Articles | Volume 13, issue 12
Atmos. Meas. Tech., 13, 6853–6875, 2020
https://doi.org/10.5194/amt-13-6853-2020
Atmos. Meas. Tech., 13, 6853–6875, 2020
https://doi.org/10.5194/amt-13-6853-2020

Research article 16 Dec 2020

Research article | 16 Dec 2020

Absolute calibration method for frequency-modulated continuous wave (FMCW) cloud radars based on corner reflectors

Felipe Toledo et al.

Related authors

A new conceptual model for adiabatic fog
Felipe Toledo, Martial Haeffelin, Eivind Wærsted, and Jean-Charles Dupont
Atmos. Chem. Phys., 21, 13099–13117, https://doi.org/10.5194/acp-21-13099-2021,https://doi.org/10.5194/acp-21-13099-2021, 2021
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Instruments and Platforms
Multifrequency radar observations of clouds and precipitation including the G-band
Katia Lamer, Mariko Oue, Alessandro Battaglia, Richard J. Roy, Ken B. Cooper, Ranvir Dhillon, and Pavlos Kollias
Atmos. Meas. Tech., 14, 3615–3629, https://doi.org/10.5194/amt-14-3615-2021,https://doi.org/10.5194/amt-14-3615-2021, 2021
Short summary
Spaceborne differential absorption radar water vapor retrieval capabilities in tropical and subtropical boundary layer cloud regimes
Richard Roy, Matthew Lebsock, and Marcin Kurowski
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-111,https://doi.org/10.5194/amt-2021-111, 2021
Revised manuscript accepted for AMT
Short summary
Can machine learning correct microwave humidity radiances for the influence of clouds?
Inderpreet Kaur, Patrick Eriksson, Simon Pfreundschuh, and David Ian Duncan
Atmos. Meas. Tech., 14, 2957–2979, https://doi.org/10.5194/amt-14-2957-2021,https://doi.org/10.5194/amt-14-2957-2021, 2021
Short summary
McRALI: a Monte Carlo high-spectral-resolution lidar and Doppler radar simulator for three-dimensional cloudy atmosphere remote sensing
Frédéric Szczap, Alaa Alkasem, Guillaume Mioche, Valery Shcherbakov, Céline Cornet, Julien Delanoë, Yahya Gour, Olivier Jourdan, Sandra Banson, and Edouard Bray
Atmos. Meas. Tech., 14, 199–221, https://doi.org/10.5194/amt-14-199-2021,https://doi.org/10.5194/amt-14-199-2021, 2021
Short summary
Cirrus cloud shape detection by tomographic extinction retrievals from infrared limb emission sounder measurements
Jörn Ungermann, Irene Bartolome, Sabine Griessbach, Reinhold Spang, Christian Rolf, Martina Krämer, Michael Höpfner, and Martin Riese
Atmos. Meas. Tech., 13, 7025–7045, https://doi.org/10.5194/amt-13-7025-2020,https://doi.org/10.5194/amt-13-7025-2020, 2020
Short summary

Cited articles

Anagnostou, E. N., Morales, C. A., and Dinku, T.: The Use of TRMM Precipitation Radar Observations in Determining Ground Radar Calibration Biases, J. Atmos. Ocean. Tech., 18, 616–628, https://doi.org/10.1175/1520-0426(2001)018<0616:TUOTPR>2.0.CO;2, 2001. a
Atlas, D.: RADAR CALIBRATION, B. Am. Meteorol. Soc., 83, 1313–1316, https://doi.org/10.1175/1520-0477-83.9.1313, 2002. a
Bergada, M., Sekelsky, S. M., and Li, L.: External Calibration of Millimeter-Wave Atmospheric Radar System Using Corner Reflectors and Spheres. Eleventh ARM Science Team Meeting Proceedings, Atlanta, Georgia, 19–23 March 2001. a
Boers, R., Baltink, H. K., Hemink, H. J., Bosveld, F. C., and Moerman, M.: Ground-Based Observations and Modeling of the Visibility and Radar Reflectivity in a Radiation Fog Layer, J. Atmos. Ocean. Tech., 30, 288–300, https://doi.org/10.1175/JTECH-D-12-00081.1, 2013. a
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013. a
Download
Short summary
Cloud observations are essential to rainfall, fog and climate change forecasts. One key instrument for these observations is cloud radar. Yet, discrepancies are found when comparing radars from different ground stations or satellites. Our work presents a calibration methodology for cloud radars based on reference targets, including an analysis of the uncertainty sources. The method enables the calibration of reference instruments to improve the quality and value of the cloud radar network data.