Research article
| Highlight paper
13 May 2020
Research article
| Highlight paper
| 13 May 2020
Microwave and submillimeter wave scattering of oriented ice particles
Manfred Brath et al.
Related authors
Theresa Mieslinger, Bjorn Stevens, Tobias Kölling, Manfred Brath, Martin Wirth, and Stefan A. Buehler
Atmos. Chem. Phys., 22, 6879–6898, https://doi.org/10.5194/acp-22-6879-2022, https://doi.org/10.5194/acp-22-6879-2022, 2022
Short summary
Short summary
The trades are home to a plethora of small cumulus clouds that are often barely visible to the human eye and difficult to detect with active and passive remote sensing methods. With the help of a new method and by means of high-resolution data we can detect small and particularly thin clouds. We find that optically thin clouds are a common phenomenon in the trades, covering a large area and influencing the radiative effect of clouds if they are undetected and contaminate the cloud-free signal.
Simon Pfreundschuh, Stuart Fox, Patrick Eriksson, David Duncan, Stefan A. Buehler, Manfred Brath, Richard Cotton, and Florian Ewald
Atmos. Meas. Tech., 15, 677–699, https://doi.org/10.5194/amt-15-677-2022, https://doi.org/10.5194/amt-15-677-2022, 2022
Short summary
Short summary
We test a novel method to remotely measure ice particles in clouds. This is important because such measurements are required to improve climate and weather models. The method combines a radar with newly developed sensors measuring microwave radiation at very short wavelengths. We use observations made from aircraft flying above the cloud and compare them to real measurements from inside the cloud. This works well given that one can model the ice particles in the cloud sufficiently well.
Marc Prange, Manfred Brath, and Stefan A. Buehler
Atmos. Meas. Tech., 14, 7025–7044, https://doi.org/10.5194/amt-14-7025-2021, https://doi.org/10.5194/amt-14-7025-2021, 2021
Short summary
Short summary
We investigate the ability of the hyperspectral infrared satellite instrument IASI to resolve moist layers in the tropical free troposphere in a model framework. Previous observational results indicated major deficiencies of passive satellite instruments in resolving moist layers around the freezing level. We conduct a first systematic hyperspectral infrared retrieval analysis of such moist layers and conclude that no inherent satellite blind spot for moist layers exists.
Simon Pfreundschuh, Patrick Eriksson, Stefan A. Buehler, Manfred Brath, David Duncan, Richard Larsson, and Robin Ekelund
Atmos. Meas. Tech., 13, 4219–4245, https://doi.org/10.5194/amt-13-4219-2020, https://doi.org/10.5194/amt-13-4219-2020, 2020
Short summary
Short summary
The next generation of European operational weather satellites will carry a novel microwave sensor, the Ice Cloud Imager (ICI), which will provide observations of clouds at microwave frequencies that were not available before. We investigate the potential benefits of combining observations from ICI with that of a radar. We find that such combined observations provide additional information on the properties of the cloud and help to reduce uncertainties in retrieved mass and number densities.
Patrick Eriksson, Robin Ekelund, Jana Mendrok, Manfred Brath, Oliver Lemke, and Stefan A. Buehler
Earth Syst. Sci. Data, 10, 1301–1326, https://doi.org/10.5194/essd-10-1301-2018, https://doi.org/10.5194/essd-10-1301-2018, 2018
Short summary
Short summary
A main application of microwave remote sensing is to observe atmospheric particles consisting of ice. This application requires data on how particles with different shapes and sizes affect the observations. A database of such properties has been developed. The database is the most comprehensive of its type. Main strengths are a good representation of particles of aggregate type and broad frequency coverage.
Verena Grützun, Stefan A. Buehler, Lukas Kluft, Jana Mendrok, Manfred Brath, and Patrick Eriksson
Atmos. Meas. Tech., 11, 4217–4237, https://doi.org/10.5194/amt-11-4217-2018, https://doi.org/10.5194/amt-11-4217-2018, 2018
Short summary
Short summary
The global observation of ice clouds is crucial because they are important factors in the climate system but still are amongst the greatest uncertainties for estimating the Earth's energy budget in a changing climate. However, reliable global long-term measurements are scarce. Using atmospheric model data from the ICON model in combination with the radiative transfer simulator ARTS we explore the potential of passive millimeter and sub-millimeter wavelength measurements to fill that gap.
Manfred Brath, Stuart Fox, Patrick Eriksson, R. Chawn Harlow, Martin Burgdorf, and Stefan A. Buehler
Atmos. Meas. Tech., 11, 611–632, https://doi.org/10.5194/amt-11-611-2018, https://doi.org/10.5194/amt-11-611-2018, 2018
Short summary
Short summary
A method to estimate the amounts of ice, liquid water, and water vapor from aircraft radiation measurements at wavelengths just over and under 1 mm is presented and its performance is estimated. The method uses an ensemble of artificial neural networks. It strongly benefits from the submillimeter frequencies reducing the error for the estimated amount of ice by a factor of 2 compared to a traditional microwave method. The method was applied to measurement of a precipitating frontal system.
William G. Read, Gabriele Stiller, Stefan Lossow, Michael Kiefer, Farahnaz Khosrawi, Dale Hurst, Holger Vömel, Karen Rosenlof, Bianca M. Dinelli, Piera Raspollini, Gerald E. Nedoluha, John C. Gille, Yasuko Kasai, Patrick Eriksson, Christopher E. Sioris, Kaley A. Walker, Katja Weigel, John P. Burrows, and Alexei Rozanov
Atmos. Meas. Tech., 15, 3377–3400, https://doi.org/10.5194/amt-15-3377-2022, https://doi.org/10.5194/amt-15-3377-2022, 2022
Short summary
Short summary
This paper attempts to provide an assessment of the accuracy of 21 satellite-based instruments that remotely measure atmospheric humidity in the upper troposphere of the Earth's atmosphere. The instruments made their measurements from 1984 to the present time; however, most of these instruments began operations after 2000, and only a few are still operational. The objective of this study is to quantify the accuracy of each satellite humidity data set.
Theresa Mieslinger, Bjorn Stevens, Tobias Kölling, Manfred Brath, Martin Wirth, and Stefan A. Buehler
Atmos. Chem. Phys., 22, 6879–6898, https://doi.org/10.5194/acp-22-6879-2022, https://doi.org/10.5194/acp-22-6879-2022, 2022
Short summary
Short summary
The trades are home to a plethora of small cumulus clouds that are often barely visible to the human eye and difficult to detect with active and passive remote sensing methods. With the help of a new method and by means of high-resolution data we can detect small and particularly thin clouds. We find that optically thin clouds are a common phenomenon in the trades, covering a large area and influencing the radiative effect of clouds if they are undetected and contaminate the cloud-free signal.
Ákos Horváth, James L. Carr, Dong L. Wu, Julia Bruckert, Gholam Ali Hoshyaripour, and Stefan A. Buehler
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-253, https://doi.org/10.5194/acp-2022-253, 2022
Preprint under review for ACP
Short summary
Short summary
We estimate plume heights for the April 2021 La Soufriere daytime eruptions using GOES-17 near-limb side views and GOES-16–MODIS stereo views. These geometric heights are then compared with brightness temperature-based radiometric height estimates to characterize the biases of the latter. We also show that the side view method can be applied to infrared imagery and thus night time eruptions, albeit with larger uncertainty.
Simon Pfreundschuh, Ingrid Ingemarsson, Patrick Eriksson, Daniel Alejandro Vila, and Alan James P. Calheiros
EGUsphere, https://doi.org/10.5194/egusphere-2022-78, https://doi.org/10.5194/egusphere-2022-78, 2022
Short summary
Short summary
We use methods from the field of artificial intelligence to train an algorithm to predict rain from satellite observations. In contrast to other methods, our algorithm not only predicts the rain but also the uncertainty of the prediction. Using independent measurements from rain gauges, we show that our method performs better than currently available methods and that the provided uncertainty estimates are reliable. Our method makes satellite-based estimates of rain more accurate and reliable.
Simon Pfreundschuh, Paula J. Brown, Christian D. Kummerow, Patrick Eriksson, and Teodor Norrestad
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-15, https://doi.org/10.5194/amt-2022-15, 2022
Preprint under review for AMT
Short summary
Short summary
The Global Precipitation Measurement is an international satellite mission providing global measurements of rain at high temporal resolution by combining observations from a constellation of satellites. We present two machine learning based implementations of the algorithm turning these observations into precipitation estimates. We show the algorithm can be improved by replacing it with a special neural network and that even larger improvements are achieved by incorporating spatial information.
Simon Pfreundschuh, Stuart Fox, Patrick Eriksson, David Duncan, Stefan A. Buehler, Manfred Brath, Richard Cotton, and Florian Ewald
Atmos. Meas. Tech., 15, 677–699, https://doi.org/10.5194/amt-15-677-2022, https://doi.org/10.5194/amt-15-677-2022, 2022
Short summary
Short summary
We test a novel method to remotely measure ice particles in clouds. This is important because such measurements are required to improve climate and weather models. The method combines a radar with newly developed sensors measuring microwave radiation at very short wavelengths. We use observations made from aircraft flying above the cloud and compare them to real measurements from inside the cloud. This works well given that one can model the ice particles in the cloud sufficiently well.
Alan J. Geer, Peter Bauer, Katrin Lonitz, Vasileios Barlakas, Patrick Eriksson, Jana Mendrok, Amy Doherty, James Hocking, and Philippe Chambon
Geosci. Model Dev., 14, 7497–7526, https://doi.org/10.5194/gmd-14-7497-2021, https://doi.org/10.5194/gmd-14-7497-2021, 2021
Short summary
Short summary
Satellite observations of radiation from the earth can have strong sensitivity to cloud and precipitation in the atmosphere, with applications in weather forecasting and the development of models. Computing the radiation received at the satellite sensor using radiative transfer theory requires a simulation of the optical properties of a volume containing a large number of cloud and precipitation particles. This article describes the physics used to generate these
bulkoptical properties.
Jie Gong, Dong L. Wu, and Patrick Eriksson
Earth Syst. Sci. Data, 13, 5369–5387, https://doi.org/10.5194/essd-13-5369-2021, https://doi.org/10.5194/essd-13-5369-2021, 2021
Short summary
Short summary
Launched from the International Space Station, the IceCube radiometer orbited the Earth for 15 months and collected the first spaceborne radiance measurements at 874–883 GHz. This channel is uniquely important to fill in the sensitivity gap between operational visible–infrared and microwave remote sensing for atmospheric cloud ice and snow. This paper delivers the IceCube Level 1 radiance data processing algorithm and provides a data quality evaluation and discussion on its scientific merit.
Marc Prange, Manfred Brath, and Stefan A. Buehler
Atmos. Meas. Tech., 14, 7025–7044, https://doi.org/10.5194/amt-14-7025-2021, https://doi.org/10.5194/amt-14-7025-2021, 2021
Short summary
Short summary
We investigate the ability of the hyperspectral infrared satellite instrument IASI to resolve moist layers in the tropical free troposphere in a model framework. Previous observational results indicated major deficiencies of passive satellite instruments in resolving moist layers around the freezing level. We conduct a first systematic hyperspectral infrared retrieval analysis of such moist layers and conclude that no inherent satellite blind spot for moist layers exists.
Francesco Grieco, Kristell Pérot, Donal Murtagh, Patrick Eriksson, Bengt Rydberg, Michael Kiefer, Maya Garcia-Comas, Alyn Lambert, and Kaley A. Walker
Atmos. Meas. Tech., 14, 5823–5857, https://doi.org/10.5194/amt-14-5823-2021, https://doi.org/10.5194/amt-14-5823-2021, 2021
Short summary
Short summary
We present improved Odin/SMR mesospheric H2O concentration and temperature data sets, reprocessed assuming a bigger sideband leakage of the instrument. The validation study shows how the improved SMR data sets agree better with other instruments' observations than the old SMR version did. Given their unique time extension and geographical coverage, and H2O being a good tracer of mesospheric circulation, the new data sets are valuable for the study of dynamical processes and multi-year trends.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Ákos Horváth, James L. Carr, Olga A. Girina, Dong L. Wu, Alexey A. Bril, Alexey A. Mazurov, Dmitry V. Melnikov, Gholam Ali Hoshyaripour, and Stefan A. Buehler
Atmos. Chem. Phys., 21, 12189–12206, https://doi.org/10.5194/acp-21-12189-2021, https://doi.org/10.5194/acp-21-12189-2021, 2021
Short summary
Short summary
We give a detailed description of a new technique to estimate the height of volcanic eruption columns from near-limb geostationary imagery. Such oblique angle observations offer spectacular side views of eruption columns protruding from the Earth ellipsoid and thereby facilitate a height-by-angle estimation method. Due to its purely geometric nature, the new technique is unaffected by the limitations of traditional brightness-temperature-based height retrievals.
Ákos Horváth, Olga A. Girina, James L. Carr, Dong L. Wu, Alexey A. Bril, Alexey A. Mazurov, Dmitry V. Melnikov, Gholam Ali Hoshyaripour, and Stefan A. Buehler
Atmos. Chem. Phys., 21, 12207–12226, https://doi.org/10.5194/acp-21-12207-2021, https://doi.org/10.5194/acp-21-12207-2021, 2021
Short summary
Short summary
We demonstrate the side view plume height estimation technique described in Part 1 on seven volcanic eruptions from 2019 and 2020, including the 2019 Raikoke eruption. We explore the strengths and limitations of the new technique in comparison to height estimation from brightness temperatures, stereo observations, and ground-based video footage.
Vasileios Barlakas, Alan J. Geer, and Patrick Eriksson
Atmos. Meas. Tech., 14, 3427–3447, https://doi.org/10.5194/amt-14-3427-2021, https://doi.org/10.5194/amt-14-3427-2021, 2021
Short summary
Short summary
Oriented nonspherical ice particles induce polarization that is ignored when cloud-sensitive satellite observations are used in numerical weather prediction systems. We present a simple approach for approximating particle orientation, requiring minor adaption of software and no additional calculation burden. With this approach, the system realistically simulates the observed polarization patterns, increasing the physical consistency between instruments with different polarizations.
Inderpreet Kaur, Patrick Eriksson, Simon Pfreundschuh, and David Ian Duncan
Atmos. Meas. Tech., 14, 2957–2979, https://doi.org/10.5194/amt-14-2957-2021, https://doi.org/10.5194/amt-14-2957-2021, 2021
Short summary
Short summary
Currently, cloud contamination in microwave humidity channels is addressed using filtering schemes. We present an approach to correct the cloud-affected microwave humidity radiances using a Bayesian machine learning technique. The technique combines orthogonal information from microwave channels to obtain a probabilistic prediction of the clear-sky radiances. With this approach, we are able to predict bias-free clear-sky radiances with well-represented case-specific uncertainty estimates.
Robin Ekelund, Patrick Eriksson, and Michael Kahnert
Atmos. Meas. Tech., 13, 6933–6944, https://doi.org/10.5194/amt-13-6933-2020, https://doi.org/10.5194/amt-13-6933-2020, 2020
Short summary
Short summary
Raindrops become flattened due to aerodynamic drag as they increase in mass and fall speed. This study calculated the electromagnetic interaction between microwave radiation and non-spheroidal raindrops. The calculations are made publicly available to the scientific community, in order to promote accurate representations of raindrops in measurements. Tests show that the drop shape can have a noticeable effect on microwave observations of heavy rainfall.
Francesco Grieco, Kristell Pérot, Donal Murtagh, Patrick Eriksson, Peter Forkman, Bengt Rydberg, Bernd Funke, Kaley A. Walker, and Hugh C. Pumphrey
Atmos. Meas. Tech., 13, 5013–5031, https://doi.org/10.5194/amt-13-5013-2020, https://doi.org/10.5194/amt-13-5013-2020, 2020
Short summary
Short summary
We present a unique – by time extension and geographical coverage – dataset of satellite observations of carbon monoxide (CO) in the mesosphere which will allow us to study dynamical processes, since CO is a very good tracer of circulation in the mesosphere. Previously, the dataset was unusable due to instrumental artefacts that affected the measurements. We identify the cause of the artefacts, eliminate them and prove the quality of the results by comparing with other instrument measurements.
Thomas von Clarmann, Douglas A. Degenstein, Nathaniel J. Livesey, Stefan Bender, Amy Braverman, André Butz, Steven Compernolle, Robert Damadeo, Seth Dueck, Patrick Eriksson, Bernd Funke, Margaret C. Johnson, Yasuko Kasai, Arno Keppens, Anne Kleinert, Natalya A. Kramarova, Alexandra Laeng, Bavo Langerock, Vivienne H. Payne, Alexei Rozanov, Tomohiro O. Sato, Matthias Schneider, Patrick Sheese, Viktoria Sofieva, Gabriele P. Stiller, Christian von Savigny, and Daniel Zawada
Atmos. Meas. Tech., 13, 4393–4436, https://doi.org/10.5194/amt-13-4393-2020, https://doi.org/10.5194/amt-13-4393-2020, 2020
Short summary
Short summary
Remote sensing of atmospheric state variables typically relies on the inverse solution of the radiative transfer equation. An adequately characterized retrieval provides information on the uncertainties of the estimated state variables as well as on how any constraint or a priori assumption affects the estimate. This paper summarizes related techniques and provides recommendations for unified error reporting.
Simon Pfreundschuh, Patrick Eriksson, Stefan A. Buehler, Manfred Brath, David Duncan, Richard Larsson, and Robin Ekelund
Atmos. Meas. Tech., 13, 4219–4245, https://doi.org/10.5194/amt-13-4219-2020, https://doi.org/10.5194/amt-13-4219-2020, 2020
Short summary
Short summary
The next generation of European operational weather satellites will carry a novel microwave sensor, the Ice Cloud Imager (ICI), which will provide observations of clouds at microwave frequencies that were not available before. We investigate the potential benefits of combining observations from ICI with that of a radar. We find that such combined observations provide additional information on the properties of the cloud and help to reduce uncertainties in retrieved mass and number densities.
Robin Ekelund, Patrick Eriksson, and Simon Pfreundschuh
Atmos. Meas. Tech., 13, 501–520, https://doi.org/10.5194/amt-13-501-2020, https://doi.org/10.5194/amt-13-501-2020, 2020
Short summary
Short summary
Atmospheric ice particles (e.g. snow and ice crystals) are an important part of weather, climate, and the hydrological cycle. This study investigates whether combined satellite measurements by radar and radiometers at microwave wavelengths can be used to find the most likely shape of such ice particles. The method was limited when using only currently operating sensors (CloudSat radar and the GPM Microwave Imager) but shows promise if the upcoming Ice Cloud Imager is also considered.
Patrick Eriksson, Bengt Rydberg, Vinia Mattioli, Anke Thoss, Christophe Accadia, Ulf Klein, and Stefan A. Buehler
Atmos. Meas. Tech., 13, 53–71, https://doi.org/10.5194/amt-13-53-2020, https://doi.org/10.5194/amt-13-53-2020, 2020
Short summary
Short summary
The Ice Cloud Imager (ICI) will be the first operational satellite sensor operating at sub-millimetre wavelengths and this novel mission will thus provide important new data to weather forecasting and climate studies. The series of ICI instruments will together cover about 20 years. This article presents the basic technical characteristics of the sensor and outlines the day-one operational retrievals. An updated estimation of the expected retrieval performance is also presented.
David Ian Duncan, Patrick Eriksson, and Simon Pfreundschuh
Atmos. Meas. Tech., 12, 6341–6359, https://doi.org/10.5194/amt-12-6341-2019, https://doi.org/10.5194/amt-12-6341-2019, 2019
Short summary
Short summary
The overlapping beams of some satellite observations contain spatial information that is discarded by most data processing techniques. This study applies an established technique in a new way to improve the spatial resolution of retrieval targets, effectively using the overlapping information to achieve a higher ultimate resolution. It is argued that this is a more optimal use of the total information available from current microwave sensors, using AMSR2 as an example.
Jörg Burdanowitz, Stefan A. Buehler, Stephan Bakan, and Christian Klepp
Atmos. Chem. Phys., 19, 9241–9252, https://doi.org/10.5194/acp-19-9241-2019, https://doi.org/10.5194/acp-19-9241-2019, 2019
Short summary
Short summary
Sensitivity of precipitation to sea surface temperature over the ocean determines how precipitation potentially changes in a warming climate. This relationship has hardly been studied over ocean due to a lack of long-term oceanic data. Our study shows how the precipitation sensitivity depends on resolution, what process limits oceanic precipitation and how the event duration depends on temperature. This provides valuable information for future climate observations, modeling and understanding.
David Ian Duncan, Patrick Eriksson, Simon Pfreundschuh, Christian Klepp, and Daniel C. Jones
Atmos. Chem. Phys., 19, 6969–6984, https://doi.org/10.5194/acp-19-6969-2019, https://doi.org/10.5194/acp-19-6969-2019, 2019
Short summary
Short summary
Raindrop size distributions have not been systematically studied over the oceans but are significant for remotely sensing, assimilating, and modeling rain. Here we investigate raindrop populations with new global in situ data, compare them against satellite estimates, and explore a new technique to classify the shapes of these distributions. The results indicate the inadequacy of a commonly assumed shape in some regions and the sizable impact of shape variability on satellite measurements.
Stefan Lossow, Farahnaz Khosrawi, Michael Kiefer, Kaley A. Walker, Jean-Loup Bertaux, Laurent Blanot, James M. Russell, Ellis E. Remsberg, John C. Gille, Takafumi Sugita, Christopher E. Sioris, Bianca M. Dinelli, Enzo Papandrea, Piera Raspollini, Maya García-Comas, Gabriele P. Stiller, Thomas von Clarmann, Anu Dudhia, William G. Read, Gerald E. Nedoluha, Robert P. Damadeo, Joseph M. Zawodny, Katja Weigel, Alexei Rozanov, Faiza Azam, Klaus Bramstedt, Stefan Noël, John P. Burrows, Hideo Sagawa, Yasuko Kasai, Joachim Urban, Patrick Eriksson, Donal P. Murtagh, Mark E. Hervig, Charlotta Högberg, Dale F. Hurst, and Karen H. Rosenlof
Atmos. Meas. Tech., 12, 2693–2732, https://doi.org/10.5194/amt-12-2693-2019, https://doi.org/10.5194/amt-12-2693-2019, 2019
Stuart Fox, Jana Mendrok, Patrick Eriksson, Robin Ekelund, Sebastian J. O'Shea, Keith N. Bower, Anthony J. Baran, R. Chawn Harlow, and Juliet C. Pickering
Atmos. Meas. Tech., 12, 1599–1617, https://doi.org/10.5194/amt-12-1599-2019, https://doi.org/10.5194/amt-12-1599-2019, 2019
Short summary
Short summary
Airborne observations of ice clouds are used to validate radiative transfer simulations using a state-of-the-art database of cloud ice optical properties. Simulations at these wavelengths are required to make use of future satellite instruments such as the Ice Cloud Imager. We show that they can generally reproduce observed cloud signals, but for a given total ice mass there is considerable sensitivity to the cloud microphysics, including the particle shape and distribution of ice mass.
Charlotta Högberg, Stefan Lossow, Farahnaz Khosrawi, Ralf Bauer, Kaley A. Walker, Patrick Eriksson, Donal P. Murtagh, Gabriele P. Stiller, Jörg Steinwagner, and Qiong Zhang
Atmos. Chem. Phys., 19, 2497–2526, https://doi.org/10.5194/acp-19-2497-2019, https://doi.org/10.5194/acp-19-2497-2019, 2019
Short summary
Short summary
Five δD (H2O) data sets obtained from satellite observations have been evaluated using profile-to-profile and climatological comparisons. The focus is on stratospheric altitudes, but results from the upper troposphere to the lower mesosphere are also provided. There are clear quantitative differences in the δD ratio in key areas of scientific interest, resulting in difficulties drawing robust conclusions on atmospheric processes affecting the water vapour budget and distribution.
Joonas Kiviranta, Kristell Pérot, Patrick Eriksson, and Donal Murtagh
Atmos. Chem. Phys., 18, 13393–13410, https://doi.org/10.5194/acp-18-13393-2018, https://doi.org/10.5194/acp-18-13393-2018, 2018
Short summary
Short summary
This paper investigates how the activity of the Sun affects the amount of nitric oxide (NO) in the upper atmosphere. If NO descends lower down in the atmosphere, it can destroy ozone. We analyze satellite measurements of NO to create a model that can simulate the amount of NO at any given time. This model can indeed simulate NO with reasonable accuracy and it can potentially be used as an input for a larger model of the atmosphere that attempts to explain how the Sun affects our atmosphere.
David Ian Duncan and Patrick Eriksson
Atmos. Chem. Phys., 18, 11205–11219, https://doi.org/10.5194/acp-18-11205-2018, https://doi.org/10.5194/acp-18-11205-2018, 2018
Short summary
Short summary
Ice cloud mass is assessed on a global scale using the latest satellite and reanalysis datasets. While ice cloud variability driven by large-scale circulations is an area of relative consensus, models and observations disagree strongly on the overall magnitude and finer-scale variability of atmospheric ice mass. The results reflect limitations of the current Earth observing system and indicate ice microphysical assumptions as the likely culprit of disagreement.
Simon Pfreundschuh, Patrick Eriksson, David Duncan, Bengt Rydberg, Nina Håkansson, and Anke Thoss
Atmos. Meas. Tech., 11, 4627–4643, https://doi.org/10.5194/amt-11-4627-2018, https://doi.org/10.5194/amt-11-4627-2018, 2018
Short summary
Short summary
A novel neural-network-based retrieval method is proposed that combines the flexibility and computational efficiency of machine learning retrievals with the consistent treatment of uncertainties of Bayesian methods. Numerical experiments are presented that show the consistency of the proposed method with the Bayesian formulation as well as its ability to represent non-Gaussian retrieval errors. With this, the proposed method overcomes important limitations of traditional methods.
Philippe Baron, Donal Murtagh, Patrick Eriksson, Jana Mendrok, Satoshi Ochiai, Kristell Pérot, Hideo Sagawa, and Makoto Suzuki
Atmos. Meas. Tech., 11, 4545–4566, https://doi.org/10.5194/amt-11-4545-2018, https://doi.org/10.5194/amt-11-4545-2018, 2018
Short summary
Short summary
This paper investigates with computer simulations the measurement performances of the satellite Stratospheric Inferred Winds (SIW) in the altitude range 10–90 km. SIW is a Swedish mission that will be launched close to 2022. It is intended to fill the current altitude gap between 30 and 70 km in wind measurements and to pursue the monitoring of temperature and key stratospheric constituents for better understanding climate change effects.
Farahnaz Khosrawi, Stefan Lossow, Gabriele P. Stiller, Karen H. Rosenlof, Joachim Urban, John P. Burrows, Robert P. Damadeo, Patrick Eriksson, Maya García-Comas, John C. Gille, Yasuko Kasai, Michael Kiefer, Gerald E. Nedoluha, Stefan Noël, Piera Raspollini, William G. Read, Alexei Rozanov, Christopher E. Sioris, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 11, 4435–4463, https://doi.org/10.5194/amt-11-4435-2018, https://doi.org/10.5194/amt-11-4435-2018, 2018
Short summary
Short summary
Time series of stratospheric and lower mesospheric water vapour using 33 data sets from 15 satellite instruments were compared in the framework of the second SPARC water vapour assessment. We find that most data sets can be considered in observational and modelling studies addressing, e.g. stratospheric and lower mesospheric water vapour variability and trends if data-set-specific characteristics (e.g. a drift) and restrictions (e.g. temporal and spatial coverage) are taken into account.
Patrick Eriksson, Robin Ekelund, Jana Mendrok, Manfred Brath, Oliver Lemke, and Stefan A. Buehler
Earth Syst. Sci. Data, 10, 1301–1326, https://doi.org/10.5194/essd-10-1301-2018, https://doi.org/10.5194/essd-10-1301-2018, 2018
Short summary
Short summary
A main application of microwave remote sensing is to observe atmospheric particles consisting of ice. This application requires data on how particles with different shapes and sizes affect the observations. A database of such properties has been developed. The database is the most comprehensive of its type. Main strengths are a good representation of particles of aggregate type and broad frequency coverage.
Verena Grützun, Stefan A. Buehler, Lukas Kluft, Jana Mendrok, Manfred Brath, and Patrick Eriksson
Atmos. Meas. Tech., 11, 4217–4237, https://doi.org/10.5194/amt-11-4217-2018, https://doi.org/10.5194/amt-11-4217-2018, 2018
Short summary
Short summary
The global observation of ice clouds is crucial because they are important factors in the climate system but still are amongst the greatest uncertainties for estimating the Earth's energy budget in a changing climate. However, reliable global long-term measurements are scarce. Using atmospheric model data from the ICON model in combination with the radiative transfer simulator ARTS we explore the potential of passive millimeter and sub-millimeter wavelength measurements to fill that gap.
Martin Burgdorf, Imke Hans, Marc Prange, Theresa Lang, and Stefan A. Buehler
Atmos. Meas. Tech., 11, 4005–4014, https://doi.org/10.5194/amt-11-4005-2018, https://doi.org/10.5194/amt-11-4005-2018, 2018
Short summary
Short summary
We analysed observations of the Moon with the Advanced Microwave Sounding Unit-B on the NOAA-16 satellite in order to search for bias in the sounding channels. Significant bias had been detected in the past on the basis of simultaneous nadir overpasses. With the Moon providing a quite different reference flux than the on-board calibration target and Earth scenes, radio-frequency interference emerged as the best explanation for the anomalies of channel 20 of AMSU-B on NOAA-16.
Stefan A. Buehler, Jana Mendrok, Patrick Eriksson, Agnès Perrin, Richard Larsson, and Oliver Lemke
Geosci. Model Dev., 11, 1537–1556, https://doi.org/10.5194/gmd-11-1537-2018, https://doi.org/10.5194/gmd-11-1537-2018, 2018
Short summary
Short summary
The Atmospheric Radiative Transfer Simulator (ARTS) is a public domain
software for simulating how radiation in the microwave to infrared
spectral range travels through an atmosphere. The program can simulate
satellite observations, in cloudy and clear atmospheres, and can also
be used to calculate radiative energy fluxes. The main feature of this
release is a planetary toolbox that allows simulations for the
planets Venus, Mars, and Jupiter, in addition to Earth.
Manfred Brath, Stuart Fox, Patrick Eriksson, R. Chawn Harlow, Martin Burgdorf, and Stefan A. Buehler
Atmos. Meas. Tech., 11, 611–632, https://doi.org/10.5194/amt-11-611-2018, https://doi.org/10.5194/amt-11-611-2018, 2018
Short summary
Short summary
A method to estimate the amounts of ice, liquid water, and water vapor from aircraft radiation measurements at wavelengths just over and under 1 mm is presented and its performance is estimated. The method uses an ensemble of artificial neural networks. It strongly benefits from the submillimeter frequencies reducing the error for the estimated amount of ice by a factor of 2 compared to a traditional microwave method. The method was applied to measurement of a precipitating frontal system.
Imke Hans, Martin Burgdorf, Viju O. John, Jonathan Mittaz, and Stefan A. Buehler
Atmos. Meas. Tech., 10, 4927–4945, https://doi.org/10.5194/amt-10-4927-2017, https://doi.org/10.5194/amt-10-4927-2017, 2017
Short summary
Short summary
In our article we present the evolution of the noise of 11 microwave radiometers used for meteorological remote sensing. We used the Allan deviation to compute an estimate of the noise on the calibration measurements. We provide graphics as an overview to enable the users of the data to decide on the usability of the data for their purposes. Moreover, our analysis enters the production of new FCDRs (Fundamental Climate Data Records) within the FIDUCEO project.
Stefan Lossow, Farahnaz Khosrawi, Gerald E. Nedoluha, Faiza Azam, Klaus Bramstedt, John. P. Burrows, Bianca M. Dinelli, Patrick Eriksson, Patrick J. Espy, Maya García-Comas, John C. Gille, Michael Kiefer, Stefan Noël, Piera Raspollini, William G. Read, Karen H. Rosenlof, Alexei Rozanov, Christopher E. Sioris, Gabriele P. Stiller, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 10, 1111–1137, https://doi.org/10.5194/amt-10-1111-2017, https://doi.org/10.5194/amt-10-1111-2017, 2017
Richard Larsson, Mathias Milz, Patrick Eriksson, Jana Mendrok, Yasuko Kasai, Stefan Alexander Buehler, Catherine Diéval, David Brain, and Paul Hartogh
Geosci. Instrum. Method. Data Syst., 6, 27–37, https://doi.org/10.5194/gi-6-27-2017, https://doi.org/10.5194/gi-6-27-2017, 2017
Short summary
Short summary
By computer simulations, we explore and quantify how to use radiation emitted by molecular oxygen in the Martian atmosphere to measure the magnetic field from the crust of the planet. This crustal magnetic field is important to understand the past evolution of Mars. Our method can measure the magnetic field at lower altitudes than has so far been done, which could give important information on the characteristics of the crustal sources if a mission with the required instrument is launched.
Ole Martin Christensen, Susanne Benze, Patrick Eriksson, Jörg Gumbel, Linda Megner, and Donal P. Murtagh
Atmos. Chem. Phys., 16, 12587–12600, https://doi.org/10.5194/acp-16-12587-2016, https://doi.org/10.5194/acp-16-12587-2016, 2016
Short summary
Short summary
This study investigates the properties of ice clouds forming in the upper summer mesosphere known as polar mesospheric clouds, and their relationship with the background atmosphere combining two different satellite instruments. We find that temperature variations in the atmosphere of the order of some hours reduce the amount of ice in these clouds and see indications of strong vertical transport in these clouds.
Martin Burgdorf, Stefan A. Buehler, Theresa Lang, Simon Michel, and Imke Hans
Atmos. Meas. Tech., 9, 3467–3475, https://doi.org/10.5194/amt-9-3467-2016, https://doi.org/10.5194/amt-9-3467-2016, 2016
Short summary
Short summary
The upper-tropospheric humidity is an essential climate variable, which can be measured with microwave sounders in polar orbits. A stable photometric calibration of these instruments is indispensable for detecting long-term trends. We demonstrate that this can be achieved by using the Moon in a fixed phase as a flux standard for dedicated pitch maneuver observations. This method is particularly suited for future sensors with small beamwidths.
Isaac Moradi, Philip Arkin, Ralph Ferraro, Patrick Eriksson, and Eric Fetzer
Atmos. Chem. Phys., 16, 6913–6929, https://doi.org/10.5194/acp-16-6913-2016, https://doi.org/10.5194/acp-16-6913-2016, 2016
Short summary
Short summary
Measurements from the SAPHIR onboard Megha-Tropiques are used to evaluate the diurnal cycle of tropospheric humidity in the tropical region. The results show a large inhomogeneity in the amplitude and peak time of tropospheric humidity. The diurnal amplitude tends to be larger over convective regions than over subsidence regions. An early morning peak time is observed over most regions but there are substantial regions where the diurnal peak occurs at the other times of day.
Hélène Brogniez, Stephen English, Jean-François Mahfouf, Andreas Behrendt, Wesley Berg, Sid Boukabara, Stefan Alexander Buehler, Philippe Chambon, Antonia Gambacorta, Alan Geer, William Ingram, E. Robert Kursinski, Marco Matricardi, Tatyana A. Odintsova, Vivienne H. Payne, Peter W. Thorne, Mikhail Yu. Tretyakov, and Junhong Wang
Atmos. Meas. Tech., 9, 2207–2221, https://doi.org/10.5194/amt-9-2207-2016, https://doi.org/10.5194/amt-9-2207-2016, 2016
Short summary
Short summary
Because a systematic difference between measurements of water vapor performed by space-borne observing instruments in the microwave spectral domain and their numerical modeling was recently highlighted, this work discusses and gives an overview of the various errors and uncertainties associated with each element in the comparison process. Indeed, the knowledge of absolute errors in any observation of the climate system is key, more specifically because we need to detect small changes.
Richard Larsson, Mathias Milz, Peter Rayer, Roger Saunders, William Bell, Anna Booton, Stefan A. Buehler, Patrick Eriksson, and Viju O. John
Atmos. Meas. Tech., 9, 841–857, https://doi.org/10.5194/amt-9-841-2016, https://doi.org/10.5194/amt-9-841-2016, 2016
Short summary
Short summary
By modeling the Special Sensor Microwave Imager/Sounder's mesospheric measurements, inversions methods can be applied to retreive mesospheric temperatures. We compare the fast forward model used by Met Office with reference simulations and find that there is a reasonable agreement between both models and measurements. Thus we recommend that the fast model is used in data assimilation to improve mesospheric temperature retrievals.
P. Forkman, O. M. Christensen, P. Eriksson, B. Billade, V. Vassilev, and V. M. Shulga
Geosci. Instrum. Method. Data Syst., 5, 27–44, https://doi.org/10.5194/gi-5-27-2016, https://doi.org/10.5194/gi-5-27-2016, 2016
Short summary
Short summary
Microwave radiometry is the only ground-based technique that can provide vertical profiles of gases in the middle atmosphere both day and night, and even during cloudy conditions. Today these measurements are performed at relatively few sites, more simple and reliable instruments are required to make the measurement technique more widely spread. In this study a compact double-sideband frequency-switched radiometer system for simultaneous observations of mesospheric CO and O3 is presented.
O. M. Christensen, P. Eriksson, J. Urban, D. Murtagh, K. Hultgren, and J. Gumbel
Atmos. Meas. Tech., 8, 1981–1999, https://doi.org/10.5194/amt-8-1981-2015, https://doi.org/10.5194/amt-8-1981-2015, 2015
Short summary
Short summary
Polar mesospheric clouds are clouds that form in the summer polar mesopause, 80km above the surface. In this study we present new measurements by the Odin satellite, which are able to determine water vapour, temperature and cloud coverage with a high resolution and a large geographical coverage. Using these data we can see structures in the clouds and background atmosphere that have not been detectable by previous measurements.
P. Eriksson, M. Jamali, J. Mendrok, and S. A. Buehler
Atmos. Meas. Tech., 8, 1913–1933, https://doi.org/10.5194/amt-8-1913-2015, https://doi.org/10.5194/amt-8-1913-2015, 2015
Short summary
Short summary
The optical properties of randomly oriented ice hydrometeors are reviewed from a perspective of microwave mass retrievals. The soft particle approximation is found to be highly problematic, and the alternative approach presented by Geer and Baordo (2014) should instead be used. We present a simplified version of this approach, and point out several critical limitations of existing DDA data.
F. Navas-Guzmán, N. Kämpfer, A. Murk, R. Larsson, S. A. Buehler, and P. Eriksson
Atmos. Meas. Tech., 8, 1863–1874, https://doi.org/10.5194/amt-8-1863-2015, https://doi.org/10.5194/amt-8-1863-2015, 2015
Short summary
Short summary
In this work we study the Zeeman effect on stratospheric O2 using ground-based microwave radiometer measurements. The interaction of the Earth magnetic field with the oxygen dipole leads to a splitting of O2 energy states which polarizes the emission spectra. A special campaign was carried out in order to measure for the first time the polarization state of the radiation due to the Zeeman effect in the main isotopologue of oxygen from ground-based microwave measurements.
V. S. Galligani, C. Prigent, E. Defer, C. Jimenez, P. Eriksson, J.-P. Pinty, and J.-P. Chaboureau
Atmos. Meas. Tech., 8, 1605–1616, https://doi.org/10.5194/amt-8-1605-2015, https://doi.org/10.5194/amt-8-1605-2015, 2015
R. Rüfenacht, A. Murk, N. Kämpfer, P. Eriksson, and S. A. Buehler
Atmos. Meas. Tech., 7, 4491–4505, https://doi.org/10.5194/amt-7-4491-2014, https://doi.org/10.5194/amt-7-4491-2014, 2014
Short summary
Short summary
Only very few techniques for wind measurements in the upper stratosphere and lower mesosphere exist. Moreover, none of these instruments is running on a continuous basis. This paper describes the development of ground-based microwave Doppler radiometry. Time series of daily wind profile measurements from four different locations at polar, mid- and tropical latitudes are presented. The agreement with ECMWF model data is good in the stratosphere, but discrepancies were found in the mesosphere.
P. Eriksson, B. Rydberg, H. Sagawa, M. S. Johnston, and Y. Kasai
Atmos. Chem. Phys., 14, 12613–12629, https://doi.org/10.5194/acp-14-12613-2014, https://doi.org/10.5194/acp-14-12613-2014, 2014
Short summary
Short summary
The sub-millimetre wavelength region has been identified as very useful for measurements of cloud ice mass. The only satellite sensors operating in this wavelength region are so far limb sounders, and results from two such instruments are presented and sample applications are demonstrated. The results have high intrinsic value, but serve also as a practical preparation for planned dedicated sub-millimetre cloud missions.
M. S. Johnston, S. Eliasson, P. Eriksson, R. M. Forbes, A. Gettelman, P. Räisänen, and M. D. Zelinka
Atmos. Chem. Phys., 14, 8701–8721, https://doi.org/10.5194/acp-14-8701-2014, https://doi.org/10.5194/acp-14-8701-2014, 2014
M. S. Johnston, S. Eliasson, P. Eriksson, R. M. Forbes, K. Wyser, and M. D. Zelinka
Atmos. Chem. Phys., 13, 12043–12058, https://doi.org/10.5194/acp-13-12043-2013, https://doi.org/10.5194/acp-13-12043-2013, 2013
O. Stähli, A. Murk, N. Kämpfer, C. Mätzler, and P. Eriksson
Atmos. Meas. Tech., 6, 2477–2494, https://doi.org/10.5194/amt-6-2477-2013, https://doi.org/10.5194/amt-6-2477-2013, 2013
O. M. Christensen and P. Eriksson
Atmos. Meas. Tech., 6, 1597–1609, https://doi.org/10.5194/amt-6-1597-2013, https://doi.org/10.5194/amt-6-1597-2013, 2013
V. O. John, D. E. Parker, S. A. Buehler, J. Price, and R. W. Saunders
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-10547-2013, https://doi.org/10.5194/acpd-13-10547-2013, 2013
Revised manuscript has not been submitted
Related subject area
Subject: Clouds | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Horizontal geometry of trade wind cumuli – aircraft observations from a shortwave infrared imager versus a radar profiler
Evaluating the consistency and continuity of pixel-scale cloud property data records from Aqua and SNPP (Suomi National Polar-orbiting Partnership)
Quality assessment of Second-generation Global Imager (SGLI)-observed cloud properties using SKYNET surface observation data
Impact of the revisit frequency on cloud climatology for CALIPSO, EarthCARE, Aeolus, and ICESat-2 satellite lidar missions
Comparison of scattering ratio profiles retrieved from ALADIN/Aeolus and CALIOP/CALIPSO observations and preliminary estimates of cloud fraction profiles
Evaluation of convective cloud microphysics in numerical weather prediction models with dual-wavelength polarimetric radar observations: methods and examples
Synergistic radar and sub-millimeter radiometer retrievals of ice hydrometeors in mid-latitude frontal cloud systems
The impact of sampling strategy on the cloud droplet number concentration estimated from satellite data
Evaluation of satellite retrievals of liquid clouds from the GOES-13 imager and MODIS over the midlatitude North Atlantic during the NAAMES campaign
Evaluation of Visible Infrared Imaging Radiometer Suite (VIIRS) neural network cloud detection against current operational cloud masks
The effect of low-level thin arctic clouds on shortwave irradiance: evaluation of estimates from spaceborne passive imagery with aircraft observations
Validation of the Sentinel-5 Precursor TROPOMI cloud data with Cloudnet, Aura OMI O2–O2, MODIS, and Suomi-NPP VIIRS
Dissecting effects of orbital drift of polar-orbiting satellites on accuracy and trends of climate data records of cloud fractional cover
Calibration of global MODIS cloud amount using CALIOP cloud profiles
Evaluation of the MODIS Collection 6 multilayer cloud detection algorithm through comparisons with CloudSat Cloud Profiling Radar and CALIPSO CALIOP products
An extended radar relative calibration adjustment (eRCA) technique for higher-frequency radars and range–height indicator (RHI) scans
Comparing lightning observations of the ground-based European lightning location system EUCLID and the space-based Lightning Imaging Sensor (LIS) on the International Space Station (ISS)
Shallow cumuli cover and its uncertainties from ground-based lidar–radar data and sky images
Using passive and active observations at microwave and sub-millimetre wavelengths to constrain ice particle models
Comparison of the cloud top heights retrieved from MODIS and AHI satellite data with ground-based Ka-band radar
Cross-comparison of cloud liquid water path derived from observations by two space-borne and one ground-based instrument in northern Europe
The impact of neglecting ice phase on cloud optical depth retrievals from AERONET cloud mode observations
Diurnal and nocturnal cloud segmentation of all-sky imager (ASI) images using enhancement fully convolutional networks
Can liquid cloud microphysical processes be used for vertically pointing cloud radar calibration?
Calibration of a 35 GHz airborne cloud radar: lessons learned and intercomparisons with 94 GHz cloud radars
Airborne validation of radiative transfer modelling of ice clouds at millimetre and sub-millimetre wavelengths
Assessing the impact of different liquid water permittivity models on the fit between model and observations
Cloud liquid water path in the sub-Arctic region of Europe as derived from ground-based and space-borne remote observations
Correction of CCI cloud data over the Swiss Alps using ground-based radiation measurements
Cloud heterogeneity on cloud and aerosol above cloud properties retrieved from simulated total and polarized reflectances
Orographic and convective gravity waves above the Alps and Andes Mountains during GPS radio occultation events – a case study
Neural network cloud top pressure and height for MODIS
Preliminary verification for application of a support vector machine-based cloud detection method to GOSAT-2 CAI-2
Evaluation of Himawari-8 surface downwelling solar radiation by ground-based measurements
Characterization of AVHRR global cloud detection sensitivity based on CALIPSO-CALIOP cloud optical thickness information: demonstration of results based on the CM SAF CLARA-A2 climate data record
Analysis of lightning outliers in the EUCLID network
Characterisation of the artificial neural network CiPS for cirrus cloud remote sensing with MSG/SEVIRI
Analysis and evaluation of WRF microphysical schemes for deep moist convection over south-eastern South America (SESA) using microwave satellite observations and radiative transfer simulations
Remote sensing of multiple cloud layer heights using multi-angular measurements
Differences in liquid cloud droplet effective radius and number concentration estimates between MODIS collections 5.1 and 6 over global oceans
In-operation field-of-view retrieval (IFR) for satellite and ground-based DOAS-type instruments applying coincident high-resolution imager data
Marine boundary layer cloud property retrievals from high-resolution ASTER observations: case studies and comparison with Terra MODIS
Coupling sky images with radiative transfer models: a new method to estimate cloud optical depth
Comparison of MODIS and VIIRS cloud properties with ARM ground-based observations over Finland
Orbiting Carbon Observatory-2 (OCO-2) cloud screening algorithms: validation against collocated MODIS and CALIOP data
Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: validation
Lidar multiple scattering factors inferred from CALIPSO lidar and IIR retrievals of semi-transparent cirrus cloud optical depths over oceans
Comparing satellite- to ground-based automated and manual cloud coverage observations – a case study
Meso-scale modelling and radiative transfer simulations of a snowfall event over France at microwaves for passive and active modes and evaluation with satellite observations
Remote sensing of cloud top pressure/height from SEVIRI: analysis of ten current retrieval algorithms
Henning Dorff, Heike Konow, and Felix Ament
Atmos. Meas. Tech., 15, 3641–3661, https://doi.org/10.5194/amt-15-3641-2022, https://doi.org/10.5194/amt-15-3641-2022, 2022
Short summary
Short summary
This study elaborates how aircraft-based horizontal geometries of trade wind cumuli differ whether a one-dimensional profiling radar or a two-dimensional imager is used. Cloud size distributions are examined in terms of sensitivity to sample size, resolution, and instrument field of view. While the radar cannot reproduce the double power law distribution due to coarse resolution and restriction to vertical transects, the imager also reveals the elliptic cloud structure enhancing with wind speed.
Qing Yue, Eric J. Fetzer, Likun Wang, Brian H. Kahn, Nadia Smith, John M. Blaisdell, Kerry G. Meyer, Mathias Schreier, Bjorn Lambrigtsen, and Irina Tkatcheva
Atmos. Meas. Tech., 15, 2099–2123, https://doi.org/10.5194/amt-15-2099-2022, https://doi.org/10.5194/amt-15-2099-2022, 2022
Short summary
Short summary
The self-consistency and continuity of cloud retrievals from infrared sounders and imagers aboard Aqua and SNPP (Suomi National Polar-orbiting Partnership) are examined at the pixel scale. Cloud products are found to be consistent with each other. Differences between sounder products are mainly due to cloud clearing and the treatment of clouds in scenes with unsuccessful atmospheric retrievals. The impact of algorithm and instrument differences is clearly seen in the imager cloud retrievals.
Pradeep Khatri, Tadahiro Hayasaka, Hitoshi Irie, Husi Letu, Takashi Y. Nakajima, Hiroshi Ishimoto, and Tamio Takamura
Atmos. Meas. Tech., 15, 1967–1982, https://doi.org/10.5194/amt-15-1967-2022, https://doi.org/10.5194/amt-15-1967-2022, 2022
Short summary
Short summary
Cloud properties observed by the Second-generation Global Imager (SGLI) onboard the Global Change Observation Mission – Climate (GCOM-C) satellite are evaluated using surface observation data. The study finds that SGLI-observed cloud properties are qualitative enough, although water cloud properties are suggested to be more qualitative, and both water and ice cloud properties can reproduce surface irradiance quite satisfactorily. Thus, SGLI cloud products are very useful for different studies.
Andrzej Z. Kotarba
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-80, https://doi.org/10.5194/amt-2022-80, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
Space profiling lidars offer a unique insight into cloud properties in Earth’s atmosphere, and are considered the most reliable source of cloud information. However, lidar-based cloud climatologies suffer from infrequent sampling: every 7 to 91 days, and only along the ground track. This study evaluated how accurate are the cloud data from existing (CALIPSO, ICESat-2, Aeolus) and planned (EarthCARE) space lidars, when compared to a cloud climatology obtained with observations taken every day.
Artem G. Feofilov, Hélène Chepfer, Vincent Noël, Rodrigo Guzman, Cyprien Gindre, Po-Lun Ma, and Marjolaine Chiriaco
Atmos. Meas. Tech., 15, 1055–1074, https://doi.org/10.5194/amt-15-1055-2022, https://doi.org/10.5194/amt-15-1055-2022, 2022
Short summary
Short summary
Space-borne lidars have been providing invaluable information of atmospheric optical properties since 2006, and new lidar missions are on the way to ensure continuous observations. In this work, we compare the clouds estimated from space-borne ALADIN and CALIOP lidar observations. The analysis of collocated data shows that the agreement between the retrieved clouds is good up to 3 km height. Above that, ALADIN detects 40 % less clouds than CALIOP, except for polar stratospheric clouds (PSCs).
Gregor Köcher, Tobias Zinner, Christoph Knote, Eleni Tetoni, Florian Ewald, and Martin Hagen
Atmos. Meas. Tech., 15, 1033–1054, https://doi.org/10.5194/amt-15-1033-2022, https://doi.org/10.5194/amt-15-1033-2022, 2022
Short summary
Short summary
We present a setup for systematic characterization of differences between numerical weather models and radar observations for convective weather situations. Radar observations providing dual-wavelength and polarimetric variables to infer information about hydrometeor shapes and sizes are compared against simulations using microphysics schemes of varying complexity. Differences are found in ice and liquid phase, pointing towards issues of some schemes in reproducing particle size distributions.
Simon Pfreundschuh, Stuart Fox, Patrick Eriksson, David Duncan, Stefan A. Buehler, Manfred Brath, Richard Cotton, and Florian Ewald
Atmos. Meas. Tech., 15, 677–699, https://doi.org/10.5194/amt-15-677-2022, https://doi.org/10.5194/amt-15-677-2022, 2022
Short summary
Short summary
We test a novel method to remotely measure ice particles in clouds. This is important because such measurements are required to improve climate and weather models. The method combines a radar with newly developed sensors measuring microwave radiation at very short wavelengths. We use observations made from aircraft flying above the cloud and compare them to real measurements from inside the cloud. This works well given that one can model the ice particles in the cloud sufficiently well.
Edward Gryspeerdt, Daniel T. McCoy, Ewan Crosbie, Richard H. Moore, Graeme J. Nott, David Painemal, Jennifer Small-Griswold, Armin Sorooshian, and Luke Ziemba
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-371, https://doi.org/10.5194/amt-2021-371, 2021
Revised manuscript accepted for AMT
Short summary
Short summary
The droplet number concentration is a key property of clouds, influencing a variety of cloud processes. It is also used for estimating the cloud response to aerosols. The satellite retrieval depends on a number of assumptions – different sampling strategies are used to select cases where these assumptions are most likely to hold. Here we investigate the impact of these strategies on the agreement with insitu data, the droplet number climatology and on estimates of the indirect radiative forcing.
David Painemal, Douglas Spangenberg, William L. Smith Jr., Patrick Minnis, Brian Cairns, Richard H. Moore, Ewan Crosbie, Claire Robinson, Kenneth L. Thornhill, Edward L. Winstead, and Luke Ziemba
Atmos. Meas. Tech., 14, 6633–6646, https://doi.org/10.5194/amt-14-6633-2021, https://doi.org/10.5194/amt-14-6633-2021, 2021
Short summary
Short summary
Cloud properties derived from satellite sensors are critical for the global monitoring of climate. This study evaluates satellite-based cloud properties over the North Atlantic using airborne data collected during NAAMES. Satellite observations of droplet size and cloud optical depth tend to compare well with NAAMES data. The analysis indicates that the satellite pixel resolution and the specific viewing geometry need to be taken into account in research applications.
Charles H. White, Andrew K. Heidinger, and Steven A. Ackerman
Atmos. Meas. Tech., 14, 3371–3394, https://doi.org/10.5194/amt-14-3371-2021, https://doi.org/10.5194/amt-14-3371-2021, 2021
Short summary
Short summary
Automated detection of clouds in satellite imagery is an important practice that is useful for predicting and understanding both weather and climate. Cloud detection is often difficult at night and over cold surfaces. In this paper, we discuss how a complex statistical model (a neural network) can more accurately detect clouds compared to currently used approaches. Overall, our results suggest that our approach could result in more reliable assessments of global cloud cover.
Hong Chen, Sebastian Schmidt, Michael D. King, Galina Wind, Anthony Bucholtz, Elizabeth A. Reid, Michal Segal-Rozenhaimer, William L. Smith, Patrick C. Taylor, Seiji Kato, and Peter Pilewskie
Atmos. Meas. Tech., 14, 2673–2697, https://doi.org/10.5194/amt-14-2673-2021, https://doi.org/10.5194/amt-14-2673-2021, 2021
Short summary
Short summary
In this paper, we accessed the shortwave irradiance derived from MODIS cloud optical properties by using aircraft measurements. We developed a data aggregation technique to parameterize spectral surface albedo by snow fraction in the Arctic. We found that undetected clouds have the most significant impact on the imagery-derived irradiance. This study suggests that passive imagery cloud detection could be improved through a multi-pixel approach that would make it more dependable in the Arctic.
Steven Compernolle, Athina Argyrouli, Ronny Lutz, Maarten Sneep, Jean-Christopher Lambert, Ann Mari Fjæraa, Daan Hubert, Arno Keppens, Diego Loyola, Ewan O'Connor, Fabian Romahn, Piet Stammes, Tijl Verhoelst, and Ping Wang
Atmos. Meas. Tech., 14, 2451–2476, https://doi.org/10.5194/amt-14-2451-2021, https://doi.org/10.5194/amt-14-2451-2021, 2021
Short summary
Short summary
The high-resolution satellite Sentinel-5p TROPOMI observes several atmospheric gases. To account for cloud interference with the observations, S5P cloud data products (CLOUD OCRA/ROCINN_CAL, OCRA/ROCINN_CRB, and FRESCO) provide vital input: cloud fraction, cloud height, and cloud optical thickness. Here, S5P cloud parameters are validated by comparing with other satellite sensors (VIIRS, MODIS, and OMI) and with ground-based CloudNet data. The agreement depends on product type and cloud height.
Jędrzej S. Bojanowski and Jan P. Musiał
Atmos. Meas. Tech., 13, 6771–6788, https://doi.org/10.5194/amt-13-6771-2020, https://doi.org/10.5194/amt-13-6771-2020, 2020
Short summary
Short summary
Satellites such as NOAA's Advanced Very High Resolution Radiometer can uniquely observe changes in cloud cover but are affected by orbital drift that results in shifted image acquisition times, which in turn lead to spurious trends in cloud cover detected during climatological analyses. Providing a detailed quantification of these trends, we show that climate data records must be analysed with caution, as for some periods and regions they do not comply with the requirements for climate data.
Andrzej Z. Kotarba
Atmos. Meas. Tech., 13, 4995–5012, https://doi.org/10.5194/amt-13-4995-2020, https://doi.org/10.5194/amt-13-4995-2020, 2020
Short summary
Short summary
This paper evaluates the operational approach for producing global (Level 3) cloud amount based on MODIS cloud masks (Level 2). Using CALIPSO we calculate the actual cloud fractions for each cloud mask category, which are 21.5 %, 27.7 %, 66.6 %, and 94.7 % instead of assumed 0 %, 0 %, 100 %, and 100 %. Consequently we find the operational procedure unreliable, especially on a regional/local scale. A method of how to correct and calibrate MODIS global data using CALIPSO detections is suggested.
Benjamin Marchant, Steven Platnick, Kerry Meyer, and Galina Wind
Atmos. Meas. Tech., 13, 3263–3275, https://doi.org/10.5194/amt-13-3263-2020, https://doi.org/10.5194/amt-13-3263-2020, 2020
Short summary
Short summary
Multilayer cloud scenes (such as an ice cloud overlapping a liquid cloud) are common in the Earth's atmosphere and are quite difficult to detect from space. The detection of multilayer clouds is important to better understand how they interact with the light and their impact on the climate. So, for the instrument MODIS an algorithm has been developed to detect those clouds, and this paper presents an evaluation of this algorithm by comparing it with
other instruments.
Alexis Hunzinger, Joseph C. Hardin, Nitin Bharadwaj, Adam Varble, and Alyssa Matthews
Atmos. Meas. Tech., 13, 3147–3166, https://doi.org/10.5194/amt-13-3147-2020, https://doi.org/10.5194/amt-13-3147-2020, 2020
Short summary
Short summary
The calibration of weather radars is one of the most dominant sources of errors hindering their use. This work takes a technique for tracking the changes in radar calibration using the radar clutter from the ground and extends it to higher-frequency research radars. It demonstrates that after modifications the technique is successful but that special care needs to be taken in its application at high frequencies. The technique is verified using data from multiple DOE ARM field campaigns.
Dieter R. Poelman and Wolfgang Schulz
Atmos. Meas. Tech., 13, 2965–2977, https://doi.org/10.5194/amt-13-2965-2020, https://doi.org/10.5194/amt-13-2965-2020, 2020
Short summary
Short summary
The objective of this work is to quantify the similarities and contrasts between the lightning observations from the Lightning Imaging Sensor (LIS) on the International Space Station (ISS) and the ground-based European Cooperation for Lightning Detection (EUCLID) network. This work is timely, given that the Meteosat Third Generation (MTG), which has a lightning imager (LI) on board, is going to be launched in 2 years.
Erin A. Riley, Jessica M. Kleiss, Laura D. Riihimaki, Charles N. Long, Larry K. Berg, and Evgueni Kassianov
Atmos. Meas. Tech., 13, 2099–2117, https://doi.org/10.5194/amt-13-2099-2020, https://doi.org/10.5194/amt-13-2099-2020, 2020
Short summary
Short summary
Discrepancies in hourly shallow cumuli cover estimates can be substantial. Instrument detection differences contribute to long-term bias in shallow cumuli cover estimates, whereas narrow field-of-view configurations impact measurement uncertainty as averaging time decreases. A new tool is introduced to visually assess both impacts on sub-hourly cloud cover estimates. Accurate shallow cumuli cover estimation is needed for model–observation comparisons and studying cloud-surface interactions.
Robin Ekelund, Patrick Eriksson, and Simon Pfreundschuh
Atmos. Meas. Tech., 13, 501–520, https://doi.org/10.5194/amt-13-501-2020, https://doi.org/10.5194/amt-13-501-2020, 2020
Short summary
Short summary
Atmospheric ice particles (e.g. snow and ice crystals) are an important part of weather, climate, and the hydrological cycle. This study investigates whether combined satellite measurements by radar and radiometers at microwave wavelengths can be used to find the most likely shape of such ice particles. The method was limited when using only currently operating sensors (CloudSat radar and the GPM Microwave Imager) but shows promise if the upcoming Ice Cloud Imager is also considered.
Juan Huo, Daren Lu, Shu Duan, Yongheng Bi, and Bo Liu
Atmos. Meas. Tech., 13, 1–11, https://doi.org/10.5194/amt-13-1-2020, https://doi.org/10.5194/amt-13-1-2020, 2020
Short summary
Short summary
Cloud top height (CTH) is one of the important cloud parameters providing information about the vertical structure of cloud water content. To better understand the accuracy of CTH derived from passive satellite data, 2 years of ground-based Ka-band radar measurements are compared with CTH inferred from Terra/Aqua MODIS and Himawari AHI. It is found that MODIS and AHI underestimate CTH relative to radar by −1.10 km. Both MODIS and AHI CTH retrieval accuracy depend strongly on cloud depth.
Vladimir S. Kostsov, Anke Kniffka, Martin Stengel, and Dmitry V. Ionov
Atmos. Meas. Tech., 12, 5927–5946, https://doi.org/10.5194/amt-12-5927-2019, https://doi.org/10.5194/amt-12-5927-2019, 2019
Short summary
Short summary
Cloud liquid water path (LWP) is one of the target atmospheric parameters retrieved remotely from ground-based and space-borne platforms. The LWP data delivered by the satellite instruments SEVIRI and AVHRR together with the data provided by the ground-based radiometer RPG-HATPRO near St. Petersburg, Russia, have been compared. Our study revealed considerable differences between LWP data from SEVIRI and AVHRR in winter over ice-covered relatively small water bodies in this region.
Jonathan K. P. Shonk, Jui-Yuan Christine Chiu, Alexander Marshak, David M. Giles, Chiung-Huei Huang, Gerald G. Mace, Sally Benson, Ilya Slutsker, and Brent N. Holben
Atmos. Meas. Tech., 12, 5087–5099, https://doi.org/10.5194/amt-12-5087-2019, https://doi.org/10.5194/amt-12-5087-2019, 2019
Short summary
Short summary
Retrievals of cloud optical depth made using AERONET radiometers in “cloud mode” rely on the assumption that all cloud is liquid. The presence of ice cloud therefore introduces errors in the retrieved optical depth, which can be over 25 in optically thick ice clouds. However, such clouds are not frequent and the long-term mean optical depth error is about 3 for a sample of real clouds. A correction equation could improve the retrieval further, although this would require extra instrumentation.
Chaojun Shi, Yatong Zhou, Bo Qiu, Jingfei He, Mu Ding, and Shiya Wei
Atmos. Meas. Tech., 12, 4713–4724, https://doi.org/10.5194/amt-12-4713-2019, https://doi.org/10.5194/amt-12-4713-2019, 2019
Short summary
Short summary
Cloud segmentation plays a very important role in astronomical observatory site selection. At present, few researchers segment cloud in nocturnal all-sky imager (ASI) images. We propose a new automatic cloud segmentation algorithm to segment cloud pixels from diurnal and nocturnal ASI images called an enhancement fully convolutional network (EFCN). Experiments showed that the proposed EFCN was much more accurate in cloud segmentation for diurnal and nocturnal ASI images.
Maximilian Maahn, Fabian Hoffmann, Matthew D. Shupe, Gijs de Boer, Sergey Y. Matrosov, and Edward P. Luke
Atmos. Meas. Tech., 12, 3151–3171, https://doi.org/10.5194/amt-12-3151-2019, https://doi.org/10.5194/amt-12-3151-2019, 2019
Short summary
Short summary
Cloud radars are unique instruments for observing cloud processes, but uncertainties in radar calibration have frequently limited data quality. Here, we present three novel methods for calibrating vertically pointing cloud radars. These calibration methods are based on microphysical processes of liquid clouds, such as the transition of cloud droplets to drizzle drops. We successfully apply the methods to cloud radar data from the North Slope of Alaska (NSA) and Oliktok Point (OLI) ARM sites.
Florian Ewald, Silke Groß, Martin Hagen, Lutz Hirsch, Julien Delanoë, and Matthias Bauer-Pfundstein
Atmos. Meas. Tech., 12, 1815–1839, https://doi.org/10.5194/amt-12-1815-2019, https://doi.org/10.5194/amt-12-1815-2019, 2019
Short summary
Short summary
This study gives a summary of lessons learned during the absolute calibration of the airborne, high-power Ka-band cloud radar HAMP MIRA on board the German research aircraft HALO. The first part covers the internal calibration of the instrument where individual instrument components are characterized in the laboratory. In the second part, the internal calibration is validated with external reference sources like the ocean surface backscatter and different air- and spaceborne cloud radars.
Stuart Fox, Jana Mendrok, Patrick Eriksson, Robin Ekelund, Sebastian J. O'Shea, Keith N. Bower, Anthony J. Baran, R. Chawn Harlow, and Juliet C. Pickering
Atmos. Meas. Tech., 12, 1599–1617, https://doi.org/10.5194/amt-12-1599-2019, https://doi.org/10.5194/amt-12-1599-2019, 2019
Short summary
Short summary
Airborne observations of ice clouds are used to validate radiative transfer simulations using a state-of-the-art database of cloud ice optical properties. Simulations at these wavelengths are required to make use of future satellite instruments such as the Ice Cloud Imager. We show that they can generally reproduce observed cloud signals, but for a given total ice mass there is considerable sensitivity to the cloud microphysics, including the particle shape and distribution of ice mass.
Katrin Lonitz and Alan J. Geer
Atmos. Meas. Tech., 12, 405–429, https://doi.org/10.5194/amt-12-405-2019, https://doi.org/10.5194/amt-12-405-2019, 2019
Short summary
Short summary
Permittivity models for microwave frequencies of liquid water below 0°C are poorly constrained due to limited laboratory experiments and observations, especially for high microwave frequencies. This uncertainty translates directly into errors in retrieved liquid water paths of up to 80 %. This study investigates the effect of different liquid water permittivity models including models based on the most recent observations.
Vladimir S. Kostsov, Anke Kniffka, and Dmitry V. Ionov
Atmos. Meas. Tech., 11, 5439–5460, https://doi.org/10.5194/amt-11-5439-2018, https://doi.org/10.5194/amt-11-5439-2018, 2018
Short summary
Short summary
Clouds are a very important component of the climate system and of the hydrological cycle in the Arctic and sub-Arctic. A joint analysis of the cloud parameters obtained remotely from satellite and ground-based observations near St Petersburg, Russia, has been made. Our study has revealed considerable differences between the cloud properties over land and over water areas in the region under investigation.
Fanny Jeanneret, Giovanni Martucci, Simon Pinnock, and Alexis Berne
Atmos. Meas. Tech., 11, 4153–4170, https://doi.org/10.5194/amt-11-4153-2018, https://doi.org/10.5194/amt-11-4153-2018, 2018
Short summary
Short summary
Above mountainous regions, satellites may have difficulty in discriminating snow from clouds: this study proposes a new method that combines different ground-based measurements to assess the sky cloudiness with high temporal resolution. The method's output is used as input to a model capable of identifying false satellite cloud detections. Results show that 62 ± 13 % of these false detections can be identified by the model when applied to the AVHRR-PM and MODIS Aqua data sets of the Cloud_cci.
Céline Cornet, Laurent C.-Labonnote, Fabien Waquet, Frédéric Szczap, Lucia Deaconu, Frédéric Parol, Claudine Vanbauce, François Thieuleux, and Jérôme Riédi
Atmos. Meas. Tech., 11, 3627–3643, https://doi.org/10.5194/amt-11-3627-2018, https://doi.org/10.5194/amt-11-3627-2018, 2018
Short summary
Short summary
Simulations of total and polarized cloud reflectance angular signatures such as the ones measured by the multi-angular and polarized radiometer POLDER3/PARASOL are used to evaluate cloud heterogeneity effects on cloud parameter retrievals. Effects on optical thickness, albedo of the cloudy scenes, effective radius and variance of the cloud droplet size distribution, cloud top pressure and aerosol above cloud are analyzed.
Rodrigo Hierro, Andrea K. Steiner, Alejandro de la Torre, Peter Alexander, Pablo Llamedo, and Pablo Cremades
Atmos. Meas. Tech., 11, 3523–3539, https://doi.org/10.5194/amt-11-3523-2018, https://doi.org/10.5194/amt-11-3523-2018, 2018
Short summary
Short summary
This paper analyzed the collocated GPS radio occultation profiles near the convective systems identified from ISCCP over two orographic regions of the Alps and Andes. Gravity wave (GW) analysis over both selected regions was also carried out. The gravity wave signature from the two case studies were investigated using mesoscale WRF simulations, ERA-Interim reanalysis data, and measured RO temperature profiles. The absence of fronts or jets during both case studies reveals similar relevant GWs.
Nina Håkansson, Claudia Adok, Anke Thoss, Ronald Scheirer, and Sara Hörnquist
Atmos. Meas. Tech., 11, 3177–3196, https://doi.org/10.5194/amt-11-3177-2018, https://doi.org/10.5194/amt-11-3177-2018, 2018
Short summary
Short summary
In this paper a new algorithm for cloud top height retrieval from imager instruments like MODIS is presented. It uses artificial neural networks and reduces the mean absolute error by 32 % compared to two other operational cloud height algorithms. This means that improved cloud height retrieval for nowcasting, as input to models and in cloud climatologies is possible.
Yu Oishi, Haruma Ishida, Takashi Y. Nakajima, Ryosuke Nakamura, and Tsuneo Matsunaga
Atmos. Meas. Tech., 11, 2863–2878, https://doi.org/10.5194/amt-11-2863-2018, https://doi.org/10.5194/amt-11-2863-2018, 2018
Short summary
Short summary
Preparations are continuing for the launch of the Greenhouse Gases Observing Satellite 2 (GOSAT-2) in the fiscal year 2018. To improve the accuracy of the estimates of greenhouse gases concentrations, we need to refine the existing cloud discrimination algorithm. In this paper we showed a new cloud discrimination algorithm of pre-launch version for GOSAT-2, and compared the existing algorithm with the new algorithm.
Alessandro Damiani, Hitoshi Irie, Takashi Horio, Tamio Takamura, Pradeep Khatri, Hideaki Takenaka, Takashi Nagao, Takashi Y. Nakajima, and Raul R. Cordero
Atmos. Meas. Tech., 11, 2501–2521, https://doi.org/10.5194/amt-11-2501-2018, https://doi.org/10.5194/amt-11-2501-2018, 2018
Short summary
Short summary
The Tohoku Earthquake of March 2011 stressed the need for energy source diversity, and the governmental policy in Japan has been stimulating a broader use of
renewable energy. Solar power is potentially able to mitigate climate change triggered by greenhouse gas emissions, but its instability caused by cloudiness
is a critical issue for suppliers. To develop an appropriate control system, surface solar radiation data must be made available as accurately as possible.
Karl-Göran Karlsson and Nina Håkansson
Atmos. Meas. Tech., 11, 633–649, https://doi.org/10.5194/amt-11-633-2018, https://doi.org/10.5194/amt-11-633-2018, 2018
Short summary
Short summary
Data from the high-sensitivity CALIOP cloud lidar onboard the CALIPSO satellite have been used to evaluate cloud amounts estimated from satellite imagery and, specifically, from the climate data record CLARA-A2. The main purpose has been to study the limit of how thin clouds that can be detected efficiently (i.e., detected at the 50 % level) in CLARA-A2 data and how this limit varies globally. The study revealed very large geographical differences in the cloud detection efficiency.
Dieter R. Poelman, Wolfgang Schulz, Rudolf Kaltenboeck, and Laurent Delobbe
Atmos. Meas. Tech., 10, 4561–4572, https://doi.org/10.5194/amt-10-4561-2017, https://doi.org/10.5194/amt-10-4561-2017, 2017
Short summary
Short summary
Lightning data as observed by the European Cooperation for Lightning Detection network EUCLID are used in combination with radar data to retrieve the temporal and spatial behavior of lightning outliers, i.e. discharges located in a wrong place, over a 5-year period from 2011 to 2016 in Belgium and Austria.
Johan Strandgren, Jennifer Fricker, and Luca Bugliaro
Atmos. Meas. Tech., 10, 4317–4339, https://doi.org/10.5194/amt-10-4317-2017, https://doi.org/10.5194/amt-10-4317-2017, 2017
Short summary
Short summary
We characterise the the performance of a set of artificial neural networks used for the remote sensing of cirrus clouds from the geostationary Meteosat Second Generation satellites. The retrievals show little interference with the underlying land surface type as well as with possible liquid water clouds or aerosol layers below the cirrus cloud. We also characterise the retrievals as a funtion of optical thickness and top height and gain better understanding of the retrival uncertainties of CiPS
Victoria Sol Galligani, Die Wang, Milagros Alvarez Imaz, Paola Salio, and Catherine Prigent
Atmos. Meas. Tech., 10, 3627–3649, https://doi.org/10.5194/amt-10-3627-2017, https://doi.org/10.5194/amt-10-3627-2017, 2017
Short summary
Short summary
Three meteorological events with deep convection and severe weather, characteristic of the SESA region, are considered. High-resolution models, a powerful tool to study convection, can be operated with different microphysics schemes (predict the development of hydrometeors, their interactions, growth, precipitation). We present a systematic evaluation of the microphysical schemes available in the WRF model by a direct comparison between satellite-based simulated and observed microwave radiances.
Kenneth Sinclair, Bastiaan van Diedenhoven, Brian Cairns, John Yorks, Andrzej Wasilewski, and Matthew McGill
Atmos. Meas. Tech., 10, 2361–2375, https://doi.org/10.5194/amt-10-2361-2017, https://doi.org/10.5194/amt-10-2361-2017, 2017
Short summary
Short summary
We present a multi-angular contrast approach to retrieve cloud top height (CTH) using photogrammetry. We demonstrate the method’s ability to retrieve heights of multiple cloud layers within single footprints, using the multiple views available for each footprint. This paper provides an in-depth description and performance analysis of the CTH retrieval technique and the retrieved cloud heights are evaluated using collocated data from the Cloud Physics Lidar.
John Rausch, Kerry Meyer, Ralf Bennartz, and Steven Platnick
Atmos. Meas. Tech., 10, 2105–2116, https://doi.org/10.5194/amt-10-2105-2017, https://doi.org/10.5194/amt-10-2105-2017, 2017
Short summary
Short summary
This paper documents the observed differences in the aggregated (Level-3) cloud droplet effective radius and droplet number concentration estimates inferred from the Aqua–MODIS cloud product collections 5.1 and 6 for warm oceanic cloud scenes over the year 2008. We note significant differences in effective radius and droplet concentration between the two products and discuss the algorithmic and calibration changes which may contribute to observed results.
Holger Sihler, Peter Lübcke, Rüdiger Lang, Steffen Beirle, Martin de Graaf, Christoph Hörmann, Johannes Lampel, Marloes Penning de Vries, Julia Remmers, Ed Trollope, Yang Wang, and Thomas Wagner
Atmos. Meas. Tech., 10, 881–903, https://doi.org/10.5194/amt-10-881-2017, https://doi.org/10.5194/amt-10-881-2017, 2017
Short summary
Short summary
This paper presents the independent and simple IFR method to retrieve the FOV of an instrument, i.e. the two-dimensional sensitivity distribution. IFR relies on correlated measurements featuring a higher spatial resolution and was applied to two satellite instruments, GOME-2 and OMI, and a DOAS instrument integrated in an SO2 camera. Our results confirm the commonly applied FOV distributions. IFR is applicable for verification exercises as well as degradation monitoring in the field.
Frank Werner, Galina Wind, Zhibo Zhang, Steven Platnick, Larry Di Girolamo, Guangyu Zhao, Nandana Amarasinghe, and Kerry Meyer
Atmos. Meas. Tech., 9, 5869–5894, https://doi.org/10.5194/amt-9-5869-2016, https://doi.org/10.5194/amt-9-5869-2016, 2016
Short summary
Short summary
A research–level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. This yields reliable estimates of important cloud variables at a horizontal resolution of 30 m. Comparisons of the ASTER retrieval results with the operational cloud products from the Moderate Resolution Imaging Spectroradiometer (MODIS) show a high agreement for 48 example cloud fields.
Felipe A. Mejia, Ben Kurtz, Keenan Murray, Laura M. Hinkelman, Manajit Sengupta, Yu Xie, and Jan Kleissl
Atmos. Meas. Tech., 9, 4151–4165, https://doi.org/10.5194/amt-9-4151-2016, https://doi.org/10.5194/amt-9-4151-2016, 2016
Short summary
Short summary
A method for retrieving cloud optical depth using a sky imager is presented. The method is applied to images taken at the Atmospheric Radiation Measurement site and validated against measurements from a microwave radiometer (MWR), output from the Min method for overcast skies, and τc retrieved by Beer's law from direct normal irradiance (DNI) measurements.
Moa K. Sporre, Ewan J. O'Connor, Nina Håkansson, Anke Thoss, Erik Swietlicki, and Tuukka Petäjä
Atmos. Meas. Tech., 9, 3193–3203, https://doi.org/10.5194/amt-9-3193-2016, https://doi.org/10.5194/amt-9-3193-2016, 2016
Short summary
Short summary
Satellite measurements of cloud top height and liquid water path are compared to ground-based remote sensing to evaluate the satellite retrievals. The overall performance of the satellite retrievals of cloud top height are good, but they become more problematic when several layers of clouds are present. The liquid water path retrievals also agree well, and the average differences are within the estimated measurement uncertainties.
Thomas E. Taylor, Christopher W. O'Dell, Christian Frankenberg, Philip T. Partain, Heather Q. Cronk, Andrey Savtchenko, Robert R. Nelson, Emily J. Rosenthal, Albert Y. Chang, Brenden Fisher, Gregory B. Osterman, Randy H. Pollock, David Crisp, Annmarie Eldering, and Michael R. Gunson
Atmos. Meas. Tech., 9, 973–989, https://doi.org/10.5194/amt-9-973-2016, https://doi.org/10.5194/amt-9-973-2016, 2016
Short summary
Short summary
NASA's Orbiting Carbon Observatory-2 (OCO-2) is providing approximately 1 million soundings per day of the total column of carbon dioxide (XCO2). The retrieval of XCO2 can only be performed for soundings sufficiently free of cloud and aerosol. This work highlights comparisons of OCO-2 cloud screening algorithms to the MODIS cloud mask product. We find agreement approximately 85 % of the time with some significant spatial and small seasonal dependencies.
W. Su, J. Corbett, Z. Eitzen, and L. Liang
Atmos. Meas. Tech., 8, 3297–3313, https://doi.org/10.5194/amt-8-3297-2015, https://doi.org/10.5194/amt-8-3297-2015, 2015
A. Garnier, J. Pelon, M. A. Vaughan, D. M. Winker, C. R. Trepte, and P. Dubuisson
Atmos. Meas. Tech., 8, 2759–2774, https://doi.org/10.5194/amt-8-2759-2015, https://doi.org/10.5194/amt-8-2759-2015, 2015
Short summary
Short summary
Cloud absorption optical depths retrieved at 12.05 microns are compared to extinction optical depths retrieved at 0.532 microns from perfectly co-located observations of single-layered semi-transparent cirrus over oceans made by the space-borne CALIPSO IIR infrared radiometer and CALIOP lidar. A new relationship describing the temperature-dependent effect of multiple scattering in the CALIOP retrievals is derived and discussed.
A. Werkmeister, M. Lockhoff, M. Schrempf, K. Tohsing, B. Liley, and G. Seckmeyer
Atmos. Meas. Tech., 8, 2001–2015, https://doi.org/10.5194/amt-8-2001-2015, https://doi.org/10.5194/amt-8-2001-2015, 2015
V. S. Galligani, C. Prigent, E. Defer, C. Jimenez, P. Eriksson, J.-P. Pinty, and J.-P. Chaboureau
Atmos. Meas. Tech., 8, 1605–1616, https://doi.org/10.5194/amt-8-1605-2015, https://doi.org/10.5194/amt-8-1605-2015, 2015
U. Hamann, A. Walther, B. Baum, R. Bennartz, L. Bugliaro, M. Derrien, P. N. Francis, A. Heidinger, S. Joro, A. Kniffka, H. Le Gléau, M. Lockhoff, H.-J. Lutz, J. F. Meirink, P. Minnis, R. Palikonda, R. Roebeling, A. Thoss, S. Platnick, P. Watts, and G. Wind
Atmos. Meas. Tech., 7, 2839–2867, https://doi.org/10.5194/amt-7-2839-2014, https://doi.org/10.5194/amt-7-2839-2014, 2014
Cited articles
Adams, I. S. and Bettenhausen, M. H.: The Scattering Properties of Horizontally
Aligned Snow Crystals and Crystal Approximations at Millimeter Wavelengths,
Radio Sci., 47, RS5007, https://doi.org/10.1029/2012RS005015, 2012. a, b, c, d
Bergadá, M., Labriola, M., González, R., Palacios, M. A., Marote,
D., Andrés, A., García, J. L., Pascuala, D. S.,
Ordóñez, L., Rodríguez, M., Ortín, M. T., Esteso, V.,
Martínez, J., and Klein, U.: The Ice Cloud Imager (ICI)
Preliminary Design and Performance, in: 2016 14th
Specialist Meeting on Microwave Radiometry and Remote Sensing of
the Environment (MicroRad), 27–31, 2016. a
Brath, M., Ekelund, R., Eriksson, P., Lemke, O., and Buehler, S. A.: ARTS Microwave Single Scattering Properties Database (Oriented Particles) (Version 1.0.1) [Data set], Zenodo, https://doi.org/10.5281/zenodo.3727673, 2019a. a
Brath, M., Ekelund, R., Eriksson, P., Lemke, O., and Buehler, S. A.: Supplement to “Microwave and submillimeter wave scattering of oriented ice particles” [Data set], Zenodo, https://doi.org/10.5281/zenodo.3475898, 2019b. a
Buehler, S. A., Jiménez, C., Evans, K. F., Eriksson, P., Rydberg, B.,
Heymsfield, A. J., Stubenrauch, C. J., Lohmann, U., Emde, C., John, V. O.,
Sreerekha, T. R., and Davis, C. P.: A Concept for a Satellite Mission to Measure Cloud Ice Water
Path, Ice Particle Size, and Cloud Altitude, Q. J. Roy.
Meteor. Soc., 133, 109–128, 2007. a, b
Buehler, S. A., Defer, E., Evans, F., Eliasson, S., Mendrok, J., Eriksson, P., Lee, C., Jiménez, C., Prigent, C., Crewell, S., Kasai, Y., Bennartz, R., and Gasiewski, A. J.: Observing ice clouds in the submillimeter spectral range: the CloudIce mission proposal for ESA's Earth Explorer 8, Atmos. Meas. Tech., 5, 1529–1549, https://doi.org/10.5194/amt-5-1529-2012, 2012. a
Buehler, S. A., Mendrok, J., Eriksson, P., Perrin, A., Larsson, R., and Lemke, O.: ARTS, the Atmospheric Radiative Transfer Simulator – version 2.2, the planetary toolbox edition, Geosci. Model Dev., 11, 1537–1556, https://doi.org/10.5194/gmd-11-1537-2018, 2018. a, b
Côté, J., Gravel, S., Méthot, A., Patoine, A., Roch, M., and
Staniforth, A.: The Operational CMC-MRB Global Environmental
Multiscale (GEM) Model. Part I: Design Considerations and
Formulation, Mon. Weather Rev., 126, 1373–1395, 1998. a
Defer, E., Galligani, V. S., Prigent, C., and Jimenez, C.: First Observations
of Polarized Scattering Over Ice Clouds at Close-to-millimeter Wavelengths
(157 GHz) with MADRAS on Board the Megha-Tropiques Mission, J. Geophys. Res.-Atmos., 119, 12301–12316, https://doi.org/10.1002/2014JD022353, 2014. a, b, c, d, e, f, g, h, i, j, k, l
Ding, J., Bi, L., Yang, P., Kattawar, G. W., Weng, F., Liu, Q., and Greenwald,
T.: Single-scattering Properties of Ice Particles in the Microwave Regime:
Temperature Effect on the Ice Refractive Index with Implications in Remote
Sensing, J. Quant. Spectrosc. Ra., 190,
26–37, 2017. a
Draine, B. T. and Flatau, P. J.: Discrete-dipole Approximation for Scattering
Calculations, J. Opt. Soc. Am. A, 11, 1491–1499, 1994. a
Emde, C.: A Polarized Discrete Ordinate Scattering Model for Simulations of
Limb and Nadir Long-wave Measurements in 1-D/3-D Spherical Atmospheres,
J. Geophys. Res., 109, D24207, https://doi.org/10.1029/2004JD005140, 2004. a
Eriksson, P., Ekelund, R., Mendrok, J., Brath, M., Lemke, O., and Buehler, S. A.: A general database of hydrometeor single scattering properties at microwave and sub-millimetre wavelengths, Earth Syst. Sci. Data, 10, 1301–1326, https://doi.org/10.5194/essd-10-1301-2018, 2018. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u
Eriksson, P., Rydberg, B., Mattioli, V., Thoss, A., Accadia, C., Klein, U., and Buehler, S. A.: Towards an operational Ice Cloud Imager (ICI) retrieval product, Atmos. Meas. Tech., 13, 53–71, https://doi.org/10.5194/amt-13-53-2020, 2020. a
Heymsfield, A. J., Bansemer, A., Field, P. R., Durden, S. L., Stith, J. L.,
Dye, J. E., Hall, W., and Grainger, C. A.: Observations and Parameterizations
of Particle Size Distributions in Deep Tropical Cirrus and Stratiform
Precipitating Clouds: Results from in Situ Observations in Trmm Field
Campaigns, J. Atmos. Sci., 59, 3457–3491, 2002. a
Hong, G., Yang, P., Baum, B. A., Heymsfield, A. J., Weng, F., Liu, Q.,
Heygster, G., and Buehler, S. A.: Scattering Database in the Millimeter and
Submillimeter Wave Range of 100–1000 GHz for Nonspherical Ice Particles,
J. Geophys. Res.-Atmos., 114, D06201, https://doi.org/10.1029/2008JD010451, 2009. a, b, c
Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D.,
Kojima, M., Oki, R., Nakamura, K., and Iguchi, T.: The Global
Precipitation Measurement Mission, B. Am.
Meteor. Soc., 95, 701–722, 2013. a
Khvorostyanov, V. I. and Curry, J. A.: Thermodynamics, Kinetics, and
Microphysics of Clouds, Cambridge University Press, 2014. a
Libbrecht, K. G.: The Physics of Snow Crystals, Rep. Prog. Phys.,
68, 855–895, 2005. a
Lu, Y., Jiang, Z., Aydin, K., Verlinde, J., Clothiaux, E. E., and Botta, G.: A polarimetric scattering database for non-spherical ice particles at microwave wavelengths, Atmos. Meas. Tech., 9, 5119–5134, https://doi.org/10.5194/amt-9-5119-2016, 2016. a
Mätzler, C.: Thermal Microwave Radiation: Applications for Remote Sensing,
vol. 52, Iet, 2006. a
Mishchenko, M. I. and Yurkin, M. A.: On the Concept of Random Orientation in
Far-field Electromagnetic Scattering by Nonspherical Particles, Opt.
Lett., 42, 494–497, 2017. a
Mlawer, E. J., Payne, V. H., Moncet, J.-L., Delamere, J. S., Alvarado, M. J.,
and Tobin, D. C.: Development and Recent Evaluation of the Mt_ckd Model of
Continuum Absorption, Philosophical Transactions of the Royal Society A:
Mathematical, Phys. Eng. Sci., 370, 2520–2556, 2012. a
Prigent, C., Aires, F., Wang, D., Fox, S., and Harlow, C.: Sea-surface
Emissivity Parametrization from Microwaves to Millimetre Waves, Q.
J. Roy. Meteor. Soc., 143, 596–605, 2017. a
Rosenkranz, P. W.: Water Vapor Microwave Continuum Absorption: A Comparison
of Measurements and Models, Radio Sci., 33, 919–928, 1998. a
Rothman, L., Gordon, I., Babikov, Y., Barbe, A., Chris Benner, D., Bernath, P.,
Birk, M., Bizzocchi, L., Boudon, V., Brown, L., Campargue, A., Chance, K., Cohen, E., Coudert, L., Devi, V., Drouin, B., Fayt, A., Flaud, J.-M., Gamache, R., Harrison, J., Hartmann, J.-M., Hill, C., Hodges, J., Jacquemart, D., Jolly, A., Lamouroux, J., Roy, R. L., Li, G., Long, D., Lyulin, O., Mackie, C., Massie, S., Mikhailenko, S., Müller, H., Naumenko, O., Nikitin, A., Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E., Richard, C., Smith, M., Starikova, E., Sung, K., Tashkun, S., Tennyson, J., Toon, G., Tyuterev, V., and Wagner, G.: The
Hitran2012 Molecular Spectroscopic Database, J. Quant.
Spectrosc. Ra., 130, 4–50, 2013. a
Satoh, M.: Icosahedral Grids in Atmospheric Circulation Dynamics and
General Circulation Models, Springer Praxis Books, Springer, Berlin,
Heidelberg, 2014. a
Schaeffer, N.: Efficient Spherical Harmonic Transforms Aimed at Pseudospectral
Numerical Simulations, Geochem. Geophy. Geosy., 14, 751–758,
2013. a
Shivakumar, S. K. and Pircher, M.: Announcement to Megha-Tropiques Science
Data Users, official communiqué, CNES, ISRO, 24 September, 2013. a
Tretyakov, M. Y., Koshelev, M. A., Dorovskikh, V. V., Makarov, D. S., and
Rosenkranz, P. W.: 60-GHz Oxygen Band: Precise Broadening and Central
Frequencies of Fine-structure Lines, Absolute Absorption Profile at
Atmospheric Pressure, and Revision of Mixing Coefficients,
J. Mol. Spectrosc., 231, 1–14, 2005. a
Tsang, L., Kong, J. A., and Ding, K.-H.: Scattering of Electromagnetic Waves,
Theories and Applications, vol. 27, John Wiley & Sons, 2000. a
van de Hulst, H. C.: Light Scattering by Small Particles, Courier Corporation,
1981. a
Zeng, X., Skofronick-Jackson, G., Tian, L., Emory, A. E., Olson, W. S., and
Kroodsma, R. A.: Analysis of the Global Microwave Polarization Data of
Clouds, J. Climate, 32, 3–13, 2019. a
Short summary
Microwave dual-polarization observations consistently show that larger atmospheric ice particles tend to have a preferred orientation. We provide a publicly available database of microwave and submillimeter wave scattering properties of oriented ice particles based on discrete dipole approximation scattering calculations. Detailed radiative transfer simulations, recreating observed polarization patterns, are additionally presented in this study.
Microwave dual-polarization observations consistently show that larger atmospheric ice particles...