Articles | Volume 13, issue 2
https://doi.org/10.5194/amt-13-405-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-405-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Temperature and water vapour measurements in the framework of the Network for the Detection of Atmospheric Composition Change (NDACC)
Benedetto De Rosa
Scuola di Ingegneria, Università degli Studi della Basilicata, Potenza,
85100, Italy
Paolo Di Girolamo
CORRESPONDING AUTHOR
Scuola di Ingegneria, Università degli Studi della Basilicata, Potenza,
85100, Italy
Donato Summa
Scuola di Ingegneria, Università degli Studi della Basilicata, Potenza,
85100, Italy
Related authors
No articles found.
Fabio Madonna, Benedetto De Rosa, Simone Gagliardi, Ilaria Gandolfi, Yassmina Hesham Essa, Domenico Madonna, Fabrizio Marra, Maria Assunta Menniti, Donato Summa, Emanuele Tramutola, Faezeh Karimian Saracks, Filomena Romano, and Marco Rosoldi
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-32, https://doi.org/10.5194/esd-2024-32, 2024
Preprint under review for ESD
Short summary
Short summary
Extreme weather events in the Mediterranean have intensified, and understanding their causes is key to improving forecasts. This study used data from the MESSA-DIN measurement campaign in Soverato, Italy (July–September 2021) to analyze the water vapor fluxes effect in extreme weather events as well as the related ERA5 performances. This study highlights a bias in ERA5 reanalysis humidity and the importance of high-resolution data for improving weather predictions.
José Alex Zenteno-Hernández, Adolfo Comerón, Federico Dios, Alejandro Rodríguez-Gómez, Constantino Muñoz-Porcar, Michaël Sicard, Noemi Franco, Andreas Behrendt, and Paolo Di Girolamo
Atmos. Meas. Tech., 17, 4687–4694, https://doi.org/10.5194/amt-17-4687-2024, https://doi.org/10.5194/amt-17-4687-2024, 2024
Short summary
Short summary
We study how the spectral characteristics of a solid-state laser in an atmospheric temperature profiling lidar using the Raman technique impact the temperature retrieval accuracy. We find that the spectral widening, with respect to a seeded laser, has virtually no impact, while crystal-rod temperature variations in the laser must be kept within a range of 1 K for the uncertainty in the atmospheric temperature below 1 K. The study is carried out through spectroscopy simulations.
Teresa Laurita, Alessandro Mauceri, Francesco Cardellicchio, Emilio Lapenna, Benedetto De Rosa, Serena Trippetta, Michail Mytilinaios, Davide Amodio, Aldo Giunta, Ermann Ripepi, Canio Colangelo, Nikolaos Papagiannopoulos, Francesca Morrongiello, Claudio Dema, Simone Gagliardi, Carmela Cornacchia, Rosa Maria Petracca Altieri, Aldo Amodeo, Marco Rosoldi, Donato Summa, Gelsomina Pappalardo, and Lucia Mona
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-57, https://doi.org/10.5194/amt-2024-57, 2024
Revised manuscript under review for AMT
Short summary
Short summary
This paper provides an overview of the CIAO Observatory in South Italy, focusing on the upgrade of its aerosol in-situ laboratory compliant with ACTRIS standard operating procedures. The aim is to provide the aerosol research community with technical details and practical guidance for establishing an in-situ aerosol observational site. The paper also discusses the importance of combinig in-situ and remote sensing measurements for a comprehensive understanding of atmosphetic processes.
Donato Summa, Fabio Madonna, Noemi Franco, Benedetto De Rosa, and Paolo Di Girolamo
Atmos. Meas. Tech., 15, 4153–4170, https://doi.org/10.5194/amt-15-4153-2022, https://doi.org/10.5194/amt-15-4153-2022, 2022
Short summary
Short summary
The evolution of the atmospheric boundary layer height (ABLH) has an important impact on meteorology. However, the complexity of the phenomena occurring within the ABL and the influence of advection and local accumulation processes often prevent an unambiguous determination of the ABLH. The paper reports results from an inter-comparison effort involving different sensors and techniques to measure the ABLH. Correlations between the ABLH and other atmospheric variables are also assessed.
Samira Khodayar, Silvio Davolio, Paolo Di Girolamo, Cindy Lebeaupin Brossier, Emmanouil Flaounas, Nadia Fourrie, Keun-Ok Lee, Didier Ricard, Benoit Vie, Francois Bouttier, Alberto Caldas-Alvarez, and Veronique Ducrocq
Atmos. Chem. Phys., 21, 17051–17078, https://doi.org/10.5194/acp-21-17051-2021, https://doi.org/10.5194/acp-21-17051-2021, 2021
Short summary
Short summary
Heavy precipitation (HP) constitutes a major meteorological threat in the western Mediterranean. Every year, recurrent events affect the area with fatal consequences. Despite this being a well-known issue, open questions still remain. The understanding of the underlying mechanisms and the modeling representation of the events must be improved. In this article we present the most recent lessons learned from the Hydrological Cycle in the Mediterranean Experiment (HyMeX).
Maxi Boettcher, Andreas Schäfler, Michael Sprenger, Harald Sodemann, Stefan Kaufmann, Christiane Voigt, Hans Schlager, Donato Summa, Paolo Di Girolamo, Daniele Nerini, Urs Germann, and Heini Wernli
Atmos. Chem. Phys., 21, 5477–5498, https://doi.org/10.5194/acp-21-5477-2021, https://doi.org/10.5194/acp-21-5477-2021, 2021
Short summary
Short summary
Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones, often leading to the formation of intense precipitation. We present a case study that involves aircraft, lidar and radar observations of water and clouds in a WCB ascending from western Europe across the Alps towards the Baltic Sea during the field campaigns HyMeX and T-NAWDEX-Falcon in October 2012. A probabilistic trajectory measure and an airborne tracer experiment were used to confirm the long pathway of the WCB.
Gemine Vivone, Giuseppe D'Amico, Donato Summa, Simone Lolli, Aldo Amodeo, Daniele Bortoli, and Gelsomina Pappalardo
Atmos. Chem. Phys., 21, 4249–4265, https://doi.org/10.5194/acp-21-4249-2021, https://doi.org/10.5194/acp-21-4249-2021, 2021
Short summary
Short summary
We developed a methodology to retrieve the atmospheric boundary layer height from elastic and multi-wavelength lidar observations that uses a new approach based on morphological image processing techniques. The intercomparison with other state-of-the-art algorithms shows on average 30 % improved performance. The algorithm also shows excellent performance with respect to the running time, i.e., just few seconds to execute the whole signal processing chain over 72 h of continuous measurements.
Nadia Fourrié, Mathieu Nuret, Pierre Brousseau, Olivier Caumont, Alexis Doerenbecher, Eric Wattrelot, Patrick Moll, Hervé Bénichou, Dominique Puech, Olivier Bock, Pierre Bosser, Patrick Chazette, Cyrille Flamant, Paolo Di Girolamo, Evelyne Richard, and Frédérique Saïd
Geosci. Model Dev., 12, 2657–2678, https://doi.org/10.5194/gmd-12-2657-2019, https://doi.org/10.5194/gmd-12-2657-2019, 2019
Short summary
Short summary
The AROME-WMED (western Mediterranean) model is a dedicated version of the mesoscale Numerical Weather Prediction AROME-France model that ran in real time during the first special observation period of HyMeX. Two reanalyses were performed after the campaign. This paper depicts the main differences between the real-time version and the benefits brought by both HyMeX reanalyses. The second reanalysis is found to be closer to observations than the previous AROME-WMED analyses.
Dario Stelitano, Paolo Di Girolamo, Andrea Scoccione, Donato Summa, and Marco Cacciani
Atmos. Meas. Tech., 12, 2183–2199, https://doi.org/10.5194/amt-12-2183-2019, https://doi.org/10.5194/amt-12-2183-2019, 2019
Short summary
Short summary
Vertical profiles of the particle backscattering coefficient at 355, 532 and 1064 nm measured by the Raman lidar system BASIL are compared with simulated particle backscatter profiles obtained through the application of a Mie scattering code and the use of simultaneous and co-located measurements by an optical particle counter on board the French research aircraft ATR42 operated by SAFIRE in the framework of the Hydrological Cycle in the Mediterranean Experiment – Special Observation Period 1.
Paolo Di Girolamo, Andrea Scoccione, Marco Cacciani, Donato Summa, Benedetto De Rosa, and Jan H. Schween
Atmos. Chem. Phys., 18, 4885–4896, https://doi.org/10.5194/acp-18-4885-2018, https://doi.org/10.5194/acp-18-4885-2018, 2018
Short summary
Short summary
The paper illustrates what we believe are the first measurements of a phenomenon taking place in upper portion of the convective boundary layer in clear-air conditions leading to the appearance of a persistent minimum in lidar backscatter echoes, with alternating intensifications and attenuations. The paper gives experimental evidence of the phenomenon and provides possible interpretations for its occurrence referring to both hygroscopic and scattering properties of sounded aerosol particles.
Frédérique Saïd, Bernard Campistron, and Paolo Di Girolamo
Atmos. Meas. Tech., 11, 1669–1688, https://doi.org/10.5194/amt-11-1669-2018, https://doi.org/10.5194/amt-11-1669-2018, 2018
Short summary
Short summary
Vertical profiles of the atmospheric water vapor mixing ratio are retrieved with an algorithm based on the combination of measurements from a wind profiler radar and radiosoundings at a coarser time resolution. The major advance with respect to previous works is the use of the radar capacity to detect transition levels, such as the top level of the boundary layer, marked by a maximum in the radar reflectivity.
Andreas Macke, Patric Seifert, Holger Baars, Christian Barthlott, Christoph Beekmans, Andreas Behrendt, Birger Bohn, Matthias Brueck, Johannes Bühl, Susanne Crewell, Thomas Damian, Hartwig Deneke, Sebastian Düsing, Andreas Foth, Paolo Di Girolamo, Eva Hammann, Rieke Heinze, Anne Hirsikko, John Kalisch, Norbert Kalthoff, Stefan Kinne, Martin Kohler, Ulrich Löhnert, Bomidi Lakshmi Madhavan, Vera Maurer, Shravan Kumar Muppa, Jan Schween, Ilya Serikov, Holger Siebert, Clemens Simmer, Florian Späth, Sandra Steinke, Katja Träumner, Silke Trömel, Birgit Wehner, Andreas Wieser, Volker Wulfmeyer, and Xinxin Xie
Atmos. Chem. Phys., 17, 4887–4914, https://doi.org/10.5194/acp-17-4887-2017, https://doi.org/10.5194/acp-17-4887-2017, 2017
Short summary
Short summary
This article provides an overview of the instrumental setup and the main results obtained during the two HD(CP)2 Observational Prototype Experiments HOPE-Jülich and HOPE-Melpitz conducted in Germany in April–May and Sept 2013, respectively. Goal of the field experiments was to provide high-resolution observational datasets for both, improving the understaning of boundary layer and cloud processes, as well as for the evaluation of the new ICON model that is run at 156 m horizontal resolution.
Paolo Di Girolamo, Marco Cacciani, Donato Summa, Andrea Scoccione, Benedetto De Rosa, Andreas Behrendt, and Volker Wulfmeyer
Atmos. Chem. Phys., 17, 745–767, https://doi.org/10.5194/acp-17-745-2017, https://doi.org/10.5194/acp-17-745-2017, 2017
Short summary
Short summary
This paper reports what we believe are the first measurements throughout the atmospheric convective boundary layer of higher-order moments (up to the fourth) of the turbulent fluctuations of water vapour mixing ratio and temperature performed by a single lidar system, i.e. the Raman lidar system BASIL. These measurements, in combination with measurements from other lidar systems, are fundamental to verify and possibly improve turbulence parametrisation in weather and climate models.
María Barrera-Verdejo, Susanne Crewell, Ulrich Löhnert, Emiliano Orlandi, and Paolo Di Girolamo
Atmos. Meas. Tech., 9, 4013–4028, https://doi.org/10.5194/amt-9-4013-2016, https://doi.org/10.5194/amt-9-4013-2016, 2016
C. Flamant, J.-P. Chaboureau, P. Chazette, P. Di Girolamo, T. Bourrianne, J. Totems, and M. Cacciani
Atmos. Chem. Phys., 15, 12231–12249, https://doi.org/10.5194/acp-15-12231-2015, https://doi.org/10.5194/acp-15-12231-2015, 2015
Short summary
Short summary
We analyze the direct radiative impact of an intense African dust plume on orographic precipitation in the western Mediterranean in the fall of 2012 using high-resolution simulations from a convection permitting mesoscale model validated against measurements acquired during the first special observation period of HyMeX. We show that the dust's direct radiative effect in such a dynamical environment is not sufficient to impact 24h of accumulated rainfall over the Cevennes in the dust simulation.
A. Foth, H. Baars, P. Di Girolamo, and B. Pospichal
Atmos. Chem. Phys., 15, 7753–7763, https://doi.org/10.5194/acp-15-7753-2015, https://doi.org/10.5194/acp-15-7753-2015, 2015
Short summary
Short summary
We present a method to derive water vapour profiles from Raman lidar measurements calibrated by the integrated water vapour from a collocated microwave radiometer. These simultaneous observations provide an operational and continuous measurement of water vapour profiles. The stability of the calibration factor allows for the calibration of the lidar even in the presence of clouds. Based on this approach, water vapour profiles can be retrieved during all non-precipitating conditions.
M. Barrera-Verdejo, S. Crewell, U. Löhnert, E. Orlandi, and P. Di Girolamo
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-5467-2015, https://doi.org/10.5194/amtd-8-5467-2015, 2015
Revised manuscript not accepted
S. Steinke, S. Eikenberg, U. Löhnert, G. Dick, D. Klocke, P. Di Girolamo, and S. Crewell
Atmos. Chem. Phys., 15, 2675–2692, https://doi.org/10.5194/acp-15-2675-2015, https://doi.org/10.5194/acp-15-2675-2015, 2015
D. Summa, P. Di Girolamo, D. Stelitano, and M. Cacciani
Atmos. Meas. Tech., 6, 3515–3525, https://doi.org/10.5194/amt-6-3515-2013, https://doi.org/10.5194/amt-6-3515-2013, 2013
Related subject area
Subject: Gases | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Benchmarking data-driven inversion methods for the estimation of local CO2 emissions from synthetic satellite images of XCO2 and NO2
Validation of 12 years (2008–2019) of IASI-A CO with IAGOS aircraft observations
Diurnal variations of NO2 tropospheric vertical column density over the Seoul metropolitan area from the Geostationary Environment Monitoring Spectrometer (GEMS): seasonal differences and the influence of the a priori NO2 profile
Validation of ACE-FTS version 5.2 ozone data with ozonesonde measurements
Intercomparison of long-term ground-based measurements of total, tropospheric, and stratospheric ozone at Lauder, New Zealand
First evaluation of the GEMS glyoxal products against TROPOMI and ground-based measurements
Validation of GEMS tropospheric NO2 columns and their diurnal variation with ground-based DOAS measurements
Using open-path dual-comb spectroscopy to monitor methane emissions from simulated grazing cattle
Greenhouse gas column observations from a portable spectrometer in Uganda
Independent validation of IASI/MetOp-A LMD and RAL CH4 products using CAMS model, in situ profiles, and ground-based FTIR measurements
Joint spectral retrievals of ozone with Suomi NPP CrIS augmented by S5P/TROPOMI
An evaluation of atmospheric absorption models at millimetre and sub-millimetre wavelengths using airborne observations
Validation of the version 4.5 MAESTRO ozone and NO2 measurements
Applicability of the inverse dispersion method to measure emissions from animal housings
5 years of Sentinel-5P TROPOMI operational ozone profiling and geophysical validation using ozonesonde and lidar ground-based networks
Using a portable FTIR spectrometer to evaluate the consistency of Total Carbon Column Observing Network (TCCON) measurements on a global scale: the Collaborative Carbon Column Observing Network (COCCON) travel standard
Comparison of the H2O, HDO and δD stratospheric climatologies between the MIPAS-ESA V8, MIPAS-IMK V5 and ACE-FTS V4.1/4.2 satellite datasets
TROPESS-CrIS CO single-pixel vertical profiles: intercomparisons with MOPITT and model simulations for 2020 western US wildfires
TOLNet validation of satellite ozone profiles in the troposphere: impact of retrieval wavelengths
An uncertainty methodology for solar occultation flux measurements: ammonia emissions from livestock production
Validation of Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) chlorodifluoromethane (HCFC-22) in the upper troposphere and lower stratosphere
First validation of high-resolution satellite-derived methane emissions from an active gas leak in the UK
Ship- and aircraft-based XCH4 over oceans as a new tool for satellite validation
Single-blind test of nine methane-sensing satellite systems from three continents
Water vapor measurements inside clouds and storms using a differential absorption radar
Evaluation of the first year of Pandora NO2 measurements over Beijing and application to satellite validation
Validation of MUSES NH3 observations from AIRS and CrIS against aircraft measurements from DISCOVER-AQ and a surface network in the Magic Valley
Performance and sensitivity of column-wise and pixel-wise methane retrievals for imaging spectrometers
Methane point source quantification using MethaneAIR: a new airborne imaging spectrometer
Evaluation of total ozone measurements from Geostationary Environmental Monitoring Spectrometer (GEMS)
To new heights by flying low: comparison of aircraft vertical NO2 profiles to model simulations and implications for TROPOMI NO2 retrievals
Local comparisons of tropospheric ozone: vertical soundings at two neighbouring stations in southern Bavaria
Ground-based Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations of NO2 and H2CO at Kinshasa and comparisons with TROPOMI observations
Total column ozone trends from the NASA Merged Ozone time series 1979 to 2021 showing latitude-dependent ozone recovery dates (1994 to 1998)
The SPARC water vapour assessment II: biases and drifts of water vapour satellite data records with respect to frost point hygrometer records
Vicarious calibration of the Tropospheric Monitoring Instrument (TROPOMI) short-wave infrared (SWIR) module over the Railroad Valley Playa
First-time comparison between NO2 vertical columns from Geostationary Environmental Monitoring Spectrometer (GEMS) and Pandora measurements
A blended TROPOMI+GOSAT satellite data product for atmospheric methane using machine learning to correct retrieval biases
Evaluating the consistency between OCO-2 and OCO-3 XCO2 estimates derived from the NASA ACOS version 10 retrieval algorithm
OLCI-A/B tandem phase: evaluation of FLuorescence EXplorer (FLEX)-like radiances and estimation of systematic differences between OLCI-A and OLCI-FLEX
Multi-parameter dynamical diagnostics for upper tropospheric and lower stratospheric studies
An approach to track instrument calibration and produce consistent products with the version-8 total column ozone algorithm (V8TOZ)
Satellite remote-sensing capability to assess tropospheric-column ratios of formaldehyde and nitrogen dioxide: case study during the Long Island Sound Tropospheric Ozone Study 2018 (LISTOS 2018) field campaign
Validation of Sentinel-5P TROPOMI tropospheric NO2 products by comparison with NO2 measurements from airborne imaging DOAS, ground-based stationary DOAS, and mobile car DOAS measurements during the S5P-VAL-DE-Ruhr campaign
Evaluation of open- and closed-path sampling systems for the determination of emission rates of NH3 and CH4 with inverse dispersion modeling
Performance of AIRS ozone retrieval over the central Himalayas: use of ozonesonde and other satellite datasets
Solar occultation measurement of mesospheric ozone by SAGE III/ISS: impact of variations along the line of sight caused by photochemistry
Understanding the potential of Sentinel-2 for monitoring methane point emissions
TROPOMI/S5P Total Column Water Vapor validation against AERONET ground-based measurements
Assessing the consistency of satellite-derived upper tropospheric humidity measurements
Diego Santaren, Janne Hakkarainen, Gerrit Kuhlmann, Erik Koene, Frédéric Chevallier, Iolanda Ialongo, Hannakaisa Lindqvist, Janne Nurmela, Johanna Tamminen, Laia Amorós, Dominik Brunner, and Grégoire Broquet
Atmos. Meas. Tech., 18, 211–239, https://doi.org/10.5194/amt-18-211-2025, https://doi.org/10.5194/amt-18-211-2025, 2025
Short summary
Short summary
This study evaluates data-driven inversion methods for estimating CO2 emissions from local sources, such as power plants and cities, using meteorological data and XCO2 and NO2 satellite images rather than atmospheric transport modeling. We assess and compare the performance of five different methods using simulations of 1 year of satellite images, taken from the upcoming Copernicus CO2 Monitoring Mission, covering 15 power plants and the city of Berlin, Germany.
Brice Barret, Pierre Loicq, Eric Le Flochmoën, Yasmine Bennouna, Juliette Hadji-Lazaro, Daniel Hurtmans, and Bastien Sauvage
Atmos. Meas. Tech., 18, 129–149, https://doi.org/10.5194/amt-18-129-2025, https://doi.org/10.5194/amt-18-129-2025, 2025
Short summary
Short summary
Profiles of carbon monoxide (CO) retrieved from the Infrared Atmospheric Sounding Interferometer (IASI) with the SOftware for a Fast Retrieval of IASI Data (SOFRID) and Fast Optimal Retrievals on Layers for IASI (FORLI) are validated with 8500 observations at 33 airports from the In-service Aircraft for a Global Observing System (IAGOS) for 2008–2019. IASI retrievals underestimate CO, with stronger bias in the middle to upper troposphere for SOFRID and in the lower troposphere for FORLI.
Seunghwan Seo, Si-Wan Kim, Kyoung-Min Kim, Andreas Richter, Kezia Lange, John P. Burrows, Junsung Park, Hyunkee Hong, Hanlim Lee, Ukkyo Jeong, Jung-Hun Woo, and Jhoon Kim
Atmos. Meas. Tech., 18, 115–128, https://doi.org/10.5194/amt-18-115-2025, https://doi.org/10.5194/amt-18-115-2025, 2025
Short summary
Short summary
Over the Seoul metropolitan area, tropospheric NO2 vertical column densities from the Geostationary Environment Monitoring Spectrometer show distinct seasonal features. Also, varying a priori data have substantial impacts on the observed NO2 columns. The a priori data from different chemical transport models resulted in differences of up to −18.3 %. Notably, diurnal patterns of observed NO2 columns are similar for all datasets, although their a priori data exhibit contrasting diurnal patterns.
Jiansheng Zou, Kaley A. Walker, Patrick E. Sheese, Chris D. Boone, Ryan M. Stauffer, Anne M. Thompson, and David W. Tarasick
Atmos. Meas. Tech., 17, 6983–7005, https://doi.org/10.5194/amt-17-6983-2024, https://doi.org/10.5194/amt-17-6983-2024, 2024
Short summary
Short summary
Ozone measurements from the ACE-FTS satellite instrument have been compared to worldwide balloon-borne ozonesonde profiles using pairs of closely spaced profiles and monthly averaged profiles. ACE-FTS typically measures more ozone in the stratosphere by up to 10 %. The long-term stability of the ACE-FTS ozone data is good, exhibiting small (but non-significant) drifts of less than 3 % per decade in the stratosphere. Lower in the profiles, the calculated drifts are larger (up to 10 % per decade).
Robin Björklund, Corinne Vigouroux, Peter Effertz, Omaira E. García, Alex Geddes, James Hannigan, Koji Miyagawa, Michael Kotkamp, Bavo Langerock, Gerald Nedoluha, Ivan Ortega, Irina Petropavlovskikh, Deniz Poyraz, Richard Querel, John Robinson, Hisako Shiona, Dan Smale, Penny Smale, Roeland Van Malderen, and Martine De Mazière
Atmos. Meas. Tech., 17, 6819–6849, https://doi.org/10.5194/amt-17-6819-2024, https://doi.org/10.5194/amt-17-6819-2024, 2024
Short summary
Short summary
Different ground-based ozone measurements from the last 2 decades at Lauder are compared to each other. We want to know why different trends have been observed in the stratosphere. Also, the quality and relevance of tropospheric datasets need to be evaluated. While remaining drifts are still present, our study explains roughly half of the differences in observed trends in previous studies and shows the necessity for continuous review and improvement of the measurements.
Eunjo S. Ha, Rokjin J. Park, Hyeong-Ahn Kwon, Gitaek T. Lee, Sieun D. Lee, Seunga Shin, Dong-Won Lee, Hyunkee Hong, Christophe Lerot, Isabelle De Smedt, Thomas Danckaert, Francois Hendrick, and Hitoshi Irie
Atmos. Meas. Tech., 17, 6369–6384, https://doi.org/10.5194/amt-17-6369-2024, https://doi.org/10.5194/amt-17-6369-2024, 2024
Short summary
Short summary
In this study, we evaluated the GEMS glyoxal products by comparing them with TROPOMI and MAX-DOAS measurements. GEMS and TROPOMI VCDs present similar spatial distributions. Monthly variations in GEMS VCDs and TROPOMI and MAX-DOAS VCDs differ in northeastern Asia, which we attributed to a polluted reference spectrum and high NO2 concentrations. GEMS glyoxal products with unparalleled temporal resolution would enrich our understanding of VOC emissions and diurnal variation.
Kezia Lange, Andreas Richter, Tim Bösch, Bianca Zilker, Miriam Latsch, Lisa K. Behrens, Chisom M. Okafor, Hartmut Bösch, John P. Burrows, Alexis Merlaud, Gaia Pinardi, Caroline Fayt, Martina M. Friedrich, Ermioni Dimitropoulou, Michel Van Roozendael, Steffen Ziegler, Simona Ripperger-Lukosiunaite, Leon Kuhn, Bianca Lauster, Thomas Wagner, Hyunkee Hong, Donghee Kim, Lim-Seok Chang, Kangho Bae, Chang-Keun Song, Jong-Uk Park, and Hanlim Lee
Atmos. Meas. Tech., 17, 6315–6344, https://doi.org/10.5194/amt-17-6315-2024, https://doi.org/10.5194/amt-17-6315-2024, 2024
Short summary
Short summary
Instruments for air quality observations on geostationary satellites provide multiple observations per day and allow for the analysis of the diurnal variation of important air pollutants such as nitrogen dioxide (NO2) over large areas. The South Korean instrument GEMS, launched in February 2020, is the first instrument in geostationary orbit and covers a large part of Asia. Our investigations show the observed diurnal evolution of NO2 at different measurement sites.
Chinthaka Weerasekara, Lindsay C. Morris, Nathan A. Malarich, Fabrizio R. Giorgetta, Daniel I. Herman, Kevin C. Cossel, Nathan R. Newbury, Clenton E. Owensby, Stephen M. Welch, Cosmin Blaga, Brett D. DePaola, Ian Coddington, Brian R. Washburn, and Eduardo A. Santos
Atmos. Meas. Tech., 17, 6107–6117, https://doi.org/10.5194/amt-17-6107-2024, https://doi.org/10.5194/amt-17-6107-2024, 2024
Short summary
Short summary
Most methane emissions during the life cycle of beef cattle occur during the grazing phase. Measuring methane in grazing systems is difficult due to the high mobility and low density of animals. This work investigates if dual-comb spectroscopy can measure methane emissions from small cattle herds. An enhancement of 10 nmol mol-1 methane above the atmospheric background was measured, equivalent to 20 head located 60 m away. The calculated methane flux was within 5 % of the actual release rate.
Neil Humpage, Hartmut Boesch, William Okello, Jia Chen, Florian Dietrich, Mark F. Lunt, Liang Feng, Paul I. Palmer, and Frank Hase
Atmos. Meas. Tech., 17, 5679–5707, https://doi.org/10.5194/amt-17-5679-2024, https://doi.org/10.5194/amt-17-5679-2024, 2024
Short summary
Short summary
We used a Bruker EM27/SUN spectrometer within an automated weatherproof enclosure to measure greenhouse gas column concentrations over a 3-month period in Jinja, Uganda. The portability of the EM27/SUN allows us to evaluate satellite and model data in locations not covered by traditional validation networks. This is of particular value in tropical Africa, where extensive terrestrial ecosystems are a significant store of carbon and play a key role in the atmospheric budgets of CO2 and CH4.
Bart Dils, Minqiang Zhou, Claude Camy-Peyret, Martine De Mazière, Yannick Kangah, Bavo Langerock, Pascal Prunet, Carmine Serio, Richard Siddans, and Brian Kerridge
Atmos. Meas. Tech., 17, 5491–5524, https://doi.org/10.5194/amt-17-5491-2024, https://doi.org/10.5194/amt-17-5491-2024, 2024
Short summary
Short summary
The paper discusses two very distinct methane products from the IASI instrument aboard the MetOp-A satellite. One (referred to as LMD NLISv8.3) uses a machine-learning approach, while the other (RALv2.0) uses a more conventional optimal estimation approach. We used a variety of model and independent reference measurement data to assess both products' overall quality, their differences, and specific aspects of each product that would benefit from further analysis by the product development teams.
Edward Malina, Kevin W. Bowman, Valentin Kantchev, Le Kuai, Thomas P. Kurosu, Kazuyuki Miyazaki, Vijay Natraj, Gregory B. Osterman, Fabiano Oyafuso, and Matthew D. Thill
Atmos. Meas. Tech., 17, 5341–5371, https://doi.org/10.5194/amt-17-5341-2024, https://doi.org/10.5194/amt-17-5341-2024, 2024
Short summary
Short summary
Characterizing the distribution of ozone in the atmosphere is a challenging problem, with current Earth observation satellites using either thermal infrared (TIR) or ultraviolet (UV) instruments, sensitive to different portions of the atmosphere, making it difficult to gain a full picture. In this work, we combine measurements from the TIR and UV instruments Suomi NPP CrIS and Sentinel-5P/TROPOMI to improve sensitivity through the whole atmosphere and improve knowledge of ozone distribution.
Stuart Fox, Vinia Mattioli, Emma Turner, Alan Vance, Domenico Cimini, and Donatello Gallucci
Atmos. Meas. Tech., 17, 4957–4978, https://doi.org/10.5194/amt-17-4957-2024, https://doi.org/10.5194/amt-17-4957-2024, 2024
Short summary
Short summary
Airborne observations are used to evaluate two models for absorption and emission by atmospheric gases, including water vapour and oxygen, at microwave and sub-millimetre wavelengths. These models are needed for the Ice Cloud Imager (ICI) on the next generation of European polar-orbiting weather satellites, which measures at frequencies up to 664 GHz. Both models can provide a good match to measurements from airborne radiometers and are sufficiently accurate for use with ICI.
Paul S. Jeffery, James R. Drummond, C. Thomas McElroy, Kaley A. Walker, and Jiansheng Zou
EGUsphere, https://doi.org/10.5194/egusphere-2024-2115, https://doi.org/10.5194/egusphere-2024-2115, 2024
Short summary
Short summary
The MAESTRO instrument has been monitoring ozone and NO2 since February 2004. A new version of these data products has recently been released; however, these new products must be validated against other datasets to ensure their validity. This study presents such an assessment, using measurements from eleven satellite instruments to characterize the new MAESTRO products. In the stratosphere, good agreement is found for ozone and acceptable agreement is found for NO2 with these other datasets.
Marcel Bühler, Christoph Häni, Albrecht Neftel, Patrice Bühler, Christof Ammann, and Thomas Kupper
Atmos. Meas. Tech., 17, 4649–4658, https://doi.org/10.5194/amt-17-4649-2024, https://doi.org/10.5194/amt-17-4649-2024, 2024
Short summary
Short summary
Methane was released from an artificial source inside a barn to test the applicability of the inverse dispersion method (IDM). Multiple open-path concentration devices and ultrasonic anemometers were used at the site. It is concluded that, for the present study case, the effect of a building and a tree in the main wind axis led to a systematic underestimation of the IDM-derived emission rate probably due to deviations in the wind field and turbulent dispersion from the ideal assumptions.
Arno Keppens, Serena Di Pede, Daan Hubert, Jean-Christopher Lambert, Pepijn Veefkind, Maarten Sneep, Johan De Haan, Mark ter Linden, Thierry Leblanc, Steven Compernolle, Tijl Verhoelst, José Granville, Oindrila Nath, Ann Mari Fjæraa, Ian Boyd, Sander Niemeijer, Roeland Van Malderen, Herman G. J. Smit, Valentin Duflot, Sophie Godin-Beekmann, Bryan J. Johnson, Wolfgang Steinbrecht, David W. Tarasick, Debra E. Kollonige, Ryan M. Stauffer, Anne M. Thompson, Angelika Dehn, and Claus Zehner
Atmos. Meas. Tech., 17, 3969–3993, https://doi.org/10.5194/amt-17-3969-2024, https://doi.org/10.5194/amt-17-3969-2024, 2024
Short summary
Short summary
The Sentinel-5P satellite operated by the European Space Agency has carried the TROPOspheric Monitoring Instrument (TROPOMI) around the Earth since October 2017. This mission also produces atmospheric ozone profile data which are described in detail for May 2018 to April 2023. Independent validation using ground-based reference measurements demonstrates that the operational ozone profile product mostly fully and at least partially complies with all mission requirements.
Benedikt Herkommer, Carlos Alberti, Paolo Castracane, Jia Chen, Angelika Dehn, Florian Dietrich, Nicholas M. Deutscher, Matthias Max Frey, Jochen Groß, Lawson Gillespie, Frank Hase, Isamu Morino, Nasrin Mostafavi Pak, Brittany Walker, and Debra Wunch
Atmos. Meas. Tech., 17, 3467–3494, https://doi.org/10.5194/amt-17-3467-2024, https://doi.org/10.5194/amt-17-3467-2024, 2024
Short summary
Short summary
The Total Carbon Column Observing Network is a network of ground-based Fourier transform infrared (FTIR) spectrometers used mainly for satellite validation. To ensure the highest-quality validation data, the network needs to be highly consistent. This is a major challenge, which so far is solved by site comparisons with airborne in situ measurements. In this work, we describe the use of a portable FTIR spectrometer as a travel standard for evaluating the consistency of TCCON sites.
Karen De Los Ríos, Paulina Ordoñez, Gabriele P. Stiller, Piera Raspollini, Marco Gai, Kaley A. Walker, Cristina Peña-Ortiz, and Luis Acosta
Atmos. Meas. Tech., 17, 3401–3418, https://doi.org/10.5194/amt-17-3401-2024, https://doi.org/10.5194/amt-17-3401-2024, 2024
Short summary
Short summary
This study examines newer versions of H2O and HDO retrievals from Envisat/MIPAS and SCISAT/ACE-FTS. Results reveal a better agreement in stratospheric H2O profiles than in HDO profiles. The H2O tape recorder signal is consistent across databases, but δD tape recorder composites show differences that impact the interpretation of water vapour transport. These findings enhance the need for intercomparisons to refine our insights.
Ming Luo, Helen M. Worden, Robert D. Field, Kostas Tsigaridis, and Gregory S. Elsaesser
Atmos. Meas. Tech., 17, 2611–2624, https://doi.org/10.5194/amt-17-2611-2024, https://doi.org/10.5194/amt-17-2611-2024, 2024
Short summary
Short summary
The TROPESS CrIS single-pixel CO profile retrievals are compared to the MOPITT CO products in steps of adjusting them to the common a priori assumptions. The two data sets are found to agree within 5 %. We also demonstrated and analyzed the proper steps in evaluating GISS ModelE CO simulations using satellite CO retrieval products for the western US wildfire events in September 2020.
Matthew S. Johnson, Alexei Rozanov, Mark Weber, Nora Mettig, John Sullivan, Michael J. Newchurch, Shi Kuang, Thierry Leblanc, Fernando Chouza, Timothy A. Berkoff, Guillaume Gronoff, Kevin B. Strawbridge, Raul J. Alvarez, Andrew O. Langford, Christoph J. Senff, Guillaume Kirgis, Brandi McCarty, and Larry Twigg
Atmos. Meas. Tech., 17, 2559–2582, https://doi.org/10.5194/amt-17-2559-2024, https://doi.org/10.5194/amt-17-2559-2024, 2024
Short summary
Short summary
Monitoring tropospheric ozone (O3), a harmful pollutant negatively impacting human health, is primarily done using ground-based measurements and ozonesondes. However, these observation types lack the coverage to fully understand tropospheric O3. Satellites can retrieve tropospheric ozone with near-daily global coverage; however, they are known to have biases and errors. This study uses ground-based lidars to validate multiple satellites' ability to observe tropospheric O3.
Johan Mellqvist, Nathalia T. Vechi, Charlotte Scheutz, Marc Durif, Francois Gautier, John Johansson, Jerker Samuelsson, Brian Offerle, and Samuel Brohede
Atmos. Meas. Tech., 17, 2465–2479, https://doi.org/10.5194/amt-17-2465-2024, https://doi.org/10.5194/amt-17-2465-2024, 2024
Short summary
Short summary
The solar occultation flux method retrieves ammonia gas columns from the solar spectrum. Emissions are obtained by multiplying the integrated plume concentration by the wind speed profile. The methodology for uncertainty estimation was established considering an error budget with systematic and random components, resulting in an expanded uncertainty in the range of 20 % to 30 %. The method was validated in a controlled release, and its application was demonstrated in different farms.
Felicia Kolonjari, Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, David A. Plummer, Andreas Engel, Stephen A. Montzka, David E. Oram, Tanja Schuck, Gabriele P. Stiller, and Geoffrey C. Toon
Atmos. Meas. Tech., 17, 2429–2449, https://doi.org/10.5194/amt-17-2429-2024, https://doi.org/10.5194/amt-17-2429-2024, 2024
Short summary
Short summary
The Canadian Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) satellite instrument is currently providing the only vertically resolved chlorodifluoromethane (HCFC-22) measurements from space. This study assesses the most current ACE-FTS HCFC-22 data product in the upper troposphere and lower stratosphere, as well as modelled HCFC-22 from a 39-year run of the Canadian Middle Atmosphere Model (CMAM39) in the same region.
Emily Dowd, Alistair J. Manning, Bryn Orth-Lashley, Marianne Girard, James France, Rebecca E. Fisher, Dave Lowry, Mathias Lanoisellé, Joseph R. Pitt, Kieran M. Stanley, Simon O'Doherty, Dickon Young, Glen Thistlethwaite, Martyn P. Chipperfield, Emanuel Gloor, and Chris Wilson
Atmos. Meas. Tech., 17, 1599–1615, https://doi.org/10.5194/amt-17-1599-2024, https://doi.org/10.5194/amt-17-1599-2024, 2024
Short summary
Short summary
We provide the first validation of the satellite-derived emission estimates using surface-based mobile greenhouse gas surveys of an active gas leak detected near Cheltenham, UK. GHGSat’s emission estimates broadly agree with the surface-based mobile survey and steps were taken to fix the leak, highlighting the importance of satellite data in identifying emissions and helping to reduce our human impact on climate change.
Astrid Müller, Hiroshi Tanimoto, Takafumi Sugita, Prabir K. Patra, Shin-ichiro Nakaoka, Toshinobu Machida, Isamu Morino, André Butz, and Kei Shiomi
Atmos. Meas. Tech., 17, 1297–1316, https://doi.org/10.5194/amt-17-1297-2024, https://doi.org/10.5194/amt-17-1297-2024, 2024
Short summary
Short summary
Satellite CH4 observations with high accuracy are needed to understand changes in atmospheric CH4 concentrations. But over oceans, reference data are limited. We combine various ship and aircraft observations with the help of atmospheric chemistry models to derive observation-based column-averaged mixing ratios of CH4 (obs. XCH4). We discuss three different approaches and demonstrate the applicability of the new reference dataset for carbon cycle studies and satellite evaluation.
Evan D. Sherwin, Sahar H. El Abbadi, Philippine M. Burdeau, Zhan Zhang, Zhenlin Chen, Jeffrey S. Rutherford, Yuanlei Chen, and Adam R. Brandt
Atmos. Meas. Tech., 17, 765–782, https://doi.org/10.5194/amt-17-765-2024, https://doi.org/10.5194/amt-17-765-2024, 2024
Short summary
Short summary
Countries and companies increasingly rely on a growing fleet of satellites to find large emissions of climate-warming methane, particularly from oil and natural gas systems across the globe. We independently assessed the performance of nine such systems by releasing controlled, undisclosed amounts of methane as satellites passed overhead. The tested systems produced reliable detection and quantification results, including the smallest-ever emission detected from space in such a test.
Luis F. Millán, Matthew D. Lebsock, Ken B. Cooper, Jose V. Siles, Robert Dengler, Raquel Rodriguez Monje, Amin Nehrir, Rory A. Barton-Grimley, James E. Collins, Claire E. Robinson, Kenneth L. Thornhill, and Holger Vömel
Atmos. Meas. Tech., 17, 539–559, https://doi.org/10.5194/amt-17-539-2024, https://doi.org/10.5194/amt-17-539-2024, 2024
Short summary
Short summary
In this study, we describe and validate a new technique in which three radar tones are used to estimate the water vapor inside clouds and precipitation. This instrument flew on board NASA's P-3 aircraft during the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) campaign and the Synergies Of Active optical and Active microwave Remote Sensing Experiment (SOA2RSE) campaign.
Ouyang Liu, Zhengqiang Li, Yangyan Lin, Cheng Fan, Ying Zhang, Kaitao Li, Peng Zhang, Yuanyuan Wei, Tianzeng Chen, Jiantao Dong, and Gerrit de Leeuw
Atmos. Meas. Tech., 17, 377–395, https://doi.org/10.5194/amt-17-377-2024, https://doi.org/10.5194/amt-17-377-2024, 2024
Short summary
Short summary
Nitrogen dioxide (NO2) is a trace gas which is important for atmospheric chemistry and may affect human health. To understand processes leading to harmful concentrations, it is important to monitor NO2 concentrations near the surface and higher up. To this end, a Pandora instrument has been installed in Beijing. An overview of the first year of data shows the large variability on diurnal to seasonal timescales and how this is affected by wind speed and direction and chemistry.
Karen E. Cady-Pereira, Xuehui Guo, Rui Wang, April B. Leytem, Chase Calkins, Elizabeth Berry, Kang Sun, Markus Müller, Armin Wisthaler, Vivienne H. Payne, Mark W. Shephard, Mark A. Zondlo, and Valentin Kantchev
Atmos. Meas. Tech., 17, 15–36, https://doi.org/10.5194/amt-17-15-2024, https://doi.org/10.5194/amt-17-15-2024, 2024
Short summary
Short summary
Ammonia is a significant precursor of PM2.5 particles and thus contributes to poor air quality in many regions. Furthermore, ammonia concentrations are rising due to the increase of large-scale, intensive agricultural activities. Here we evaluate satellite measurements of ammonia against aircraft and surface network data, and show that there are differences in magnitude, but the satellite data are spatially and temporally well correlated with the in situ data.
Alana K. Ayasse, Daniel Cusworth, Kelly O'Neill, Justin Fisk, Andrew K. Thorpe, and Riley Duren
Atmos. Meas. Tech., 16, 6065–6074, https://doi.org/10.5194/amt-16-6065-2023, https://doi.org/10.5194/amt-16-6065-2023, 2023
Short summary
Short summary
Methane is a powerful greenhouse gas, and a significant portion of methane comes from large individual plumes. Recently, airplane-mounted infrared technologies have proven very good at detecting and quantifying these plumes. In order to extract the methane signal from the infrared image, there are two widely used approaches. In this study, we assess the performance of both approaches using controlled-release experiments. We also examine the minimum detection limit of the infrared technology.
Apisada Chulakadabba, Maryann Sargent, Thomas Lauvaux, Joshua S. Benmergui, Jonathan E. Franklin, Christopher Chan Miller, Jonas S. Wilzewski, Sébastien Roche, Eamon Conway, Amir H. Souri, Kang Sun, Bingkun Luo, Jacob Hawthrone, Jenna Samra, Bruce C. Daube, Xiong Liu, Kelly Chance, Yang Li, Ritesh Gautam, Mark Omara, Jeff S. Rutherford, Evan D. Sherwin, Adam Brandt, and Steven C. Wofsy
Atmos. Meas. Tech., 16, 5771–5785, https://doi.org/10.5194/amt-16-5771-2023, https://doi.org/10.5194/amt-16-5771-2023, 2023
Short summary
Short summary
We show that MethaneAIR, a precursor to the MethaneSAT satellite, demonstrates accurate point source quantification during controlled release experiments and regional observations in 2021 and 2022. Results from our two independent quantification methods suggest the accuracy of our sensor and algorithms is better than 25 % for sources emitting 200 kg h−1 or more. Insights from these measurements help establish the capabilities of MethaneSAT and MethaneAIR.
Kanghyun Baek, Jae Hwan Kim, Juseon Bak, David P. Haffner, Mina Kang, and Hyunkee Hong
Atmos. Meas. Tech., 16, 5461–5478, https://doi.org/10.5194/amt-16-5461-2023, https://doi.org/10.5194/amt-16-5461-2023, 2023
Short summary
Short summary
The GEMS mission was the first mission of the geostationary satellite constellation for hourly atmospheric composition monitoring. The GEMS ozone measurements were cross-compared to those of Pandora, OMPS, and TROPOMI satellite sensors and excellent agreement was found. GEMS has proven to be a powerful new instrument for monitoring and assessing the diurnal variation in atmospheric ozone. This experience can be used to advance research with future geostationary environmental satellite missions.
Tobias Christoph Valentin Werner Riess, Klaas Folkert Boersma, Ward Van Roy, Jos de Laat, Enrico Dammers, and Jasper van Vliet
Atmos. Meas. Tech., 16, 5287–5304, https://doi.org/10.5194/amt-16-5287-2023, https://doi.org/10.5194/amt-16-5287-2023, 2023
Short summary
Short summary
Satellite retrievals of trace gases require prior knowledge of the vertical distribution of the pollutant, which is usually obtained from models. Using aircraft-measured vertical NO2 profiles over the North Sea in summer 2021, we evaluate the Transport Model 5 profiles used in the TROPOMI NO2 retrieval. We conclude that driven by the low horizontal resolution and the overestimated vertical mixing, resulting NO2 columns are 20 % too low. This has important implications for emission estimates.
Thomas Trickl, Martin Adelwart, Dina Khordakova, Ludwig Ries, Christian Rolf, Michael Sprenger, Wolfgang Steinbrecht, and Hannes Vogelmann
Atmos. Meas. Tech., 16, 5145–5165, https://doi.org/10.5194/amt-16-5145-2023, https://doi.org/10.5194/amt-16-5145-2023, 2023
Short summary
Short summary
Tropospheric ozone have been measured for more than a century. Highly quantitative ozone measurements have been made at monitoring stations. However, deficits have been reported for vertical sounding systems. Here, we report a thorough intercomparison effort between a differential-absorption lidar system and two types of balloon-borne ozone sondes, also using ozone sensors at nearby mountain sites as references. The sondes agree very well with the lidar after offset corrections.
Rodriguez Yombo Phaka, Alexis Merlaud, Gaia Pinardi, Martina M. Friedrich, Michel Van Roozendael, Jean-François Müller, Trissevgeni Stavrakou, Isabelle De Smedt, François Hendrick, Ermioni Dimitropoulou, Richard Bopili Mbotia Lepiba, Edmond Phuku Phuati, Buenimio Lomami Djibi, Lars Jacobs, Caroline Fayt, Jean-Pierre Mbungu Tsumbu, and Emmanuel Mahieu
Atmos. Meas. Tech., 16, 5029–5050, https://doi.org/10.5194/amt-16-5029-2023, https://doi.org/10.5194/amt-16-5029-2023, 2023
Short summary
Short summary
We present air quality measurements in Kinshasa, Democratic Republic of the Congo, performed with a newly developed instrument which was installed on a roof of the University of Kinshasa in November 2019. The instrument records spectra of the scattered sunlight, from which we derive the abundances of nitrogen dioxide and formaldehyde, two important pollutants. We compare our ground-based measurements with those of the TROPOspheric Monitoring Instrument (TROPOMI).
Jay Herman, Jerald Ziemke, and Richard McPeters
Atmos. Meas. Tech., 16, 4693–4707, https://doi.org/10.5194/amt-16-4693-2023, https://doi.org/10.5194/amt-16-4693-2023, 2023
Short summary
Short summary
Fourier series multivariate linear regression trends (% per decade) in ozone were estimated from the Merged Ozone Data Set (MOD) from 1979 to 2021 in two different regimes, from 1979 to TA (the date when ozone stopped decreasing) and TA to 2021. The derived TA is a latitude-dependent date, ranging from 1994 to 1998. TA(θ) is a marker for photochemistry dynamics models attempting to represent ozone change over the past 42 years.
Michael Kiefer, Dale F. Hurst, Gabriele P. Stiller, Stefan Lossow, Holger Vömel, John Anderson, Faiza Azam, Jean-Loup Bertaux, Laurent Blanot, Klaus Bramstedt, John P. Burrows, Robert Damadeo, Bianca Maria Dinelli, Patrick Eriksson, Maya García-Comas, John C. Gille, Mark Hervig, Yasuko Kasai, Farahnaz Khosrawi, Donal Murtagh, Gerald E. Nedoluha, Stefan Noël, Piera Raspollini, William G. Read, Karen H. Rosenlof, Alexei Rozanov, Christopher E. Sioris, Takafumi Sugita, Thomas von Clarmann, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 16, 4589–4642, https://doi.org/10.5194/amt-16-4589-2023, https://doi.org/10.5194/amt-16-4589-2023, 2023
Short summary
Short summary
We quantify biases and drifts (and their uncertainties) between the stratospheric water vapor measurement records of 15 satellite-based instruments (SATs, with 31 different retrievals) and balloon-borne frost point hygrometers (FPs) launched at 27 globally distributed stations. These comparisons of measurements during the period 2000–2016 are made using robust, consistent statistical methods. With some exceptions, the biases and drifts determined for most SAT–FP pairs are < 10 % and < 1 % yr−1.
Tim A. van Kempen, Tim J. Rotmans, Richard M. van Hees, Carol Bruegge, Dejian Fu, Ruud Hoogeveen, Thomas J. Pongetti, Robert Rosenberg, and Ilse Aben
Atmos. Meas. Tech., 16, 4507–4527, https://doi.org/10.5194/amt-16-4507-2023, https://doi.org/10.5194/amt-16-4507-2023, 2023
Short summary
Short summary
Validation of satellite measurements is essential for providing reliable and consistent products. In this paper, a validation method for TROPOMI-SWIR (Tropospheric Measurement Instrument in the short-wavelength infrared) is explored. TROPOMI-SWIR has been shown to be exceptionally stable, a necessity to explore the methodology. Railroad Valley, Nevada, is a prime location to perform the necessary measurements to validate the satellite measurements of TROPOMI-SWIR.
Serin Kim, Daewon Kim, Hyunkee Hong, Lim-Seok Chang, Hanlim Lee, Deok-Rae Kim, Donghee Kim, Jeong-Ah Yu, Dongwon Lee, Ukkyo Jeong, Chang-Kuen Song, Sang-Woo Kim, Sang Seo Park, Jhoon Kim, Thomas F. Hanisco, Junsung Park, Wonei Choi, and Kwangyul Lee
Atmos. Meas. Tech., 16, 3959–3972, https://doi.org/10.5194/amt-16-3959-2023, https://doi.org/10.5194/amt-16-3959-2023, 2023
Short summary
Short summary
A first evaluation of the Geostationary Environmental Monitoring Spectrometer (GEMS) NO2 was carried out via comparison with the NO2 data obtained from the ground-based Pandora direct-sun measurements at four sites in Seosan, Republic of Korea. Comparisons between GEMS NO2 and Pandora NO2 were performed according to GEMS cloud fraction. GEMS NO2 showed good agreement with that of Pandora NO2 under less cloudy conditions.
Nicholas Balasus, Daniel J. Jacob, Alba Lorente, Joannes D. Maasakkers, Robert J. Parker, Hartmut Boesch, Zichong Chen, Makoto M. Kelp, Hannah Nesser, and Daniel J. Varon
Atmos. Meas. Tech., 16, 3787–3807, https://doi.org/10.5194/amt-16-3787-2023, https://doi.org/10.5194/amt-16-3787-2023, 2023
Short summary
Short summary
We use machine learning to remove biases in TROPOMI satellite observations of atmospheric methane, with GOSAT observations serving as a reference. We find that the TROPOMI biases relative to GOSAT are related to the presence of aerosols and clouds, the surface brightness, and the specific detector that makes the observation aboard TROPOMI. The resulting blended TROPOMI+GOSAT product is more reliable for quantifying methane emissions.
Thomas E. Taylor, Christopher W. O'Dell, David Baker, Carol Bruegge, Albert Chang, Lars Chapsky, Abhishek Chatterjee, Cecilia Cheng, Frédéric Chevallier, David Crisp, Lan Dang, Brian Drouin, Annmarie Eldering, Liang Feng, Brendan Fisher, Dejian Fu, Michael Gunson, Vance Haemmerle, Graziela R. Keller, Matthäus Kiel, Le Kuai, Thomas Kurosu, Alyn Lambert, Joshua Laughner, Richard Lee, Junjie Liu, Lucas Mandrake, Yuliya Marchetti, Gregory McGarragh, Aronne Merrelli, Robert R. Nelson, Greg Osterman, Fabiano Oyafuso, Paul I. Palmer, Vivienne H. Payne, Robert Rosenberg, Peter Somkuti, Gary Spiers, Cathy To, Brad Weir, Paul O. Wennberg, Shanshan Yu, and Jia Zong
Atmos. Meas. Tech., 16, 3173–3209, https://doi.org/10.5194/amt-16-3173-2023, https://doi.org/10.5194/amt-16-3173-2023, 2023
Short summary
Short summary
NASA's Orbiting Carbon Observatory 2 and 3 (OCO-2 and OCO-3, respectively) provide complementary spatiotemporal coverage from a sun-synchronous and precession orbit, respectively. Estimates of total column carbon dioxide (XCO2) derived from the two sensors using the same retrieval algorithm show broad consistency over a 2.5-year overlapping time record. This suggests that data from the two satellites may be used together for scientific analysis.
Lena Katharina Jänicke, Rene Preusker, Marco Celesti, Marin Tudoroiu, Jürgen Fischer, Dirk Schüttemeyer, and Matthias Drusch
Atmos. Meas. Tech., 16, 3101–3121, https://doi.org/10.5194/amt-16-3101-2023, https://doi.org/10.5194/amt-16-3101-2023, 2023
Short summary
Short summary
To compare two top-of-atmosphere radiances measured by instruments with different spectral characteristics, a transfer function has been developed. It is applied to a tandem data set of Sentinel-3A and B, for which OLCI-B mimicked the ESA’s eighth Earth Explorer FLEX. We found that OLCI-A measured radiances about 2 % brighter than OLCI-FLEX. Only at larger wavelengths were OLCI-A measurements about 5 % darker. The method is thus successful, being sensitive to calibration and processing issues.
Luis F. Millán, Gloria L. Manney, Harald Boenisch, Michaela I. Hegglin, Peter Hoor, Daniel Kunkel, Thierry Leblanc, Irina Petropavlovskikh, Kaley Walker, Krzysztof Wargan, and Andreas Zahn
Atmos. Meas. Tech., 16, 2957–2988, https://doi.org/10.5194/amt-16-2957-2023, https://doi.org/10.5194/amt-16-2957-2023, 2023
Short summary
Short summary
The determination of atmospheric composition trends in the upper troposphere and lower stratosphere (UTLS) is still highly uncertain. We present the creation of dynamical diagnostics to map several ozone datasets (ozonesondes, lidars, aircraft, and satellite measurements) in geophysically based coordinate systems. The diagnostics can also be used to analyze other greenhouse gases relevant to surface climate and UTLS chemistry.
Zhihua Zhang, Jianguo Niu, Lawrence E. Flynn, Eric Beach, and Trevor Beck
Atmos. Meas. Tech., 16, 2919–2941, https://doi.org/10.5194/amt-16-2919-2023, https://doi.org/10.5194/amt-16-2919-2023, 2023
Short summary
Short summary
This study mainly focused on addressing stability and improvement when using a broadband approach, establishing soft-calibration adjustments for both OMPS S-NPP and N20, analyzing error biases based on multi-sensor bias correction, and comparing total column ozone and aerosol index retrievals from NOAA OMPS with those from other products.
Matthew S. Johnson, Amir H. Souri, Sajeev Philip, Rajesh Kumar, Aaron Naeger, Jeffrey Geddes, Laura Judd, Scott Janz, Heesung Chong, and John Sullivan
Atmos. Meas. Tech., 16, 2431–2454, https://doi.org/10.5194/amt-16-2431-2023, https://doi.org/10.5194/amt-16-2431-2023, 2023
Short summary
Short summary
Satellites provide vital information for studying the processes controlling ozone formation. Based on the abundance of particular gases in the atmosphere, ozone formation is sensitive to specific human-induced and natural emission sources. However, errors and biases in satellite retrievals hinder this data source’s application for studying ozone formation sensitivity. We conducted a thorough statistical evaluation of two commonly applied satellites for investigating ozone formation sensitivity.
Kezia Lange, Andreas Richter, Anja Schönhardt, Andreas C. Meier, Tim Bösch, André Seyler, Kai Krause, Lisa K. Behrens, Folkard Wittrock, Alexis Merlaud, Frederik Tack, Caroline Fayt, Martina M. Friedrich, Ermioni Dimitropoulou, Michel Van Roozendael, Vinod Kumar, Sebastian Donner, Steffen Dörner, Bianca Lauster, Maria Razi, Christian Borger, Katharina Uhlmannsiek, Thomas Wagner, Thomas Ruhtz, Henk Eskes, Birger Bohn, Daniel Santana Diaz, Nader Abuhassan, Dirk Schüttemeyer, and John P. Burrows
Atmos. Meas. Tech., 16, 1357–1389, https://doi.org/10.5194/amt-16-1357-2023, https://doi.org/10.5194/amt-16-1357-2023, 2023
Short summary
Short summary
We present airborne imaging DOAS and ground-based stationary and car DOAS measurements conducted during the S5P-VAL-DE-Ruhr campaign in the Rhine-Ruhr region. The measurements are used to validate spaceborne NO2 data products from the Sentinel-5 Precursor TROPOspheric Monitoring Instrument (TROPOMI). Auxiliary data of the TROPOMI NO2 retrieval, such as spatially higher resolved a priori NO2 vertical profiles, surface reflectivity, and cloud treatment are investigated to evaluate their impact.
Yolanda Maria Lemes, Christoph Häni, Jesper Nørlem Kamp, and Anders Feilberg
Atmos. Meas. Tech., 16, 1295–1309, https://doi.org/10.5194/amt-16-1295-2023, https://doi.org/10.5194/amt-16-1295-2023, 2023
Short summary
Short summary
The implementation of a new method, line-averaged concentration measurement with a closed-path analyzer, will enable the measurement of fluxes of multiple gases from different types of sources and will evaluate the effects of mitigation strategies on emissions. In addition, this method allows for continuous online measurements that resolve temporal variation in ammonia emissions and the peak emissions of methane.
Prajjwal Rawat, Manish Naja, Evan Fishbein, Pradeep K. Thapliyal, Rajesh Kumar, Piyush Bhardwaj, Aditya Jaiswal, Sugriva N. Tiwari, Sethuraman Venkataramani, and Shyam Lal
Atmos. Meas. Tech., 16, 889–909, https://doi.org/10.5194/amt-16-889-2023, https://doi.org/10.5194/amt-16-889-2023, 2023
Short summary
Short summary
Satellite-based ozone observations have gained importance due to their global coverage. However, satellite-retrieved products are indirect and need to be validated, particularly over mountains. Ozonesondes launched from a Himalayan site are used to assess the Atmospheric Infrared Sounder (AIRS) ozone retrieval. AIRS is shown to overestimate ozone in the upper troposphere and lower stratosphere, while the differences from ozonesondes are more minor in the middle troposphere and stratosphere.
Murali Natarajan, Robert Damadeo, and David Flittner
Atmos. Meas. Tech., 16, 75–87, https://doi.org/10.5194/amt-16-75-2023, https://doi.org/10.5194/amt-16-75-2023, 2023
Short summary
Short summary
Photochemically induced changes in mesospheric O3 concentration at twilight can cause asymmetry in the distribution along the line of sight of solar occultation observations that must be considered in the retrieval algorithm. Correction factors developed from diurnal photochemical model simulations were used to modify the archived SAGE III/ISS mesospheric O3 concentrations. For June 2021 the bias caused by the neglect of diurnal variations is over 30% at 64 km altitude and low latitudes.
Javier Gorroño, Daniel J. Varon, Itziar Irakulis-Loitxate, and Luis Guanter
Atmos. Meas. Tech., 16, 89–107, https://doi.org/10.5194/amt-16-89-2023, https://doi.org/10.5194/amt-16-89-2023, 2023
Short summary
Short summary
We present a methane flux rate retrieval methodology using the Sentinel-2 mission, validating the algorithm for different scenes and plumes. The detection limit is 1000–2000 kg h−1 for homogeneous scenes and temporally invariant surfaces and above 5000 kg h−1 for heterogeneous ones. Dominant quantification errors are wind-related or plume mask-related. For heterogeneous scenes, the surface structure underlying the methane plume can become a dominant source of uncertainty.
Katerina Garane, Ka Lok Chan, Maria-Elissavet Koukouli, Diego Loyola, and Dimitris Balis
Atmos. Meas. Tech., 16, 57–74, https://doi.org/10.5194/amt-16-57-2023, https://doi.org/10.5194/amt-16-57-2023, 2023
Short summary
Short summary
In this work, 2.5 years of TROPOMI/S5P Total Column Water Vapor (TCWV) observations retrieved from the blue wavelength band are validated against co-located precipitable water measurements from NASA AERONET, which uses Cimel Sun photometers globally. Overall, the TCWV product agrees well on a global scale with the ground-based dataset (Pearson correl. coefficient 0.909) and has a mean relative bias of −2.7 ± 4.9 % with respect to the AERONET observations for moderate albedo and cloudiness.
Lei Shi, Carl J. Schreck III, Viju O. John, Eui-Seok Chung, Theresa Lang, Stefan A. Buehler, and Brian J. Soden
Atmos. Meas. Tech., 15, 6949–6963, https://doi.org/10.5194/amt-15-6949-2022, https://doi.org/10.5194/amt-15-6949-2022, 2022
Short summary
Short summary
Four upper tropospheric humidity (UTH) datasets derived from satellite microwave and infrared sounders are evaluated to assess their consistency as part of the activities for the Global Energy and Water Exchanges (GEWEX) water vapor assessment project. The study shows that the four datasets are consistent in the interannual temporal and spatial variability of the tropics. However, differences are found in the magnitudes of the anomalies and in the changing rates during the common period.
Cited articles
Bennett, L. J., Blyth, A. M., Burton, R. R., Gadian, A. M., Weckwerth, T.
M., Behrendt, A., Di Girolamo, P., Dorninger, M., Lock, S.-J., Smith, V. H.,
and Mobbs, S. D.: Initiation of convection over the Black Forest mountains
during COPS IOP15a, Q. J. Roy. Meteor. Soc.,
137, 176–189, https://doi.org/10.1002/qj.760, 2011.
Bhawar, R., Bianchini, G., Bozzo, A., Cacciani, M., Calvello, M.R.,
Carlotti, M., Castagnoli, F., Cuomo, V., Di Girolamo, P., Di Iorio, T., Di
Liberto, L., di Sarra, A., Esposito, F., Fiocco, G., Fua, D., Grieco, G.,
Maestri, T., Masiello, G., Muscari, G., Palchetti, L., Papandrea, E.,
Pavese, G., Restieri, R., Rizzi, R., Romano, F., Serio, C., Summa, D.,
Todini, G., and Tosi, E.: Spectrally Resolved Observations of Atmospheric
Emitted Radiance in the H2O Rotation Band, Geophys. Res.
Lett., 35, L04812, doi:10.1029/2007GL032207, 2008.
Bhawar, R., Di Girolamo, P., Summa, D., Flamant, C., Althausen, D., Behrendt, A.,
Kiemle, C., Bosser, P., Cacciani, M., Champollion, C., Di Iorio, T., Engelmann, R.,
Herold, C., Müller, D., Pal, S., Wirth, M., and Wulfmeyer, V.: The
Water Vapour Intercomparison Effort in the Framework of the Convective and
Orographically-Induced Precipitation Study: Airborne-to-Ground-based and
airborne-to-airborne Lidar Systems, Q. J. Roy. Meteor. Soc., 137, 325–348,
2011.
Behrendt, A. and Reichardt, J.: Atmospheric temperature profiling in the
presence of clouds with a pure rotational Raman lidar by use of an
interference-filter-based polychromator, Appl. Opt., 39, 1372–1378, 2000.
Behrendt, A.: Temperature measurements whth lidar in: Lidar Range-Resolved
Optical Remote Sensing of the Atmosphere, edited by: Weitkamp, C., Springer,
New York, 460 pp., 2005.
Behrendt, A., Wulfmeyer, V., Di Girolamo, P., Kiemle, C., Bauer, H.-S.,
Schaberl, T., Summa, D., Whiteman, D. N., Demoz, B. B., Browell, E. V.,
Ismail, S., Ferrare, R., Kooi, S., Ehret, G., and Wang, J.: Intercomparison of
water vapor data measured with lidar during IHOP 2002, Part I: Airborne to
ground-based lidar systems and comparisons with chilled-mirror hygrometer
radiosondes, J. Atmos. Ocean. Tech., 24, 3–21, 2007a.
Behrendt, A., Wulfmeyer, V., Kiemle, C., Ehret, G., Flamant, C., Schaberl,
T., Bauer, H.-S., Kooi, S., Ismail, S., Ferrare, R., Browell, E. V.,
and Whiteman, D. N.: Intercomparison of water vapor data measured with lidar
during IHOP 2002, Part II: Airborne-to-airborne systems, J. Atmos. Ocean. Tech., 24, 22–39, 2007b.
Boylan, P., Wang, J., Cohn, S. A., Fetzer, E., Maddy, E. S., and Wong, S.:
Validation of AIRS Version 6 Temperature Profiles and Surface-Based
Inversions over Antarctica using Concordiasi Dropsonde Data, J. Geophys. Res.-Atmos., 120, 992–1007, doi:10.1002/2014JD022551,
2015.
Collard, A. D.: Selection of IASI channels for use in numerical weather prediction,
available at: https://onlinelibrary.wiley.com/ (last access: 10 September 2019), Wiley InterScience, Q. J. R. Meteorol. Soc., 133, 1977–1991, 2007.
Chanin, M. L., Hauchercorne, A., Garnier, A., and Nedeljkovic, D.: Recent
lidar developments to monitor stratosphere-troposphere exchange, J. Atmos. Terr. Phys., 56, 1073–1081, 1994.
Chazette, P., Marnas, F., Totems, J., and Shang, X.: Comparison of IASI water vapor retrieval with H2O-Raman lidar in the framework of the Mediterranean HyMeX and ChArMEx programs, Atmos. Chem. Phys., 14, 9583–9596, https://doi.org/10.5194/acp-14-9583-2014, 2014.
Collard, A. D.: Selection of IASI channels for use in numerical weather
prediction, J. Meteorol. Soc. Jpn., 133, 1977–1991, doi:10.1002/qj.178, 2007.
De Mazière, M., Thompson, A. M., Kurylo, M. J., Wild, J. D., Bernhard, G., Blumenstock, T., Braathen, G. O., Hannigan, J. W., Lambert, J.-C., Leblanc, T., McGee, T. J., Nedoluha, G., Petropavlovskikh, I., Seckmeyer, G., Simon, P. C., Steinbrecht, W., and Strahan, S. E.: The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives, Atmos. Chem. Phys., 18, 4935–4964, https://doi.org/10.5194/acp-18-4935-2018, 2018.
Dessler, A. E., Schoeberl, M. R., Wang, T., Davis, S. M., and Rosenlof, K.
H.: Stratospheric water vapor feedback, P. Natl. Acad. Sci. USA, 110,
18087–18091, doi:10.1073/pnas.1310344110, 2013.
Di Girolamo, P., Cacciani, M., di Sarra, A., Fiocco, G., and Fuà, D.: Lidar
observations of the Pinatubo aerosol layer at Thule, Greenland, Geophys.
Res. Lett., 21, 1295–1298, doi:10.1029/93GL02892, 1994.
Di Girolamo, P., Marchese, R., Whiteman, D. N., and Demoz, B. B.: Rotational
Raman Lidar measurements of atmospheric temperature in the UV, Geophys. Res.
Lett., 31, L01106, doi:10.1029/2003GL018342, 2004.
Di Girolamo, P., Behrendt, A., and Wulfmeyer, V.: Spaceborne profiling of
atmospheric temperature and particle extinction with pure rotational Raman
lidar and of relative humidity in combination with differential absorption
lidar: performance simulations, Appl. Opt., 45, 2474–2494,
doi:10.1364/AO.45.002474, 2006.
Di Girolamo, P., Summa, D., and Ferretti, R.: Multiparameter Raman Lidar
Measurements for the Characterization of a Dry Stratospheric Intrusion
Event, J. Atmos. Ocean. Tech., 26, 1742–1762, doi:10.1175/2009JTECHA1253.1, 2009a.
Di Girolamo, P., Summa, D., Lin, R.-F., Maestri, T., Rizzi, R., and Masiello, G.: UV Raman lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties, Atmos. Chem. Phys., 9, 8799–8811, https://doi.org/10.5194/acp-9-8799-2009, 2009b.
Di Girolamo, P., Summa, D., Bhawar, R., Di Iorio, T., Cacciani, M.,
Veselovskii, I., Dubovik, O., and Kolgotin, A.: Raman Lidar observations of
a Saharan dust outbreak event: Characterization of the dust optical
properties and determination of particle size and microphysical parameters,
Atmos. Environ., 50, 66–78, https://doi.org/10.1016/j.atmosenv.2011.12.061,
2012a.
Di Girolamo, P., Summa, D., Cacciani, M., Norton, E. G., Peters, G., and Dufournet, Y.: Lidar and radar measurements of the melting layer: observations of dark and bright band phenomena, Atmos. Chem. Phys., 12, 4143–4157, https://doi.org/10.5194/acp-12-4143-2012, 2012b.
Di Girolamo, P., Flamant, C., Cacciani, M., Richard, E., Ducrocq, V., Summa,
D., Stelitano, D., Fourrié, N., and Saïd, F.: Observation of
low-level wind reversals in the Gulf of Lion area and their impact on the
water vapour variability, Q. J. Roy. Meteor. Soc., 142, 153–172,
https://doi.org/10.1002/qj.2767, 2016.
Di Girolamo, P., Cacciani, M., Summa, D., Scoccione, A., De Rosa, B., Behrendt, A., and Wulfmeyer, V.: Characterisation of boundary layer turbulent processes by the Raman lidar BASIL in the frame of HD(CP)2 Observational Prototype Experiment, Atmos. Chem. Phys., 17, 745–767, https://doi.org/10.5194/acp-17-745-2017, 2017.
Di Girolamo, P., Behrendt, A., and Wulfmeyer, V.: Space-borne profiling of
atmospheric thermodynamic variables with Raman lidar: performance
simulations, Opt. Exp., 26, 7955–7964,
https://doi.org/10.1364/OE.26.008125, 2018a.
Di Girolamo, P., Scoccione, A., Cacciani, M., Summa, D., De Rosa, B., and Schween, J. H.: Clear-air lidar dark band, Atmos. Chem. Phys., 18, 4885–4896, https://doi.org/10.5194/acp-18-4885-2018, 2018b.
Dionisi, D., Keckhut, P., Courcoux, Y., Hauchecorne, A., Porteneuve, J.,
Baray, J. L., Leclair de Bellevue, J., Vérèmes, H., Gabarrot, F.,
Payen, G., Decoupes, R., and Cammas, J. P.: Water vapor observations up to
the lower stratosphere through the Raman lidar during the Maïdo Lidar
Calibration Campaign, Atmos. Meas. Tech., 8, 1425–1445,
https://doi.org/10.5194/amt-8-1425-2015, 2015.
di Sarra, A, Cacciani, M., Di Girolamo, P., Fiocco, G., Fuà, D.,
Knudsen, B., Larsen, N., and Joergensen, T. S.: Observations of correlated
behaviour of stratospheric ozone and aerosol at Thule during winter
1991-1992, Geophys. Res. Lett., 19, 1823–1826, doi:10.1029/92GL01887, 1992.
Ducrocq, V., Braud, I., Davolio, S., Ferretti, R., Flamant, C., Jansa, A., Kalthoff, N., Richard, E., Taupier-Letage, I., Ayral, P., Belamari, S., Berne, A., Borga, M., Boudevillain, B., Bock, O., Boichard, J., Bouin, M., Bousquet, O., Bouvier, C., Chiggiato, J., Cimini, D., Corsmeier, U., Coppola, L., Cocquerez, P., Defer, E., Delanoë, J., Di Girolamo, P., Doerenbecher, A., Drobinski, P., Dufournet, Y.,
Fourrié, N., Gourley, J. J., Labatut, L., Lambert, D., Le Coz, J.,
Marzano, F. S., Molinié, G., Montani, A., Nord, G., Nuret, M., Ramage, K., Rison, W.,
Roussot, O., Said, F., Schwarzenboeck, A., Testor, P., Van Baelen, J., Vincendon, B.,
Aran, M., and Tamayo, J.: HyMeX-SOP1: The Field Campaign Dedicated
to Heavy Precipitation and Flash Flooding in the Northwestern Mediterranean,
B. Am. Meteorol. Soc., 95, 1083–1100, https://doi.org/10.1175/BAMS-D-12-00244.1, 2014.
ECMWF: European Centre for Medium-Range Weather Forecasts (ECMWF) 15-year
re-analysis (ERA-15) model data, NCAS British Atmospheric Data Centre, date
of citation, available at:
http://catalogue.ceda.ac.uk/uuid/73ec447ea99457c77c0ef9692f76393f (last access: 10 September 2019), 2006.
ECMWF: grib2netcdf-atls00-a562cefde8a29a7288fa0b8b7f9413f7-8dE8nL, available at: https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/,
last access: 10 September 2019.
EUMETSAT: W_XX-EUMETSAT-Darmstadt, HYPERSPECT+SOUNDING, METOPB+IASI_C_EUMP_20141127081454, available at: https://eoportal.eumetsat.int/userMgmt/protected/welcome.faces, last access: 10 September 2019.
Griessbach, S., Hoffmann, L., Spang, R., von Hobe, M., Müller, R., and Riese, M.: Infrared limb emission measurements of aerosol in the troposphere and stratosphere, Atmos. Meas. Tech., 9, 4399–4423, https://doi.org/10.5194/amt-9-4399-2016, 2016.
Hammann, E. and Behrendt, A.: Parametrization of optimum filter passbands
for rotational Raman temperature measurements, Opt. Exp., 23,
30767–30782, doi:10.1364/OE.23.030767, 2015.
Hauchecorne, A. and Chanin, M.-L.: Density and Temperature Profiles Obtained by
Lidar Between 35 and 70 km, Geophys. Res. Lett., 7, 565–568, doi:10.1029/GL007i008p00565, 1980.
Hauchercorne, A., Chanin, M. L., Keckhout, P., and Nedeljkovic, D.: Lidar
monitoring of the temperature in the middle e lower atmosphere, Appl.
Phys. B, 55, 29–34, 1992.
Hurst, D. F.,
Lambert, A., Read, W. G., Davis, S. M., Rosenlof, K. H.,
Hall, E. G.,
Jordan, A. F., and Oltmans, S. J.: OltmansValidation of Aura Microwave
Limb Sounder stratospheric water vapor measurements by the NOAA frost point
hygrometer, J. Geophys. Res.-Atmos., 119, 1612–1625, doi:10.1002/2013JD020757, 2014.
Climate Change 2007: Intergovernmental Panel on Climate Change, The
Physical Science Basis, Contribution of Working Group I to the Fourth
Assessment Report of the Intergovernmental Panel on Climate Change, edited
by: S. Solomon, Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., Miller, H. L., Cambridge Univ. Press, Cambridge, UK, 996 pp., 2007.
Leblanc, T., McDermid, I. S., Hauchecorne, A., and Keckhut, P.: Evaluation of
optimization of lidar temperature analysis algorithms using simulated data,
J. Geophys. Res., 103, 6177–6187, 1998a.
Leblanc, T., McDermid, I. S., She, C. Y., Krueger, D. A., Hauchecorne, A., and
Keckhut, P.: Temperature climatology of the middle atmosphere from long-term
lidar measurements at mid- and low-latitudes, J. Geophys. Res., 103, 17191–17204, 1998b.
Leblanc, T., Stuart McDermid, I., and Aspey, R. A.: First-Year Operation
of a New Water Vapor Raman Lidar at the JPL Table Mountain Facility,
California, J. Atmos. Ocean. Tech., 25, 1454–1462, 2008.
Leblanc, T., McDermid, I. S., and Walsh, T. D.: Ground-based water vapor raman lidar measurements up to the upper troposphere and lower stratosphere for long-term monitoring, Atmos. Meas. Tech., 5, 17–36, https://doi.org/10.5194/amt-5-17-2012, 2012.
Li, T., Leblanc, T., and McDermid, I. S.: Interannual Variations of Middle
Atmospheric Temperature as Measured by the JPL Lidar at Mauna Loa
Observatory, Hawaii (19.5∘ N, 155.6∘ W), J. Geophys. Res., 113,
D14109, doi:10.1029/2007JD009764, 2008.
Lossow, S., Khosrawi, F., Nedoluha, G. E., Azam, F., Bramstedt, K., Burrows, John. P., Dinelli, B. M., Eriksson, P., Espy, P. J., García-Comas, M., Gille, J. C., Kiefer, M., Noël, S., Raspollini, P., Read, W. G., Rosenlof, K. H., Rozanov, A., Sioris, C. E., Stiller, G. P., Walker, K. A., and Weigel, K.: The SPARC water vapour assessment II: comparison of annual, semi-annual and quasi-biennial variations in stratospheric and lower mesospheric water vapour observed from satellites, Atmos. Meas. Tech., 10, 1111–1137, https://doi.org/10.5194/amt-10-1111-2017, 2017.
Macke, A., Seifert, P., Baars, H., Barthlott, C., Beekmans, C., Behrendt, A., Bohn, B., Brueck, M., Bühl, J., Crewell, S., Damian, T., Deneke, H., Düsing, S., Foth, A., Di Girolamo, P., Hammann, E., Heinze, R., Hirsikko, A., Kalisch, J., Kalthoff, N., Kinne, S., Kohler, M., Löhnert, U., Madhavan, B. L., Maurer, V., Muppa, S. K., Schween, J., Serikov, I., Siebert, H., Simmer, C., Späth, F., Steinke, S., Träumner, K., Trömel, S., Wehner, B., Wieser, A., Wulfmeyer, V., and Xie, X.: The HD(CP)2 Observational Prototype Experiment (HOPE) – an overview, Atmos. Chem. Phys., 17, 4887–4914, https://doi.org/10.5194/acp-17-4887-2017, 2017.
Kiemle, C., Wirth, M., Fix, A., Rahm, S., Corsmeier, U., and Di Girolamo, P.:
Latent heat flux measurements over complex terrain by airborne water vapour
and wind Lidars, Q. J. Roy. Meteor. Soc., 137, 190–203, doi:10.1002/qj.757, 2011.
Marenco, F., di Sarra Alcide, C. M., Fiocco, G., and Fuà, D.:
Thermal structure of the winter middle atmosphere observed by lidar at
Thule, Greenland, during 1993–1994, J. Atmos. Sol.-Terr. Phy., 59, 151–158, 1997.
Pilins, C., Pandis, S. N., and Seinfeld, J. H.: Sensivity of a direct climate
forcing by atmospheric aerosols size and compositio, J. Geophys. Res., 100,
18739–18754, 1995.
Rabier, F., Nadia, F., Chafai, D., and Prunet, P.: Channel
selection methods for Infrared Atmospheric Sounding Interferometer
radiances, Q. J. Roy. Meteor. Soc., 128, 1011–1027, 2002.
Riese, M., Ploeger, F.,
Rap, A., Vogel, B., Konopka, P., Dameris, M., and Forster, P.: Impact of
uncertainties in atmospheric mixing on simulated UTLS composition and
related radiative effects, J. Geophys. Res., 117, D16305,
doi:10.1029/2012JD017751, 2012.
Rosen, J. M.: The boiling point of stratospheric aerosols, J. Appl.
Meteorol., 10, 1044–1046, 1971.
Serio, C., Masiello, G., Esposito, F., Di Girolamo, P., Di Iorio, T.,
Palchetti, L., Bianchini, G., Muscari, G., Pavese, G., Rizzi, R., Carli, B.,
and Cuomo, V.: Retrieval of foreign-broadened water vapor continuum coefficients
from emitted spectral radiance in the H2O rotational band from 240 to 590 cm−1, Opt. Exp., 16, 15816–15833, doi:10.1364/OE.16.015816, 2008.
Sica, R. J., Sargoytchev, S., Argall, P. S., Borra, E. F., Girard, L.,
Sparrow, C. T., and Flatt, S.: Lidar measurements taken with a
large-aperture liquid mirror, 1. Rayleigh-scatter system, Appl. Opt., 34, 6925–6936, 1995.
Siméoni, D., Singer, C., and Chalon, G.: Infrared atmospheric sounding
interferometer, Acta Astronaut., 40, 113–118, 1997.
Steinke, S., Eikenberg, S., Löhnert, U., Dick, G., Klocke, D., Di Girolamo, P., and Crewell, S.: Assessment of small-scale integrated water vapour variability during HOPE, Atmos. Chem. Phys., 15, 2675–2692, https://doi.org/10.5194/acp-15-2675-2015, 2015.
Thorne, P. W., Parker, D. E., Christy, J. R., Mears, C. A.: Uncertainties in
Climate Trrends, Lessons from Upper-Air Temperature Records, B. Am. Meteorol. Soc., 86, 1437–1442, https://doi.org/10.1175/BAMS-86-10-1437, 2005.
Ugolnikov, O. S. and Maslov, I. A.: Investigations of the Background
Stratospheric Aerosol Using Multicolor Wide-Angle Measurements of the
Twilight Glow Background, Cosmic Res., 56, 85–93, 2018.
Uppala, S. M., KÅllberg, P. W., Simmons, A. J., Andrae, U., Da Costa, V.,
Bechtold, V., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A., Li, X., Onogi, K. Saarinen S. Sokka N. Allan R. P. Andersson E., Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., Van De Berg, L., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B. J., Isaksen, L., Janssen, P. A. E. M., Jenne, R., Mcnally, A. P., Mahfouf, J.‐F., Morcrette, J.‐J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K. E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40 re-analysis, Q. J. Roy. Meteor. Soc., 131, 2961, doi:10.1256/qj.04.176, 2005.
Standard Atmosphere U.S.: Document ID: 19770009539, Accession Number:
77N16482, Report Number: NASA-TM-X-74335, NOAA-S/T-76-1562, NASA, 1976.
Vomel, H., Selkirk, H., Miloshevich, L., Valverde-Canossa, J., Valdes,
J., Kyro, E., Kivi, R., Stolz, W., Peng, G., and Diaz, J. A.: Radiation dry bias of the Vaisala RS92 humidity
sensor, J. Atmos. Ocean. Tech., 24, 953–963, 2007.
Whiteman, D. N.: Examination of the traditional Raman lidar technique. I.
Evaluating the temperature-dependent lidar equations, Appl. Opt., 42,
2571–2592, 2003.
Whiteman, D. N., Melfi, S. H., and Ferrare, R. A.: Raman lidar system for
the measurement of water vapor and aerosols in the Earth's atmosphere, Appl.
Opt., 31, 3068–3082, 1992.
Whiteman, D. N., Demoz, B., Di Girolamo, P., Comer, J., Veselovskii, I., Evans, K., Wang, Z., Sabatino, D., Schwemmer, G., Gentry, B., Lin, R., Behrendt, A., Wulfmeyer, V., Browell, E., Ferrare, R., Ismail, S., and Wang, J.: Raman Lidar
Measurements during the International H2O Project, Part II: Case Studies,
J. Atmos. Ocean. Tech., 23, 170–183, doi:10.1175/JTECH1839.1, 2006.
Whiteman, D. N., Cadirola, M., Venable, D., Calhoun, M., Miloshevich, L., Vermeesch, K., Twigg, L., Dirisu, A., Hurst, D., Hall, E., Jordan, A., and Vömel, H.: Correction technique for Raman water vapor lidar signal-dependent bias and suitability for water vapor trend monitoring in the upper troposphere, Atmos. Meas. Tech., 5, 2893–2916, https://doi.org/10.5194/amt-5-2893-2012, 2012.
Wulfmeyer, V. and Feingold, G.: On the relationship between relative humidity and
particle backscattering coefficient in the marine boundary layer determined
with differential absorption lidar, J. Geophys. Res., 105, 4729, https://doi.org/10.1029/1999JD901030, 2000.
Wulfmeyer, V., Bauer, H., Di Girolamo, P., and Serio, C.: Comparison of active
and passive water vapour remote sensing from space: An analysis based on the
simulated performance of IASI and space borne differential absorption Lidar,
Remote Sens. Environ., 95, 211–230, doi:10.1016/j.rse.2004.12.019, 2005.
Wulfmeyer, V., Behrendt, A., Bauer, H. S., Kottmeier, C., Corsmeier, U.,
Blyth, A., Craig, G., Schumann, U., Hagen, M., Crewell, S., Di Girolamo, P.,
Flamant, C., Miller, M., Montani, A., Mobbs, S., Richard, E., Rotach, M. W.,
Arpagaus, M., Russchenberg, H., Schlüssel, P., König, M.,
Gärtner, V., Steinacker, R., Dorninger, M., Turner, D. D., Weckwerth,
T., Hense, A., and Simmer, C.: Research campaign: The convective and
orographically induced precipitation study - A research and development
project of the World Weather Research Program for improving quantitative
precipitation forecasting in low-mountain regions, B. Am. Meteorol. Soc., 89, 1477–1486, doi:10.1175/2008BAMS2367.1, 2008.
Xiankang, D., Li, T., Xu, J., Liu, H.-L., Xue, X., Wang, S., Leblanc, T., Stuart McDermid, I., Hauchecorne, A., Keckhut, P., Bencherif, H., Heinselman, C., Steinbrecht, W., Mlynczak, M. G., and Russell III, J. M.: Seasonal oscillations of middle atmosphere temperature
observed by Rayleigh lidars and their comparisons with TIMED/SABER
observations, J. Geophys. Res., 114, D20103,
doi:10.1029/2008JD011654, 2009.
Zhao, J., Chu, X., Chen, C., Lu, X., Fong, W., Yu, Z., Jones, R. M.,
Roberts, B. R., and Dörnbrack, A.: Lidar observations of stratospheric
gravity waves from 2011 to 2015 at McMurdo (77.84∘ S,
166.69∘ E), Antarctica: 1, Vertical wavelengths, periods, and
frequency and vertical wave number spectra, J. Geophys. Res.-Atmos., 122,
5041–5062, doi:10.1002/2016JD026368, 2017.
Short summary
Temperature and water vapour profiles measured by the BASIL lidar are compared with profiles from several sensors/models, namely radiosondes, the IASI and AIRS satellite sensors and model reanalyses data (ECMWF & ECMWF-ERA). The comparison effort allows for the performance of all of the sensors and models to be assessed in terms of bias and RMS deviation. BASIL measurement quality is confirmed to be high enough for long-term monitoring of atmospheric composition and thermal structure changes.
Temperature and water vapour profiles measured by the BASIL lidar are compared with profiles...