimates are found to be small, esp. local scale. The result also suggests a closed-shape flight profile can better contain total emissions than a one-sided curtain flight.