Articles | Volume 14, issue 4
https://doi.org/10.5194/amt-14-3131-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-3131-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development of the drop Freezing Ice Nuclei Counter (FINC), intercomparison of droplet freezing techniques, and use of soluble lignin as an atmospheric ice nucleation standard
Anna J. Miller
Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, 8092 Switzerland
Killian P. Brennan
Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, 8092 Switzerland
Claudia Mignani
Department of Environmental Sciences, University of Basel, Basel, 4056 Switzerland
Jörg Wieder
Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, 8092 Switzerland
Robert O. David
Department of Geosciences, University of Oslo, Oslo, 0315 Norway
Nadine Borduas-Dedekind
CORRESPONDING AUTHOR
Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, 8092 Switzerland
Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, 8092 Switzerland
now at: Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z1, Canada
Related authors
Anna J. Miller, Killian P. Brennan, Claudia Mignani, Jörg Wieder, Assaf Zipori, Robert O. David, and Nadine Borduas-Dedekind
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-361, https://doi.org/10.5194/amt-2020-361, 2020
Preprint withdrawn
Short summary
Short summary
For characterizing atmospheric ice nuclei, we present (1) the development of our home-built droplet freezing technique (DFT), the Freezing Ice Nuclei Counter (FINC), (2) an intercomparison campaign using NX-illite and an ambient sample with three DFTs, and (3) the application of lignin as a soluble and commercial ice nuclei standard with four DFTs. We further compiled the growing number of DFTs in use for atmospheric ice nucleation since 2000, to which we add FINC.
Charles M. Davis, Susan C. van den Heever, Leah D. Grant, Sonia M. Kreidenweis, Claudia Mignani, Russell J. Perkins, and Elizabeth A. Stone
EGUsphere, https://doi.org/10.5194/egusphere-2025-2968, https://doi.org/10.5194/egusphere-2025-2968, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Plant- and other biological matter is released into the air from the earth’s surface when it rains. When present in clouds, these particles promote ice formation. We simulate three kinds of storms to see whether they pick up surface air from rainy regions where these particles would be. We find that all the storms ingest similar amounts of air from regions of light rain, but the types of storms that are typically longer-lived and more severe ingest more air from regions of heavy rain.
Rickey J. M. Lee, Ayomide A. Akande, Saeid Kamal, Paul A. Heine, Pritesh Padhiar, David Tonkin, Wesley Rusinoff, Mohamad Rezaei, and Nadine Borduas-Dedekind
EGUsphere, https://doi.org/10.5194/egusphere-2025-3041, https://doi.org/10.5194/egusphere-2025-3041, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The University of British Columbia (UBC)'s Advanced Techniques for Mechanisms of OXidation (ATMOX) chamber is a modular 8 m3 environmental chamber capable of operating under batch and continuous mode experiments with a unique setup of light-emitting diodes (LEDs) producing irradiance peaks at 275, 310, 325, 340, 365, 385 nm, as well as between 450 and 630 nm. This chamber enables wavelength-specific photochemical experiments without temperature increases while being energy efficient.
Filip Severin von der Lippe, Tim Carlsen, Trude Storelvmo, and Robert Oscar David
EGUsphere, https://doi.org/10.5194/egusphere-2025-3711, https://doi.org/10.5194/egusphere-2025-3711, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This paper investigates how clouds associated with Arctic marine cold air outbreaks (CAOs) respond to climate change. By utilizing machine learning methods and remote sensing data from the past 25 years, the study identifies trends indicating a shortening of the CAO season. This has implications for the Arctic energy balance, underscoring the importance of further investigating these clouds to understand the trajectory of future Arctic climate.
Gianluca Di Natale, Helen Brindley, Laura Warwick, Sanjeevani Panditharatne, Ping Yang, Robert Oscar David, Tim Carlsen, Sorin Nicolae Vâjâiac, Alex Vlad, Sorin Ghemulet, Richard Bantges, Andreas Foth, Martin Flügge, Reidar Lyngra, Hilke Oetjen, Dirk Schuettemeyer, Luca Palchetti, and Jonathan Murray
EGUsphere, https://doi.org/10.5194/egusphere-2025-3547, https://doi.org/10.5194/egusphere-2025-3547, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Cirrus clouds play a vital role in regulating the energy balance of our planet. Unfortunately, these are still not completely understood representing the major source of error in the predictive performance of climate models. We show that a good consinstency between in situ measurements of cirrus cloud microphysics and remote sensing observations from ground base is achievable by simulating the emitted spectrum with the current parameterization of cirrus optical properties.
Kathleen A. Alden, Paul Bieber, Anna J. Miller, Nicole Link, Benjamin J. Murray, and Nadine Borduas-Dedekind
Atmos. Chem. Phys., 25, 6179–6195, https://doi.org/10.5194/acp-25-6179-2025, https://doi.org/10.5194/acp-25-6179-2025, 2025
Short summary
Short summary
Lignin and Snomax are surface-active macromolecules that show a relationship between increasing concentrations, decreasing surface tension, and increasing ice-nucleating ability. However, this relationship did not hold for agricultural soil extracts collected in the UK and Canada. To explain this difference, we propose that as the complexity of the sample increases, the hydrophobic interfaces in the bulk compete with the air–water interface.
Michael F. Link, Megan S. Claflin, Christina E. Cecelski, Ayomide A. Akande, Delaney Kilgour, Paul A. Heine, Matthew Coggon, Chelsea E. Stockwell, Andrew Jensen, Jie Yu, Han N. Huynh, Jenna C. Ditto, Carsten Warneke, William Dresser, Keighan Gemmell, Spiro Jorga, Rileigh L. Robertson, Joost de Gouw, Timothy Bertram, Jonathan P. D. Abbatt, Nadine Borduas-Dedekind, and Dustin Poppendieck
Atmos. Meas. Tech., 18, 1013–1038, https://doi.org/10.5194/amt-18-1013-2025, https://doi.org/10.5194/amt-18-1013-2025, 2025
Short summary
Short summary
Proton-transfer-reaction mass spectrometry (PTR-MS) is widely used for the measurement of volatile organic compounds (VOCs) both indoors and outdoors. An analytical challenge for PTR-MS measurements is the formation of unintended measurement interferences, product ion distributions (PIDs), that may appear in the data as VOCs of interest. We developed a method for quantifying PID formation and use interlaboratory comparison data to put quantitative constraints on PID formation.
Astrid B. Gjelsvik, Robert O. David, Tim Carlsen, Franziska Hellmuth, Stefan Hofer, Zachary McGraw, Harald Sodemann, and Trude Storelvmo
Atmos. Chem. Phys., 25, 1617–1637, https://doi.org/10.5194/acp-25-1617-2025, https://doi.org/10.5194/acp-25-1617-2025, 2025
Short summary
Short summary
Ice formation in clouds has a substantial impact on radiation and precipitation and must be realistically simulated in order to understand present and future Arctic climate. Rare aerosols known as ice-nucleating particles can play an important role in cloud ice formation, but their representation in global climate models is not well suited for the Arctic. In this study, the simulation of cloud phase is improved when the representation of these particles is constrained by Arctic observations.
Franziska Hellmuth, Tim Carlsen, Anne Sophie Daloz, Robert Oscar David, Haochi Che, and Trude Storelvmo
Atmos. Chem. Phys., 25, 1353–1383, https://doi.org/10.5194/acp-25-1353-2025, https://doi.org/10.5194/acp-25-1353-2025, 2025
Short summary
Short summary
This article compares the occurrence of supercooled liquid-containing clouds (sLCCs) and their link to surface snowfall in CloudSat–CALIPSO, ERA5, and the CMIP6 models. Significant discrepancies were found, with ERA5 and CMIP6 consistently overestimating sLCC and snowfall frequency. This bias is likely due to cloud microphysics parameterization. This conclusion has implications for accurately representing cloud phase and snowfall in future climate projections.
Huiying Zhang, Xia Li, Fabiola Ramelli, Robert O. David, Julie Pasquier, and Jan Henneberger
Atmos. Meas. Tech., 17, 7109–7128, https://doi.org/10.5194/amt-17-7109-2024, https://doi.org/10.5194/amt-17-7109-2024, 2024
Short summary
Short summary
Our innovative IceDetectNet algorithm classifies each part of aggregated ice crystals, considering both their basic shape and physical processes. Trained on ice crystal images from the Arctic taken by a holographic camera, it correctly classifies over 92 % of the ice crystals. These more detailed insights into the components of aggregated ice crystals have the potential to improve our estimates of microphysical properties such as riming rate, aggregation rate, and ice water content.
Britta Schäfer, Robert Oscar David, Paraskevi Georgakaki, Julie Thérèse Pasquier, Georgia Sotiropoulou, and Trude Storelvmo
Atmos. Chem. Phys., 24, 7179–7202, https://doi.org/10.5194/acp-24-7179-2024, https://doi.org/10.5194/acp-24-7179-2024, 2024
Short summary
Short summary
Mixed-phase clouds, i.e., clouds consisting of ice and supercooled water, are very common in the Arctic. However, how these clouds form is often not correctly represented in standard weather models. We show that both ice crystal concentrations in the cloud and precipitation from the cloud can be improved in the model when aerosol concentrations are prescribed from observations and when more processes for ice multiplication, i.e., the production of new ice particles from existing ice, are added.
Ghislain Motos, Gabriel Freitas, Paraskevi Georgakaki, Jörg Wieder, Guangyu Li, Wenche Aas, Chris Lunder, Radovan Krejci, Julie Thérèse Pasquier, Jan Henneberger, Robert Oscar David, Christoph Ritter, Claudia Mohr, Paul Zieger, and Athanasios Nenes
Atmos. Chem. Phys., 23, 13941–13956, https://doi.org/10.5194/acp-23-13941-2023, https://doi.org/10.5194/acp-23-13941-2023, 2023
Short summary
Short summary
Low-altitude clouds play a key role in regulating the climate of the Arctic, a region that suffers from climate change more than any other on the planet. We gathered meteorological and aerosol physical and chemical data over a year and utilized them for a parameterization that help us unravel the factors driving and limiting the efficiency of cloud droplet formation. We then linked this information to the sources of aerosol found during each season and to processes of cloud glaciation.
Guangyu Li, Elise K. Wilbourn, Zezhen Cheng, Jörg Wieder, Allison Fagerson, Jan Henneberger, Ghislain Motos, Rita Traversi, Sarah D. Brooks, Mauro Mazzola, Swarup China, Athanasios Nenes, Ulrike Lohmann, Naruki Hiranuma, and Zamin A. Kanji
Atmos. Chem. Phys., 23, 10489–10516, https://doi.org/10.5194/acp-23-10489-2023, https://doi.org/10.5194/acp-23-10489-2023, 2023
Short summary
Short summary
In this work, we present results from an Arctic field campaign (NASCENT) in Ny-Ålesund, Svalbard, on the abundance, variability, physicochemical properties, and potential sources of ice-nucleating particles (INPs) relevant for mixed-phase cloud formation. This work improves the data coverage of Arctic INPs and aerosol properties, allowing for the validation of models predicting cloud microphysical and radiative properties of mixed-phase clouds in the rapidly warming Arctic.
Yuting Lyu, Yin Hau Lam, Yitao Li, Nadine Borduas-Dedekind, and Theodora Nah
Atmos. Chem. Phys., 23, 9245–9263, https://doi.org/10.5194/acp-23-9245-2023, https://doi.org/10.5194/acp-23-9245-2023, 2023
Short summary
Short summary
We measured singlet oxygen (1O2*) and triplet excited states of organic matter (3C*) in illuminated aqueous extracts of PM2.5 collected in different seasons at different sites in Hong Kong SAR, South China. In contrast to the locations, seasonality had significant effects on 3C* and 1O2* production due to seasonal variations in long-range air mass transport. The steady-state concentrations of 3C* and 1O2* correlated with the concentration and absorbance of water-soluble organic carbon.
Nadine Borduas-Dedekind, Karen C. Short, and Samuel P. Carlson
Earth Syst. Sci. Data, 15, 1437–1440, https://doi.org/10.5194/essd-15-1437-2023, https://doi.org/10.5194/essd-15-1437-2023, 2023
Short summary
Short summary
This article describes the use of the open-discussion manuscript review process as an educational exercise for early career scientists.
Julie Thérèse Pasquier, Jan Henneberger, Fabiola Ramelli, Annika Lauber, Robert Oscar David, Jörg Wieder, Tim Carlsen, Rosa Gierens, Marion Maturilli, and Ulrike Lohmann
Atmos. Chem. Phys., 22, 15579–15601, https://doi.org/10.5194/acp-22-15579-2022, https://doi.org/10.5194/acp-22-15579-2022, 2022
Short summary
Short summary
It is important to understand how ice crystals and cloud droplets form in clouds, as their concentrations and sizes determine the exact radiative properties of the clouds. Normally, ice crystals form from aerosols, but we found evidence for the formation of additional ice crystals from the original ones over a large temperature range within Arctic clouds. In particular, additional ice crystals were formed during collisions of several ice crystals or during the freezing of large cloud droplets.
Guangyu Li, Jörg Wieder, Julie T. Pasquier, Jan Henneberger, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 14441–14454, https://doi.org/10.5194/acp-22-14441-2022, https://doi.org/10.5194/acp-22-14441-2022, 2022
Short summary
Short summary
The concentration of ice-nucleating particles (INPs) is atmospherically relevant for primary ice formation in clouds. In this work, from 12 weeks of field measurement data in the Arctic, we developed a new parameterization to predict INP concentrations applicable for pristine background conditions based only on temperature. The INP parameterization could improve the cloud microphysical representation in climate models, aiding in Arctic climate predictions.
Claudia Mignani, Lukas Zimmermann, Rigel Kivi, Alexis Berne, and Franz Conen
Atmos. Chem. Phys., 22, 13551–13568, https://doi.org/10.5194/acp-22-13551-2022, https://doi.org/10.5194/acp-22-13551-2022, 2022
Short summary
Short summary
We determined over the course of 8 winter months the phase of clouds associated with snowfall in Northern Finland using radiosondes and observations of ice particle habits at ground level. We found that precipitating clouds were extending from near ground to at least 2.7 km altitude and approximately three-quarters of them were likely glaciated. Possible moisture sources and ice formation processes are discussed.
Jörg Wieder, Nikola Ihn, Claudia Mignani, Moritz Haarig, Johannes Bühl, Patric Seifert, Ronny Engelmann, Fabiola Ramelli, Zamin A. Kanji, Ulrike Lohmann, and Jan Henneberger
Atmos. Chem. Phys., 22, 9767–9797, https://doi.org/10.5194/acp-22-9767-2022, https://doi.org/10.5194/acp-22-9767-2022, 2022
Short summary
Short summary
Ice formation and its evolution in mixed-phase clouds are still uncertain. We evaluate the lidar retrieval of ice-nucleating particle concentration in dust-dominated and continental air masses over the Swiss Alps with in situ observations. A calibration factor to improve the retrieval from continental air masses is proposed. Ice multiplication factors are obtained with a new method utilizing remote sensing. Our results indicate that secondary ice production occurs at temperatures down to −30 °C.
Franz Conen, Annika Einbock, Claudia Mignani, and Christoph Hüglin
Atmos. Chem. Phys., 22, 3433–3444, https://doi.org/10.5194/acp-22-3433-2022, https://doi.org/10.5194/acp-22-3433-2022, 2022
Short summary
Short summary
Above western Europe, ice typically starts to form in clouds a few kilometres above the ground if suitable aerosol particles are present. In air masses typical for that altitude, we found that such particles most likely originate from bacteria and fungi living on plants. Occasional Saharan dust intrusions seem to contribute little to the number concentration of particles able to freeze cloud droplets between 0°C and −15°C.
Jörg Wieder, Claudia Mignani, Mario Schär, Lucie Roth, Michael Sprenger, Jan Henneberger, Ulrike Lohmann, Cyril Brunner, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 3111–3130, https://doi.org/10.5194/acp-22-3111-2022, https://doi.org/10.5194/acp-22-3111-2022, 2022
Short summary
Short summary
We investigate the variation in ice-nucleating particles (INPs) relevant for primary ice formation in mixed-phased clouds over the Alps based on simultaneous in situ observations at a mountaintop and a nearby high valley (1060 m height difference). In most cases, advection from the surrounding lower regions was responsible for changes in INP concentration, causing a diurnal cycle at the mountaintop. Our study underlines the importance of the planetary boundary layer as an INP reserve.
Sorin Nicolae Vâjâiac, Andreea Calcan, Robert Oscar David, Denisa-Elena Moacă, Gabriela Iorga, Trude Storelvmo, Viorel Vulturescu, and Valeriu Filip
Atmos. Meas. Tech., 14, 6777–6794, https://doi.org/10.5194/amt-14-6777-2021, https://doi.org/10.5194/amt-14-6777-2021, 2021
Short summary
Short summary
Warm clouds (with liquid droplets) play an important role in modulating the amount of incoming solar radiation to Earth’s surface and thus the climate. The most efficient way to study them is by in situ optical measurements. This paper proposes a new methodology for providing more detailed and reliable structural analyses of warm clouds through post-flight processing of collected data. The impact fine aerosol incorporation in water droplets might have on such measurements is also discussed.
Paraskevi Georgakaki, Aikaterini Bougiatioti, Jörg Wieder, Claudia Mignani, Fabiola Ramelli, Zamin A. Kanji, Jan Henneberger, Maxime Hervo, Alexis Berne, Ulrike Lohmann, and Athanasios Nenes
Atmos. Chem. Phys., 21, 10993–11012, https://doi.org/10.5194/acp-21-10993-2021, https://doi.org/10.5194/acp-21-10993-2021, 2021
Short summary
Short summary
Aerosol and cloud observations coupled with a droplet activation parameterization was used to investigate the aerosol–cloud droplet link in alpine mixed-phase clouds. Predicted droplet number, Nd, agrees with observations and never exceeds a characteristic “limiting droplet number”, Ndlim, which depends solely on σw. Nd becomes velocity limited when it is within 50 % of Ndlim. Identifying when dynamical changes control Nd variability is central for understanding aerosol–cloud interactions.
Fabiola Ramelli, Jan Henneberger, Robert O. David, Johannes Bühl, Martin Radenz, Patric Seifert, Jörg Wieder, Annika Lauber, Julie T. Pasquier, Ronny Engelmann, Claudia Mignani, Maxime Hervo, and Ulrike Lohmann
Atmos. Chem. Phys., 21, 6681–6706, https://doi.org/10.5194/acp-21-6681-2021, https://doi.org/10.5194/acp-21-6681-2021, 2021
Short summary
Short summary
Orographic mixed-phase clouds are an important source of precipitation, but the ice formation processes within them remain uncertain. Here we investigate the origin of ice crystals in a mixed-phase cloud in the Swiss Alps using aerosol and cloud data from in situ and remote sensing observations. We found that ice formation primarily occurs in cloud top generating cells. Our results indicate that secondary ice processes are active in the feeder region, which can enhance orographic precipitation.
Fabiola Ramelli, Jan Henneberger, Robert O. David, Annika Lauber, Julie T. Pasquier, Jörg Wieder, Johannes Bühl, Patric Seifert, Ronny Engelmann, Maxime Hervo, and Ulrike Lohmann
Atmos. Chem. Phys., 21, 5151–5172, https://doi.org/10.5194/acp-21-5151-2021, https://doi.org/10.5194/acp-21-5151-2021, 2021
Short summary
Short summary
Interactions between dynamics, microphysics and orography can enhance precipitation. Yet the exact role of these interactions is still uncertain. Here we investigate the role of low-level blocking and turbulence for precipitation by combining remote sensing and in situ observations. The observations show that blocked flow can induce the formation of feeder clouds and that turbulence can enhance hydrometeor growth, demonstrating the importance of local flow effects for orographic precipitation.
Annika Lauber, Jan Henneberger, Claudia Mignani, Fabiola Ramelli, Julie T. Pasquier, Jörg Wieder, Maxime Hervo, and Ulrike Lohmann
Atmos. Chem. Phys., 21, 3855–3870, https://doi.org/10.5194/acp-21-3855-2021, https://doi.org/10.5194/acp-21-3855-2021, 2021
Short summary
Short summary
An accurate prediction of the ice crystal number concentration (ICNC) is important to determine the radiation budget, lifetime, and precipitation formation of clouds. Even though secondary-ice processes can increase the ICNC by several orders of magnitude, they are poorly constrained and lack a well-founded quantification. During measurements on a mountain slope, a high ICNC of small ice crystals was observed just below 0 °C, attributed to a secondary-ice process and parametrized in this study.
Claudia Mignani, Jörg Wieder, Michael A. Sprenger, Zamin A. Kanji, Jan Henneberger, Christine Alewell, and Franz Conen
Atmos. Chem. Phys., 21, 657–664, https://doi.org/10.5194/acp-21-657-2021, https://doi.org/10.5194/acp-21-657-2021, 2021
Short summary
Short summary
Most precipitation above land starts with ice in clouds. It is promoted by extremely rare particles. Some ice-nucleating particles (INPs) cause cloud droplets to already freeze above −15°C, a temperature at which many clouds begin to snow. We found that the abundance of such INPs among other particles of similar size is highest in precipitating air masses and lowest when air carries desert dust. This brings us closer to understanding the interactions between land, clouds, and precipitation.
Sophie Bogler and Nadine Borduas-Dedekind
Atmos. Chem. Phys., 20, 14509–14522, https://doi.org/10.5194/acp-20-14509-2020, https://doi.org/10.5194/acp-20-14509-2020, 2020
Short summary
Short summary
To study the role of organic matter in ice crystal formation, we investigated the ice nucleation ability of a subcomponent of organic aerosols, the biopolymer lignin, using a droplet-freezing technique. We found that lignin is an ice-active macromolecule with changing abilities based on dilutions. The effects of atmospheric processing and of physicochemical treatments on the ability of lignin solutions to freeze were negligible. Thus, lignin is a recalcitrant ice-nucleating macromolecule.
Anna J. Miller, Killian P. Brennan, Claudia Mignani, Jörg Wieder, Assaf Zipori, Robert O. David, and Nadine Borduas-Dedekind
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-361, https://doi.org/10.5194/amt-2020-361, 2020
Preprint withdrawn
Short summary
Short summary
For characterizing atmospheric ice nuclei, we present (1) the development of our home-built droplet freezing technique (DFT), the Freezing Ice Nuclei Counter (FINC), (2) an intercomparison campaign using NX-illite and an ambient sample with three DFTs, and (3) the application of lignin as a soluble and commercial ice nuclei standard with four DFTs. We further compiled the growing number of DFTs in use for atmospheric ice nucleation since 2000, to which we add FINC.
Cited articles
Ardon-Dryer, K., Levin, Z., and Lawson, R. P.: Characteristics of immersion freezing nuclei at the South Pole station in Antarctica, Atmos. Chem. Phys., 11, 4015–4024, https://doi.org/10.5194/acp-11-4015-2011, 2011. a
Atkins, P. and de Paula, J.: Physical Chemistry for the Life Sciences,
OUP Oxford, 619 pp., 2011. a
Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian,
K. J., Carslaw, K. S., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The
Importance of Feldspar for Ice Nucleation by Mineral Dust in Mixed-Phase
Clouds, Nature, 498, 355–358, https://doi.org/10.1038/nature12278, 2013. a
Barry, K. R., Hill, T. C., Jentzsch, C., Moffett, B. F., Stratmann, F., and
DeMott, P. J.: Pragmatic Protocols for Working Cleanly When Measuring Ice
Nucleating Particles, Atmos. Res., 250, 105419,
https://doi.org/10.1016/j.atmosres.2020.105419, 2021. a, b
Beall, C. M., Stokes, M. D., Hill, T. C., DeMott, P. J., DeWald, J. T., and Prather, K. A.: Automation and heat transfer characterization of immersion mode spectroscopy for analysis of ice nucleating particles, Atmos. Meas. Tech., 10, 2613–2626, https://doi.org/10.5194/amt-10-2613-2017, 2017. a, b, c
Boerjan, W., Ralph, J., and Baucher, M.: Lignin Biosynthesis, Annu. Rev. Pl. Biol., 54, 519–546,
https://doi.org/10.1146/annurev.arplant.54.031902.134938, 2003. a, b
Borduas-Dedekind, N., Ossola, R., David, R. O., Boynton, L. S., Weichlinger, V., Kanji, Z. A., and McNeill, K.: Photomineralization mechanism changes the ability of dissolved organic matter to activate cloud droplets and to nucleate ice crystals, Atmos. Chem. Phys., 19, 12397–12412, https://doi.org/10.5194/acp-19-12397-2019, 2019. a, b, c, d
Brennan, K. P., David, R. O., and Borduas-Dedekind, N.: Spatial and temporal variability in the ice-nucleating ability of alpine snowmelt and extension to frozen cloud fraction, Atmos. Chem. Phys., 20, 163–180, https://doi.org/10.5194/acp-20-163-2020, 2020. a
Broadley, S. L., Murray, B. J., Herbert, R. J., Atkinson, J. D., Dobbie, S., Malkin, T. L., Condliffe, E., and Neve, L.: Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust, Atmos. Chem. Phys., 12, 287–307, https://doi.org/10.5194/acp-12-287-2012, 2012. a
Brubaker, T., Polen, M., Cheng, P., Ekambaram, V., Somers, J., Anna, S. L., and
Sullivan, R. C.: Development and Characterization of a “Store and Create”
Microfluidic Device to Determine the Heterogeneous Freezing Properties of Ice
Nucleating Particles, Aerosol. Sci. Technol., 54, 79–93,
https://doi.org/10.1080/02786826.2019.1679349, 2020. a, b
Brunauer, S., Emmett, P. H., and Teller, E.: Adsorption of Gases in
Multimolecular Layers, J. Am. Chem. Soc., 60, 309–319,
https://doi.org/10.1021/ja01269a023, 1938. a
Budke, C. and Koop, T.: BINARY: an optical freezing array for assessing temperature and time dependence of heterogeneous ice nucleation, Atmos. Meas. Tech., 8, 689–703, https://doi.org/10.5194/amt-8-689-2015, 2015. a, b
Bundke, U., Nillius, B., Jaenicke, R., Wetter, T., Klein, H., and Bingemer, H.:
The Fast Ice Nucleus Chamber FINCH, Atmos. Res., 90, 180–186,
https://doi.org/10.1016/j.atmosres.2008.02.008, 2008. a
Carvalho, E., Sindt, C., Verdier, A., Galan, C., O'Donoghue, L., Parks, S., and
Thibaudon, M.: Performance of the Coriolis Air Sampler, a High-Volume
Aerosol-Collection System for Quantification of Airborne Spores and Pollen
Grains, Aerobiologia, 24, 191–201, https://doi.org/10.1007/s10453-008-9098-y, 2008. a
Chen, J., Pei, X., Wang, H., Chen, J., Zhu, Y., Tang, M., and Wu, Z.:
Development, Characterization, and Validation of a Cold
Stage-Based Ice Nucleation Array (PKU-INA), Atmosphere, 9, 357,
https://doi.org/10.3390/atmos9090357, 2018a. a, b, c
Chen, J., Wu, Z., Augustin-Bauditz, S., Grawe, S., Hartmann, M., Pei, X., Liu, Z., Ji, D., and Wex, H.: Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China, Atmos. Chem. Phys., 18, 3523–3539, https://doi.org/10.5194/acp-18-3523-2018, 2018b. a, b, c, d
Ciesielski, P. N., Pecha, M. B., Lattanzi, A. M., Bharadwaj, V. S., Crowley,
M. F., Bu, L., Vermaas, J. V., Steirer, K. X., and Crowley, M. F.: Advances
in Multiscale Modeling of Lignocellulosic Biomass, ACS Sustainable
Chem. Eng., 8, 3512–3531, https://doi.org/10.1021/acssuschemeng.9b07415, 2020. a
Conen, F., Henne, S., Morris, C. E., and Alewell, C.: Atmospheric ice nucleators active ∘C can be quantified on PM10 filters, Atmos. Meas. Tech., 5, 321–327, https://doi.org/10.5194/amt-5-321-2012, 2012. a
Conen, F., Stopelli, E., and Zimmermann, L.: Clues That Decaying Leaves Enrich
Arctic Air with Ice Nucleating Particles, Atmos. Environ., 129, 91–94,
https://doi.org/10.1016/j.atmosenv.2016.01.027, 2016. a
Cook, F., Lord, R., Sitbon, G., Stephens, A., Rust, A., and Schwarzacher, W.: A pyroelectric thermal sensor for automated ice nucleation detection, Atmos. Meas. Tech., 13, 2785–2795, https://doi.org/10.5194/amt-13-2785-2020, 2020. a, b
Creamean, J. M., Primm, K. M., Tolbert, M. A., Hall, E. G., Wendell, J., Jordan, A., Sheridan, P. J., Smith, J., and Schnell, R. C.: HOVERCAT: a novel aerial system for evaluation of aerosol–cloud interactions, Atmos. Meas. Tech., 11, 3969–3985, https://doi.org/10.5194/amt-11-3969-2018, 2018. a, b
David, R. O., Cascajo-Castresana, M., Brennan, K. P., Rösch, M., Els, N., Werz, J., Weichlinger, V., Boynton, L. S., Bogler, S., Borduas-Dedekind, N., Marcolli, C., and Kanji, Z. A.: Development of the DRoplet Ice Nuclei Counter Zurich (DRINCZ): validation and application to field-collected snow samples, Atmos. Meas. Tech., 12, 6865–6888, https://doi.org/10.5194/amt-12-6865-2019, 2019. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p
de Boer, G., Morrison, H., Shupe, M. D., and Hildner, R.: Evidence of Liquid
Dependent Ice Nucleation in High-Latitude Stratiform Clouds from Surface
Remote Sensors, Geophys. Res. Lett., 38, L01803, https://doi.org/10.1029/2010GL046016,
2011. a
Devarajan, D., Liang, L., Gu, B., Brooks, S. C., Parks, J. M., and Smith,
J. C.: Molecular Dynamics Simulation of the Structures, Dynamics, and
Aggregation of Dissolved Organic Matter, Environ. Sci. Technol., 54,
13527–13537, https://doi.org/10.1021/acs.est.0c01176, 2020. a, b
Diao, Y., Myerson, A. S., Hatton, T. A., and Trout, B. L.: Surface Design
for Controlled Crystallization: The Role of Surface Chemistry and
Nanoscale Pores in Heterogeneous Nucleation, Langmuir, 27,
5324–5334, https://doi.org/10.1021/la104351k, 2011. a
Diehl, K., Debertshäuser, M., Eppers, O., Schmithüsen, H., Mitra, S. K., and Borrmann, S.: Particle surface area dependence of mineral dust in immersion freezing mode: investigations with freely suspended drops in an acoustic levitator and a vertical wind tunnel, Atmos. Chem. Phys., 14, 12343–12355, https://doi.org/10.5194/acp-14-12343-2014, 2014. a
Dymarska, M., Murray, B. J., Sun, L., Eastwood, M. L., Knopf, D. A., and
Bertram, A. K.: Deposition Ice Nucleation on Soot at Temperatures Relevant
for the Lower Troposphere, J. Geophys. Res.-Atmos., 111, D04204,
https://doi.org/10.1029/2005JD006627, 2006. a
Faraji, M., Fonseca, L. L., Escamilla-Treviño, L., Barros-Rios, J.,
Engle, N., Yang, Z. K., Tschaplinski, T. J., Dixon, R. A., and Voit, E. O.:
Mathematical Models of Lignin Biosynthesis, Biotechn. Biofuels, 11,
34, https://doi.org/10.1186/s13068-018-1028-9, 2018. a
Felgitsch, L., Baloh, P., Burkart, J., Mayr, M., Momken, M. E., Seifried, T. M., Winkler, P., Schmale III, D. G., and Grothe, H.: Birch leaves and branches as a source of ice-nucleating macromolecules, Atmos. Chem. Phys., 18, 16063–16079, https://doi.org/10.5194/acp-18-16063-2018, 2018. a, b
Gómez-Domenech, M., García-Mozo, H., Alcázar, P., Brandao, R.,
Caeiro, E., Munhoz, V., and Galán, C.: Evaluation of the Efficiency of
the Coriolis Air Sampler for Pollen Detection in South Europe,
Aerobiologia, 26, 149–155, https://doi.org/10.1007/s10453-009-9152-4, 2010. a
Gute, E. and Abbatt, J. P. D.: Ice Nucleating Behavior of Different Tree Pollen
in the Immersion Mode, Atmos. Environ., 231, 117488,
https://doi.org/10.1016/j.atmosenv.2020.117488, 2020. a, b, c, d
Harkin, J. M.: Lignin and Its Uses, Research Note FPL-0206, U.S.
Department of Agriculture, Forest Service, Forest Products, Laboratory,
Madison, Wisconsin, 10 pp., 1969. a
Harrison, A. D., Whale, T. F., Rutledge, R., Lamb, S., Tarn, M. D., Porter, G. C. E., Adams, M. P., McQuaid, J. B., Morris, G. J., and Murray, B. J.: An instrument for quantifying heterogeneous ice nucleation in multiwell plates using infrared emissions to detect freezing, Atmos. Meas. Tech., 11, 5629–5641, https://doi.org/10.5194/amt-11-5629-2018, 2018. a, b, c
Häusler, T., Witek, L., Felgitsch, L., Hitzenberger, R., and Grothe, H.:
Freezing on a Chip – A New Approach to Determine
Heterogeneous Ice Nucleation of Micrometer-Sized Water Droplets,
Atmosphere, 9, 140, https://doi.org/10.3390/atmos9040140, 2018. a, b, c
Heymsfield, A. J., Schmitt, C., Chen, C.-C.-J., Bansemer, A., Gettelman, A.,
Field, P. R., and Liu, C.: Contributions of the Liquid and Ice Phases
to Global Surface Precipitation: Observations and Global Climate
Modeling, J. Atmos. Sci., 77, 2629–2648, https://doi.org/10.1175/JAS-D-19-0352.1,
2020. a
Hill, T. C. J., Moffett, B. F., DeMott, P. J., Georgakopoulos, D. G., Stump,
W. L., and Franc, G. D.: Measurement of Ice Nucleation-Active
Bacteria on Plants and in Precipitation by Quantitative PCR,
Appl. Environ. Microbiol., 80, 1256–1267, https://doi.org/10.1128/AEM.02967-13, 2014. a, b, c, d, e, f
Hiranuma, N., Augustin-Bauditz, S., Bingemer, H., Budke, C., Curtius, J., Danielczok, A., Diehl, K., Dreischmeier, K., Ebert, M., Frank, F., Hoffmann, N., Kandler, K., Kiselev, A., Koop, T., Leisner, T., Möhler, O., Nillius, B., Peckhaus, A., Rose, D., Weinbruch, S., Wex, H., Boose, Y., DeMott, P. J., Hader, J. D., Hill, T. C. J., Kanji, Z. A., Kulkarni, G., Levin, E. J. T., McCluskey, C. S., Murakami, M., Murray, B. J., Niedermeier, D., Petters, M. D., O'Sullivan, D., Saito, A., Schill, G. P., Tajiri, T., Tolbert, M. A., Welti, A., Whale, T. F., Wright, T. P., and Yamashita, K.: A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of 17 ice nucleation measurement techniques, Atmos. Chem. Phys., 15, 2489–2518, https://doi.org/10.5194/acp-15-2489-2015, 2015a. a, b, c, d, e, f, g, h, i, j
Hiranuma, N., Möhler, O., Yamashita, K., Tajiri, T., Saito, A., Kiselev,
A., Hoffmann, N., Hoose, C., Jantsch, E., Koop, T., and Murakami, M.: Ice
Nucleation by Cellulose and Its Potential Contribution to Ice Formation in
Clouds, Nat. Geosci., 8, 273–277, https://doi.org/10.1038/ngeo2374,
2015b. a
Hiranuma, N., Adachi, K., Bell, D. M., Belosi, F., Beydoun, H., Bhaduri, B., Bingemer, H., Budke, C., Clemen, H.-C., Conen, F., Cory, K. M., Curtius, J., DeMott, P. J., Eppers, O., Grawe, S., Hartmann, S., Hoffmann, N., Höhler, K., Jantsch, E., Kiselev, A., Koop, T., Kulkarni, G., Mayer, A., Murakami, M., Murray, B. J., Nicosia, A., Petters, M. D., Piazza, M., Polen, M., Reicher, N., Rudich, Y., Saito, A., Santachiara, G., Schiebel, T., Schill, G. P., Schneider, J., Segev, L., Stopelli, E., Sullivan, R. C., Suski, K., Szakáll, M., Tajiri, T., Taylor, H., Tobo, Y., Ullrich, R., Weber, D., Wex, H., Whale, T. F., Whiteside, C. L., Yamashita, K., Zelenyuk, A., and Möhler, O.: A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water, Atmos. Chem. Phys., 19, 4823–4849, https://doi.org/10.5194/acp-19-4823-2019, 2019. a, b, c
Hockaday, W. C., Purcell, J. M., Marshall, A. G., Baldock, J. A., and Hatcher,
P. G.: Electrospray and Photoionization Mass Spectrometry for the
Characterization of Organic Matter in Natural Waters: A Qualitative
Assessment, Limnol. Oceanogr., 7, 81–95,
https://doi.org/10.4319/lom.2009.7.81, 2009. a
Hoose, C., Kristjánsson, J. E., Chen, J.-P., and Hazra, A.: A
Classical-Theory-Based Parameterization of Heterogeneous Ice
Nucleation by Mineral Dust, Soot, and Biological Particles in a
Global Climate Model, J. Atmos. Sci., 67, 2483–2503,
https://doi.org/10.1175/2010JAS3425.1, 2010. a, b
Ickes, L., Welti, A., Hoose, C., and Lohmann, U.: Classical Nucleation Theory
of Homogeneous Freezing of Water: Thermodynamic and Kinetic Parameters, Phys.
Chem. Chem. Phys., 17, 5514–5537, https://doi.org/10.1039/C4CP04184D, 2015. a
IPCC: Climate Change 2013: The Physical Science Basis. Contribution
of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change., Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, 1538 pp., 2013. a
Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo,
D. J., and Krämer, M.: Overview of Ice Nucleating Particles,
Meteorol. Monogr., 58, 1–33,
https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1, 2017. a, b
Kim, S., Kramer, R. W., and Hatcher, P. G.: Graphical Method for
Analysis of Ultrahigh-Resolution Broadband Mass Spectra of
Natural Organic Matter, the Van Krevelen Diagram, Anal. Chem., 75,
5336–5344, https://doi.org/10.1021/ac034415p, 2003. a
Koop, T. and Murray, B. J.: A Physically Constrained Classical Description of
the Homogeneous Nucleation of Ice in Water, J. Chem. Phys., 145, 211915,
https://doi.org/10.1063/1.4962355, 2016. a, b
Koop, T., Kapilashrami, A., Molina, L. T., and Molina, M. J.: Phase Transitions
of Sea-Salt/Water Mixtures at Low Temperatures: Implications for Ozone
Chemistry in the Polar Marine Boundary Layer, J. Geophys. Res.-Atmos., 105, 26393–26402, https://doi.org/10.1029/2000JD900413,
2000a. a
Koop, T., Luo, B., Tsias, A., and Peter, T.: Water Activity as the Determinant
for Homogeneous Ice Nucleation in Aqueous Solutions, Nature, 406, 611–614,
https://doi.org/10.1038/35020537, 2000b. a
Kumar, A., Marcolli, C., and Peter, T.: Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 3: Aluminosilicates, Atmos. Chem. Phys., 19, 6059–6084, https://doi.org/10.5194/acp-19-6059-2019, 2019. a
Kunert, A. T., Lamneck, M., Helleis, F., Pöschl, U., Pöhlker, M. L., and Fröhlich-Nowoisky, J.: Twin-plate Ice Nucleation Assay (TINA) with infrared detection for high-throughput droplet freezing experiments with biological ice nuclei in laboratory and field samples, Atmos. Meas. Tech., 11, 6327–6337, https://doi.org/10.5194/amt-11-6327-2018, 2018. a, b, c, d
Kunert, A. T., Pöhlker, M. L., Tang, K., Krevert, C. S., Wieder, C., Speth, K. R., Hanson, L. E., Morris, C. E., Schmale III, D. G., Pöschl, U., and Fröhlich-Nowoisky, J.: Macromolecular fungal ice nuclei in Fusarium: effects of physical and chemical processing, Biogeosciences, 16, 4647–4659, https://doi.org/10.5194/bg-16-4647-2019, 2019. a
Li, K., Xu, S., Shi, W., He, M., Li, H., Li, S., Zhou, X., Wang, J., and Song,
Y.: Investigating the Effects of Solid Surfaces on Ice
Nucleation, Langmuir, 28, 10749–10754, https://doi.org/10.1021/la3014915, 2012. a, b
Lloyd, G., Choularton, T., Bower, K., Crosier, J., Gallagher, M., Flynn, M., Dorsey, J., Liu, D., Taylor, J. W., Schlenczek, O., Fugal, J., Borrmann, S., Cotton, R., Field, P., and Blyth, A.: Small ice particles at slightly supercooled temperatures in tropical maritime convection, Atmos. Chem. Phys., 20, 3895–3904, https://doi.org/10.5194/acp-20-3895-2020, 2020. a
Lohmann, U., Luond, F., and Mahrt, F.: An Introduction to Clouds:
From the Microscale to Climate, Cambridge University Press,
Cambridge, https://doi.org/10.1017/CBO9781139087513, 2016. a
Marcolli, C.: Ice Nucleation Triggered by Negative Pressure, Sci. Rep., 7, 16634, https://doi.org/10.1038/s41598-017-16787-3, 2017. a, b, c
Marcolli, C.: Technical note: Fundamental aspects of ice nucleation via pore condensation and freezing including Laplace pressure and growth into macroscopic ice, Atmos. Chem. Phys., 20, 3209–3230, https://doi.org/10.5194/acp-20-3209-2020, 2020. a, b
Mason, R. H., Chou, C., McCluskey, C. S., Levin, E. J. T., Schiller, C. L., Hill, T. C. J., Huffman, J. A., DeMott, P. J., and Bertram, A. K.: The micro-orifice uniform deposit impactor–droplet freezing technique (MOUDI-DFT) for measuring concentrations of ice nucleating particles as a function of size: improvements and initial validation, Atmos. Meas. Tech., 8, 2449–2462, https://doi.org/10.5194/amt-8-2449-2015, 2015. a, b
McCluskey, C. S., Hill, T. C. J., Malfatti, F., Sultana, C. M., Lee, C.,
Santander, M. V., Beall, C. M., Moore, K. A., Cornwell, G. C., Collins,
D. B., Prather, K. A., Jayarathne, T., Stone, E. A., Azam, F., Kreidenweis,
S. M., and DeMott, P. J.: A Dynamic Link between Ice Nucleating
Particles Released in Nascent Sea Spray Aerosol and Oceanic
Biological Activity during Two Mesocosm Experiments, J. Atmos. Sci.,
74, 151–166, https://doi.org/10.1175/JAS-D-16-0087.1, 2017. a
Mignani, C., Creamean, J. M., Zimmermann, L., Alewell, C., and Conen, F.: New type of evidence for secondary ice formation at around −15 °C in mixed-phase clouds, Atmos. Chem. Phys., 19, 877–886, https://doi.org/10.5194/acp-19-877-2019, 2019. a, b
Miller, A. J., Brennan, K. P., Mignani, C., Wieder, J., David, R. O., and Borduas-Dedekind, N.: Development of the drop Freezing Ice Nuclei Counter (FINC), intercomparison of drop freezing instruments, and use of soluble lignin as an atmospheric ice nucleation standard, Dataset in ETH Zurich Research Collection, https://doi.org/10.3929/ethz-b-000438875, 2020. a
Morris, C. E., Georgakopoulos, D. G., and Sands, D. C.: Ice Nucleation Active
Bacteria and Their Potential Role in Precipitation, Journal de Physique IV
(Proceedings), 121, 87–103, https://doi.org/10.1051/jp4:2004121004, 2004. a
Murray, B. J., Broadley, S. L., Wilson, T. W., Bull, S. J., Wills, R. H.,
Christenson, H. K., and Murray, E. J.: Kinetics of the Homogeneous Freezing
of Water, Phys. Chem. Chem. Phys., 12, 10380, https://doi.org/10.1039/c003297b, 2010. a
Murray, B. J., O'Sullivan, D., Atkinson, J. D., and Webb, M. E.: Ice Nucleation
by Particles Immersed in Supercooled Cloud Droplets, Chem. Soc. Rev., 41,
6519–6554, https://doi.org/10.1039/c2cs35200a, 2012. a
Murray, B. J., Carslaw, K. S., and Field, P. R.: Opinion: Cloud-phase climate feedback and the importance of ice-nucleating particles, Atmos. Chem. Phys., 21, 665–679, https://doi.org/10.5194/acp-21-665-2021, 2021. a
Myers-Pigg, A. N., Griffin, R. J., Louchouarn, P., Norwood, M. J., Sterne,
A., and Cevik, B. K.: Signatures of Biomass Burning Aerosols in the
Plume of a Saltmarsh Wildfire in South Texas, Environ. Sci.
Technol., 50, 9308–9314, https://doi.org/10.1021/acs.est.6b02132, 2016. a
O, K.-T. and Wood, R.: Exploring an approximation for the homogeneous freezing temperature of water droplets, Atmos. Chem. Phys., 16, 7239–7249, https://doi.org/10.5194/acp-16-7239-2016, 2016. a
Ohno, T., He, Z., Sleighter, R. L., Honeycutt, C. W., and Hatcher, P. G.:
Ultrahigh Resolution Mass Spectrometry and Indicator Species Analysis
to Identify Marker Components of Soil- and Plant
Biomass-Derived Organic Matter Fractions, Environ. Sci. Technol., 44,
8594–8600, https://doi.org/10.1021/es101089t, 2010. a
O'Sullivan, D., Murray, B. J., Malkin, T. L., Whale, T. F., Umo, N. S., Atkinson, J. D., Price, H. C., Baustian, K. J., Browse, J., and Webb, M. E.: Ice nucleation by fertile soil dusts: relative importance of mineral and biogenic components, Atmos. Chem. Phys., 14, 1853–1867, https://doi.org/10.5194/acp-14-1853-2014, 2014. a, b, c
O'Sullivan, D., Murray, B. J., Ross, J. F., Whale, T. F., Price, H. C.,
Atkinson, J. D., Umo, N. S., and Webb, M. E.: The Relevance of Nanoscale
Biological Fragments for Ice Nucleation in Clouds, Sci. Rep., 5,
8082, https://doi.org/10.1038/srep08082, 2015. a
Peckhaus, A., Kiselev, A., Hiron, T., Ebert, M., and Leisner, T.: A comparative study of K-rich and Na/Ca-rich feldspar ice-nucleating particles in a nanoliter droplet freezing assay, Atmos. Chem. Phys., 16, 11477–11496, https://doi.org/10.5194/acp-16-11477-2016, 2016. a, b
Perkins, R. J., Gillette, S. M., Hill, T. C. J., and DeMott, P. J.: The
Labile Nature of Ice Nucleation by Arizona Test Dust, ACS Earth
Space Chem., 4, 133–141, https://doi.org/10.1021/acsearthspacechem.9b00304, 2020. a
Petters, M. D. and Wright, T. P.: Revisiting Ice Nucleation from Precipitation
Samples, Geophys. Res. Lett., 42, 8758–8766, https://doi.org/10.1002/2015GL065733,
2015. a, b
Polen, M., Lawlis, E., and Sullivan, R. C.: The Unstable Ice Nucleation
Properties of Snomax, Bacterial Particles, J. Geophys.
Res.-Atmos., 121, 11666–11678, https://doi.org/10.1002/2016JD025251, 2016. a, b
Polen, M., Brubaker, T., Somers, J., and Sullivan, R. C.: Cleaning up our water: reducing interferences from nonhomogeneous freezing of “pure” water in droplet freezing assays of ice-nucleating particles, Atmos. Meas. Tech., 11, 5315–5334, https://doi.org/10.5194/amt-11-5315-2018, 2018. a, b, c, d, e
Price, H. C., Baustian, K. J., McQuaid, J. B., Blyth, A., Bower, K. N.,
Choularton, T., Cotton, R. J., Cui, Z., Field, P. R., Gallagher, M., Hawker,
R., Merrington, A., Miltenberger, A., Iii, R. R. N., Parker, S. T.,
Rosenberg, P. D., Taylor, J. W., Trembath, J., Vergara-Temprado, J., Whale,
T. F., Wilson, T. W., Young, G., and Murray, B. J.: Atmospheric
Ice-Nucleating Particles in the Dusty Tropical Atlantic, J. Geophys. Res.-Atmos., 123, 2175–2193,
https://doi.org/10.1002/2017JD027560, 2018. a
Pummer, B. G., Bauer, H., Bernardi, J., Bleicher, S., and Grothe, H.: Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen, Atmos. Chem. Phys., 12, 2541–2550, https://doi.org/10.5194/acp-12-2541-2012, 2012. a, b, c
Pummer, B. G., Budke, C., Augustin-Bauditz, S., Niedermeier, D., Felgitsch, L., Kampf, C. J., Huber, R. G., Liedl, K. R., Loerting, T., Moschen, T., Schauperl, M., Tollinger, M., Morris, C. E., Wex, H., Grothe, H., Pöschl, U., Koop, T., and Fröhlich-Nowoisky, J.: Ice nucleation by water-soluble macromolecules, Atmos. Chem. Phys., 15, 4077–4091, https://doi.org/10.5194/acp-15-4077-2015, 2015. a, b, c, d
Ralph, J., Lapierre, C., and Boerjan, W.: Lignin Structure and Its Engineering,
Current Opinion in Biotechnology, 56, 240–249,
https://doi.org/10.1016/j.copbio.2019.02.019, 2019. a
Reicher, N., Segev, L., and Rudich, Y.: The WeIzmann Supercooled Droplets Observation on a Microarray (WISDOM) and application for ambient dust, Atmos. Meas. Tech., 11, 233–248, https://doi.org/10.5194/amt-11-233-2018, 2018. a, b
Richard, C., Martin, J.-G., and Pouleur, S.: Ice Nucleation Activity Identified
in Some Phytopathogenic Fusarium Species, Phyto, 77, 83–92,
https://doi.org/10.7202/706104ar, 1996. a
Riechers, B., Wittbracht, F., Hütten, A., and Koop, T.: The Homogeneous Ice
Nucleation Rate of Water Droplets Produced in a Microfluidic Device and the
Role of Temperature Uncertainty, Phys. Chem. Chem. Phys., 15, 5873–5887,
https://doi.org/10.1039/C3CP42437E, 2013. a
Rogers, D. C.: Development of a Continuous Flow Thermal Gradient Diffusion
Chamber for Ice Nucleation Studies, Atmos. Res., 22, 149–181,
https://doi.org/10.1016/0169-8095(88)90005-1, 1988. a
Salcedo, D., Molina, L. T., and Molina, M. J.: Nucleation Rates of Nitric Acid
Dihydrate in 1:2 HNO3/H2O Solutions at Stratospheric
Temperatures, Geophys. Res. Lett., 27, 193–196,
https://doi.org/10.1029/1999GL010991, 2000. a
Schiebel, T.: Ice Nucleation Activity of Soil Dust Aerosols, PhD
thesis, Karlsruhe Institute of Technology, Karlsruhe,
https://doi.org/10.5445/IR/1000076327, 2017. a
Shakya, K. M., Louchouarn, P., and Griffin, R. J.: Lignin-Derived Phenols
in Houston Aerosols: Implications for Natural Background Sources,
Environ. Sci. Technol., 45, 8268–8275, https://doi.org/10.1021/es201668y, 2011. a
Sleighter, R. L., Liu, Z., Xue, J., and Hatcher, P. G.: Multivariate
Statistical Approaches for the Characterization of Dissolved
Organic Matter Analyzed by Ultrahigh Resolution Mass Spectrometry,
Environ. Sci. Technol., 44, 7576–7582, https://doi.org/10.1021/es1002204, 2010. a
Stan, C. A., Schneider, G. F., Shevkoplyas, S. S., Hashimoto, M., Ibanescu, M.,
Wiley, B. J., and Whitesides, G. M.: A Microfluidic Apparatus for the Study
of Ice Nucleation in Supercooled Water Drops, Lab Chip, 9, 2293–2305,
https://doi.org/10.1039/B906198C, 2009. a, b
Steinke, I., Hiranuma, N., Funk, R., Höhler, K., Tüllmann, N., Umo, N. S., Weidler, P. G., Möhler, O., and Leisner, T.: Complex plant-derived organic aerosol as ice-nucleating particles – more than the sums of their parts?, Atmos. Chem. Phys., 20, 11387–11397, https://doi.org/10.5194/acp-20-11387-2020, 2020. a, b, c, d, e
Storelvmo, T.: Aerosol Effects on Climate via Mixed-Phase and Ice Clouds, Annu.
Rev. Earth Planet. Sci., 45, 199–222,
https://doi.org/10.1146/annurev-earth-060115-012240, 2017. a, b
Suski, K. J., Hill, T. C. J., Levin, E. J. T., Miller, A., DeMott, P. J., and Kreidenweis, S. M.: Agricultural harvesting emissions of ice-nucleating particles, Atmos. Chem. Phys., 18, 13755–13771, https://doi.org/10.5194/acp-18-13755-2018, 2018. a
Tarn, M. D., Sikora, S. N. F., Porter, G. C. E., O'Sullivan, D., Adams, M.,
Whale, T. F., Harrison, A. D., Vergara-Temprado, J., Wilson, T. W., Shim,
J.-u., and Murray, B. J.: The Study of Atmospheric Ice-Nucleating Particles
via Microfluidically Generated Droplets, Microfluid Nanofluid, 22, 52,
https://doi.org/10.1007/s10404-018-2069-x, 2018. a
Tarn, M. D., Sikora, S. N. F., Porter, G. C. E., Wyld, B. V., Alayof, M.,
Reicher, N., Harrison, A. D., Rudich, Y., Shim, J.-U., and Murray, B. J.:
On-Chip Analysis of Atmospheric Ice-Nucleating Particles in Continuous Flow,
Lab Chip, 2889–2910, https://doi.org/10.1039/D0LC00251H, 2020. a, b, c
Tobo, Y.: An Improved Approach for Measuring Immersion Freezing in Large
Droplets over a Wide Temperature Range, Sci. Rep., 6, 32930,
https://doi.org/10.1038/srep32930, 2016. a, b, c
Vali, G.: Quantitative Evaluation of Experimental Results an the Heterogeneous
Freezing Nucleation of Supercooled Liquids, J. Atmos. Sci., 28, 402–409,
https://doi.org/10.1175/1520-0469(1971)028<0402:QEOERA>2.0.CO;2, 1971. a, b
Vali, G.: Principles of Ice Nucleation, in: Biological Ice Nucleation
and Its Applications, edited by Lee, R. E., Warren, G. J., and Gusta,
L. V., The American Phytopathological Society, St. Paul, Minnesota, USA, 1–39,
1995. a
Vali, G.: Revisiting the differential freezing nucleus spectra derived from drop-freezing experiments: methods of calculation, applications, and confidence limits, Atmos. Meas. Tech., 12, 1219–1231, https://doi.org/10.5194/amt-12-1219-2019, 2019. a, b
Vali, G. and Stansbury, E. J.: Time-Dependent Characteristics of the
Heterogeneous Nucleation of Ice, Can. J. Phys., 44, 477–502,
https://doi.org/10.1139/p66-044, 1966. a
Vali, G., DeMott, P. J., Möhler, O., and Whale, T. F.: Technical Note: A proposal for ice nucleation terminology, Atmos. Chem. Phys., 15, 10263–10270, https://doi.org/10.5194/acp-15-10263-2015, 2015. a
Wang, P. K.: Physics and Dynamics of Clouds and Precipitation,
Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511794285,
2013. a
Weng, L., Tessier, S. N., Smith, K., Edd, J. F., Stott, S. L., and Toner, M.:
Bacterial Ice Nucleation in Monodisperse D2O and H2O-in-Oil
Emulsions, Langmuir, 32, 9229–9236, https://doi.org/10.1021/acs.langmuir.6b02212,
2016. a
Westbrook, C. D. and Illingworth, A. J.: The Formation of Ice in a Long-Lived
Supercooled Layer Cloud, Q. J. Roy. Meteor. Soc., 139, 2209–2221, https://doi.org/10.1002/qj.2096, 2013.
a
Wex, H., Augustin-Bauditz, S., Boose, Y., Budke, C., Curtius, J., Diehl, K., Dreyer, A., Frank, F., Hartmann, S., Hiranuma, N., Jantsch, E., Kanji, Z. A., Kiselev, A., Koop, T., Möhler, O., Niedermeier, D., Nillius, B., Rösch, M., Rose, D., Schmidt, C., Steinke, I., and Stratmann, F.: Intercomparing different devices for the investigation of ice nucleating particles using Snomax® as test substance, Atmos. Chem. Phys., 15, 1463–1485, https://doi.org/10.5194/acp-15-1463-2015, 2015. a
Whale, T. F., Murray, B. J., O'Sullivan, D., Wilson, T. W., Umo, N. S., Baustian, K. J., Atkinson, J. D., Workneh, D. A., and Morris, G. J.: A technique for quantifying heterogeneous ice nucleation in microlitre supercooled water droplets, Atmos. Meas. Tech., 8, 2437–2447, https://doi.org/10.5194/amt-8-2437-2015, 2015. a, b
Wilson, T. W., Ladino, L. A., Alpert, P. A., Breckels, M. N., Brooks, I. M.,
Browse, J., Burrows, S. M., Carslaw, K. S., Huffman, J. A., Judd, C.,
Kilthau, W. P., Mason, R. H., McFiggans, G., Miller, L. A., Najera, J. J.,
Polishchuk, E., Rae, S., Schiller, C. L., Si, M., Temprado, J. V., Whale,
T. F., Wong, J. P. S., Wurl, O., Yakobi-Hancock, J., Abbatt, J. P. D.,
Aller, J. Y., Bertram, A. K., Knopf, D. A., and Murray, B. J.: A Marine
Biogenic Source of Atmospheric Ice-Nucleating Particles, Nature, 525,
234–238, https://doi.org/10.1038/nature14986, 2015. a, b, c
Wright, T. P. and Petters, M. D.: The Role of Time in Heterogeneous Freezing
Nucleation, J. Geophys. Res. Atmos., 118, 3731–3743,
https://doi.org/10.1002/jgrd.50365, 2013. a, b
Wright, T. P., Petters, M. D., Hader, J. D., Morton, T., and Holder, A. L.:
Minimal Cooling Rate Dependence of Ice Nuclei Activity in the Immersion Mode,
J. Geophys. Res.-Atmos., 118, 10535–10543,
https://doi.org/10.1002/jgrd.50810, 2013. a, b
Zaragotas, D., Liolios, N. T., and Anastassopoulos, E.: Supercooling, Ice
Nucleation and Crystal Growth: A Systematic Study in Plant Samples,
Cryobiology, 72, 239–243, https://doi.org/10.1016/j.cryobiol.2016.03.012, 2016. a, b
Zhao, B., Wang, Y., Gu, Y., Liou, K.-N., Jiang, J. H., Fan, J., Liu, X., Huang,
L., and Yung, Y. L.: Ice Nucleation by Aerosols from Anthropogenic Pollution,
Nat. Geosci., 12, 602–607, https://doi.org/10.1038/s41561-019-0389-4, 2019. a
Short summary
To characterize atmospheric ice nuclei, we present (1) the development of our home-built droplet freezing technique (DFT), which involves the Freezing Ice Nuclei Counter (FINC), (2) an intercomparison campaign using NX-illite and an ambient sample with two other DFTs, and (3) the application of lignin as a soluble and commercial ice nuclei standard with three DFTs. We further compiled the growing number of DFTs in use for atmospheric ice nucleation since 2000 and add FINC.
To characterize atmospheric ice nuclei, we present (1) the development of our home-built droplet...