Articles | Volume 13, issue 3
https://doi.org/10.5194/amt-13-1593-2020
https://doi.org/10.5194/amt-13-1593-2020
Research article
 | 
02 Apr 2020
Research article |  | 02 Apr 2020

Towards objective identification and tracking of convective outflow boundaries in next-generation geostationary satellite imagery

Jason M. Apke, Kyle A. Hilburn, Steven D. Miller, and David A. Peterson

Related authors

Towards Gridded Nighttime Aerosol Optical Thickness Retrievals Using VIIRS Day/Night Band Observations Over Regions with Artificial Light Sources
Jianglong Zhang, Jeffrey S. Reid, Blake Sorenson, Steven D. Miller, Miguel O. Román, Zhuosen Wang, Robert J. D. Spurr, Shawn Jaker, Thomas F. Eck, and Juli I. Rubin
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-181,https://doi.org/10.5194/amt-2024-181, 2024
Preprint under review for AMT
Short summary
Sensitivity studies of nighttime top-of-atmosphere radiances from artificial light sources using a 3-D radiative transfer model for nighttime aerosol retrievals
Jianglong Zhang, Jeffrey S. Reid, Steven D. Miller, Miguel Román, Zhuosen Wang, Robert J. D. Spurr, and Shawn Jaker
Atmos. Meas. Tech., 16, 2531–2546, https://doi.org/10.5194/amt-16-2531-2023,https://doi.org/10.5194/amt-16-2531-2023, 2023
Short summary
Satellite imagery and products of the 16–17 February 2020 Saharan Air Layer dust event over the eastern Atlantic: impacts of water vapor on dust detection and morphology
Lewis Grasso, Daniel Bikos, Jorel Torres, John F. Dostalek, Ting-Chi Wu, John Forsythe, Heather Q. Cronk, Curtis J. Seaman, Steven D. Miller, Emily Berndt, Harry G. Weinman, and Kennard B. Kasper
Atmos. Meas. Tech., 14, 1615–1634, https://doi.org/10.5194/amt-14-1615-2021,https://doi.org/10.5194/amt-14-1615-2021, 2021
Short summary
A fast visible-wavelength 3D radiative transfer model for numerical weather prediction visualization and forward modeling
Steven Albers, Stephen M. Saleeby, Sonia Kreidenweis, Qijing Bian, Peng Xian, Zoltan Toth, Ravan Ahmadov, Eric James, and Steven D. Miller
Atmos. Meas. Tech., 13, 3235–3261, https://doi.org/10.5194/amt-13-3235-2020,https://doi.org/10.5194/amt-13-3235-2020, 2020
Short summary
Assessing the stability of surface lights for use in retrievals of nocturnal atmospheric parameters
Jeremy E. Solbrig, Steven D. Miller, Jianglong Zhang, Lewis Grasso, and Anton Kliewer
Atmos. Meas. Tech., 13, 165–190, https://doi.org/10.5194/amt-13-165-2020,https://doi.org/10.5194/amt-13-165-2020, 2020
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Optimal estimation of cloud properties from thermal infrared observations with a combination of deep learning and radiative transfer simulation
He Huang, Quan Wang, Chao Liu, and Chen Zhou
Atmos. Meas. Tech., 17, 7129–7141, https://doi.org/10.5194/amt-17-7129-2024,https://doi.org/10.5194/amt-17-7129-2024, 2024
Short summary
3D cloud masking across a broad swath using multi-angle polarimetry and deep learning
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
Atmos. Meas. Tech., 17, 7027–7047, https://doi.org/10.5194/amt-17-7027-2024,https://doi.org/10.5194/amt-17-7027-2024, 2024
Short summary
Dual-frequency (Ka-band and G-band) radar estimates of liquid water content profiles in shallow clouds
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
Atmos. Meas. Tech., 17, 6965–6981, https://doi.org/10.5194/amt-17-6965-2024,https://doi.org/10.5194/amt-17-6965-2024, 2024
Short summary
Retrieval of cloud fraction and optical thickness of liquid water clouds over the ocean from multi-angle polarization observations
Claudia Emde, Veronika Pörtge, Mihail Manev, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6769–6789, https://doi.org/10.5194/amt-17-6769-2024,https://doi.org/10.5194/amt-17-6769-2024, 2024
Short summary
Severe-hail detection with C-band dual-polarisation radars using convolutional neural networks
Vincent Forcadell, Clotilde Augros, Olivier Caumont, Kévin Dedieu, Maxandre Ouradou, Cloé David, Jordi Figueras i Ventura, Olivier Laurantin, and Hassan Al-Sakka
Atmos. Meas. Tech., 17, 6707–6734, https://doi.org/10.5194/amt-17-6707-2024,https://doi.org/10.5194/amt-17-6707-2024, 2024
Short summary

Cited articles

Anandan, P.: A computational framework and an algorithm for the measurement of visual motion, Int. J. Comput. Vision, 2, 283–310, https://doi.org/10.1007/BF00158167, 1989. 
Apke, J. M., Mecikalski, J. R., and Jewett, C. P.: Analysis of Mesoscale Atmospheric Flows above Mature Deep Convection Using Super Rapid Scan Geostationary Satellite Data, J. Appl. Meteorol. Clim., 55, 1859–1887, https://doi.org/10.1175/JAMC-D-15-0253.1, 2016. 
Apke, J. M., Mecikalski, J. R., Bedka, K. M., McCaul Jr., E. W., Homeyer, C. R., and Jewett, C. P.: Relationships Between Deep Convection Updraft Characteristics and Satellite Based Super Rapid Scan Mesoscale Atmospheric Motion Vector Derived Flow, Mon. Weather Rev., 146, 3461–3480 https://doi.org/10.1175/MWR-D-18-0119.1, 2018. 
Associated Press: Sheriff: 11 people dead after Missouri tourist boat accident, Assoc. Press, available at: https://www.apnews.com/a4031f35b4744775a7f59216a56077ed (last access: 10 January 2019), 2018. 
Baker, S. and Matthews, I.: Lucas-Kanade 20 years on: A unifying framework, Int. J. Comput. Vision, 56, 221–255, https://doi.org/10.1023/B:VISI.0000011205.11775.fd, 2004. 
Download
Short summary
Objective identification of deep convection outflow boundaries (OFBs) in next-generation geostationary satellite imagery is explored here using motion derived from a tuned advanced optical flow algorithm. Motion discontinuity preservation within the derivation is found crucial for successful OFB tracking between images, which yields new meteorological data for objective systems to use. These results provide the first step towards a fully automated satellite-based OFB identification algorithm.