Articles | Volume 14, issue 5
https://doi.org/10.5194/amt-14-3721-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-3721-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Investigation of structural changes of atmospheric aerosol samples during two thermal–optical measurement procedures (EUSAAR2, NIOSH870)
Theresa Haller
CORRESPONDING AUTHOR
Faculty of Physics, University of Vienna, Vienna, 1090, Austria
Eva Sommer
Faculty of Physics, University of Vienna, Vienna, 1090, Austria
Thomas Steinkogler
Institute of Chemical Technologies and Analytics, TU Wien, Vienna,
1060, Austria
Christian Rentenberger
Faculty of Physics, University of Vienna, Vienna, 1090, Austria
Anna Wonaschuetz
Faculty of Physics, University of Vienna, Vienna, 1090, Austria
Anne Kasper-Giebl
Institute of Chemical Technologies and Analytics, TU Wien, Vienna,
1060, Austria
Hinrich Grothe
Institute of Materials Chemistry, TU Wien, Vienna, 1060, Austria
Regina Hitzenberger
Faculty of Physics, University of Vienna, Vienna, 1090, Austria
Related authors
No articles found.
Jürgen Gratzl, Alexander Böhmländer, Sanna Pätsi, Clara-E. Pogner, Markus Gorfer, David Brus, Konstantinos Matthaios Doulgeris, Florian Wieland, Eija Asmi, Annika Saarto, Ottmar Möhler, Dominik Stolzenburg, and Hinrich Grothe
Atmos. Chem. Phys., 25, 12007–12035, https://doi.org/10.5194/acp-25-12007-2025, https://doi.org/10.5194/acp-25-12007-2025, 2025
Short summary
Short summary
We studied particles in the air over 1 year in the Finnish sub-Arctic to understand how biological particles affect ice formation in clouds. We found that fungal spores are the main contributors to ice formation at warmer temperatures. These particles are released locally and vary with the weather. Our results also show that we know very little about which fungi can form ice in the atmosphere, highlighting a major gap in our understanding of how nature influences weather and climate.
Jürgen Gratzl, David Brus, Konstantinos Doulgeris, Alexander Böhmländer, Ottmar Möhler, and Hinrich Grothe
Earth Syst. Sci. Data, 17, 3975–3985, https://doi.org/10.5194/essd-17-3975-2025, https://doi.org/10.5194/essd-17-3975-2025, 2025
Short summary
Short summary
Near-real time monitoring of airborne biological particles like fungal spores or pollen grains is of great interest for two main reasons: to improve atmospheric allergen forecasts and to deepen the understanding of how bio-aerosols influence cloud formation. Here, we measured fluorescent bio-aerosols in the Finnish sub-Arctic with a high time resolution. A data set that might improve our understanding of biosphere–cloud interactions and the dynamics of bio-aerosols in the atmosphere.
Florian Wieland, Nadine Bothen, Ralph Schwidetzky, Teresa M. Seifried, Paul Bieber, Ulrich Pöschl, Konrad Meister, Mischa Bonn, Janine Fröhlich-Nowoisky, and Hinrich Grothe
Biogeosciences, 22, 103–115, https://doi.org/10.5194/bg-22-103-2025, https://doi.org/10.5194/bg-22-103-2025, 2025
Short summary
Short summary
Betula pendula is a widespread birch tree species containing ice nucleation agents that can trigger the freezing of cloud droplets and thereby alter the evolution of clouds. Our study identifies three distinct ice-nucleating macromolecule (INM) aggregates of varying size that can nucleate ice at temperatures up to –5.4°C. Our findings suggest that these vegetation-derived particles may influence atmospheric processes, weather, and climate more strongly than previously thought.
Peter J. Wlasits, Joonas Enroth, Joonas Vanhanen, Aki Pajunoja, Hinrich Grothe, Paul M. Winkler, and Dominik Stolzenburg
Aerosol Research, 2, 199–206, https://doi.org/10.5194/ar-2-199-2024, https://doi.org/10.5194/ar-2-199-2024, 2024
Short summary
Short summary
We highlight that the composition dependence of the counting efficiency of condensation particle counters can be immensely reduced by choice of the working fluid. A butanol- and a propylene glycol-based version of the Airmodus A30 was calibrated using a set of four different seed particles. Our study shows that composition-dependent counting efficiencies almost vanish in the case of the propylene glycol-based CPC. Simulations of supersaturation profiles were used to explain the results.
Karl Espen Yttri, Are Bäcklund, Franz Conen, Sabine Eckhardt, Nikolaos Evangeliou, Markus Fiebig, Anne Kasper-Giebl, Avram Gold, Hans Gundersen, Cathrine Lund Myhre, Stephen Matthew Platt, David Simpson, Jason D. Surratt, Sönke Szidat, Martin Rauber, Kjetil Tørseth, Martin Album Ytre-Eide, Zhenfa Zhang, and Wenche Aas
Atmos. Chem. Phys., 24, 2731–2758, https://doi.org/10.5194/acp-24-2731-2024, https://doi.org/10.5194/acp-24-2731-2024, 2024
Short summary
Short summary
We discuss carbonaceous aerosol (CA) observed at the high Arctic Zeppelin Observatory (2017 to 2020). We find that organic aerosol is a significant fraction of the Arctic aerosol, though less than sea salt aerosol and mineral dust, as well as non-sea-salt sulfate, originating mainly from anthropogenic sources in winter and from natural sources in summer, emphasizing the importance of wildfires for biogenic secondary organic aerosol and primary biological aerosol particles observed in the Arctic.
Daniela Kau, Marion Greilinger, Bernadette Kirchsteiger, Aron Göndör, Christopher Herzig, Andreas Limbeck, Elisabeth Eitenberger, and Anne Kasper-Giebl
Atmos. Meas. Tech., 15, 5207–5217, https://doi.org/10.5194/amt-15-5207-2022, https://doi.org/10.5194/amt-15-5207-2022, 2022
Short summary
Short summary
The use of thermal–optical analysis for the determination of elemental carbon (EC) and organic carbon (OC) can be biased by mineral dust (MD). We present a method that utilizes this interference to quantify iron contained in MD in snow samples. Possibilities and limitations of applying this method to particulate matter samples are presented. The influence of light-absorbing iron compounds in MD on the transmittance signal can be used to identify samples experiencing a bias of the OC / EC split.
Clémence Rose, Martine Collaud Coen, Elisabeth Andrews, Yong Lin, Isaline Bossert, Cathrine Lund Myhre, Thomas Tuch, Alfred Wiedensohler, Markus Fiebig, Pasi Aalto, Andrés Alastuey, Elisabeth Alonso-Blanco, Marcos Andrade, Begoña Artíñano, Todor Arsov, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Juan Andrés Casquero-Vera, Sébastien Conil, Konstantinos Eleftheriadis, Olivier Favez, Harald Flentje, Maria I. Gini, Francisco Javier Gómez-Moreno, Martin Gysel-Beer, Anna Gannet Hallar, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Neng-Huei Lin, Hassan Lyamani, Angela Marinoni, Sebastiao Martins Dos Santos, Olga L. Mayol-Bracero, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Jakub Ondracek, Marco Pandolfi, Noemi Pérez, Tuukka Petäjä, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Jean-Philippe Putaud, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Junying Sun, Pierre Tulet, Ville Vakkari, Pieter Gideon van Zyl, Fernando Velarde, Paolo Villani, Stergios Vratolis, Zdenek Wagner, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Vladimir Zdimal, and Paolo Laj
Atmos. Chem. Phys., 21, 17185–17223, https://doi.org/10.5194/acp-21-17185-2021, https://doi.org/10.5194/acp-21-17185-2021, 2021
Short summary
Short summary
Aerosol particles are a complex component of the atmospheric system the effects of which are among the most uncertain in climate change projections. Using data collected at 62 stations, this study provides the most up-to-date picture of the spatial distribution of particle number concentration and size distribution worldwide, with the aim of contributing to better representation of aerosols and their interactions with clouds in models and, therefore, better evaluation of their impact on climate.
Julia Burkart, Jürgen Gratzl, Teresa M. Seifried, Paul Bieber, and Hinrich Grothe
Biogeosciences, 18, 5751–5765, https://doi.org/10.5194/bg-18-5751-2021, https://doi.org/10.5194/bg-18-5751-2021, 2021
Short summary
Short summary
Extracts of birch pollen grains are known to be ice nucleation active and thus impact cloud formation and climate. In this study we develop an extraction method to separate subpollen particles from ice nucleating macromolecules. Our results thereby illustrate that ice nucleating macromolecules can be washed off the subpollen particles and that the ice activity is linked to the presence of proteins.
Jianzhong Sun, Yuzhe Zhang, Guorui Zhi, Regina Hitzenberger, Wenjing Jin, Yingjun Chen, Lei Wang, Chongguo Tian, Zhengying Li, Rong Chen, Wen Xiao, Yuan Cheng, Wei Yang, Liying Yao, Yang Cao, Duo Huang, Yueyuan Qiu, Jiali Xu, Xiaofei Xia, Xin Yang, Xi Zhang, Zheng Zong, Yuchun Song, and Changdong Wu
Atmos. Chem. Phys., 21, 2329–2341, https://doi.org/10.5194/acp-21-2329-2021, https://doi.org/10.5194/acp-21-2329-2021, 2021
Short summary
Short summary
Brown carbon (BrC) emission factors from household biomass fuels were measured with an integrating sphere optics approach supported by iterative calculations. A novel algorithm to directly estimate the absorption contribution of BrC relative to that of BrC + black carbon (FBrC) was proposed based purely on the absorption exponent (AAE)
(FBrC = 0.5519 lnAAE + 0.0067). The FBrC for household biomass fuels was as high as 50.8 % across the strongest solar spectral range of 350−850 nm.
Teresa M. Seifried, Paul Bieber, Laura Felgitsch, Julian Vlasich, Florian Reyzek, David G. Schmale III, and Hinrich Grothe
Biogeosciences, 17, 5655–5667, https://doi.org/10.5194/bg-17-5655-2020, https://doi.org/10.5194/bg-17-5655-2020, 2020
Cited articles
Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006.
Birch, M. E. and Cary, R. A.: Elemental Carbon-Based Method for Monitoring
Occupational Exposures to Particulate Diesel Exhaust, Aerosol Sci.
Tech., 25, 221–241, https://doi.org/10.1080/02786829608965393, 1996.
Bladt, H., Ivleva, N. P., and Niessner, R.: Internally mixed multicomponent
soot: Impact of different salts on soot structure and thermo-chemical
properties, J. Aerosol Sci., 70, 26–35, https://doi.org/10.1016/j.jaerosci.2013.11.007, 2014.
Bond, T. C. and Bergstrom, R. W.: Light Absorption by Carbonaceous Particles:
An Investigative Review, Aerosol Sci. Tech., 40, 27–67, https://doi.org/10.1080/02786820500421521, 2006.
Brown, R. J. C., Beccaceci, S., Butterfield, D. M., Quincey, P. G., Harris,
P. M., Maggos, T., Panteliadis, P., John, A., Jedynska, A., Kuhlbusch, T. A.
J., Putaud, J.-P., and Karanasiou, A.: Standardisation of a European measurement
method for organic carbon and elemental carbon in ambient air: results of
the field trial campaign and the determination of a measurement uncertainty
and working range, Environ. Sci.-Proc. Imp., 19, 1249–1259, https://doi.org/10.1039/C7EM00261K, 2017.
Cavalli, F., Viana, M., Yttri, K. E., Genberg, J., and Putaud, J.-P.: Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol, Atmos. Meas. Tech., 3, 79–89, https://doi.org/10.5194/amt-3-79-2010, 2010.
Cheng, Y., Duan, F.-K., He, K.-B., Du, Z.-Y., Zheng, M., and Ma, Y.-L.:
Intercomparison of thermal-optical method with different temperature
protocols: Implications from source samples and solvent extraction,
Atmos. Environ., 61, 453–462, https://doi.org/10.1016/j.atmosenv.2012.07.066,
2012.
Chow, J. C., Watson, J. G., Crow, D., Lowenthal, D. H., and Merrifield, T.:
Comparison of IMPROVE and NIOSH Carbon Measurements, Aerosol Sci. Tech., 34, 23–34, https://doi.org/10.1080/027868201300081923, 2001.
Chow, J. C., Watson, J. G., Chen, L.-W. A., Arnott, W. P., Moosmüller,
H., and Fung, K.: Equivalence of Elemental Carbon by Thermal/Optical Reflectance
and Transmittance with Different Temperature Protocols, Environ. Sci.
Technol., 38, 4414–4422, https://doi.org/10.1021/es034936u, 2004.
Commodo, M., de Falco, G., Larciprete, R., D'Anna, A., and Minutolo, P.: On the
hydrophilic/hydrophobic character of carbonaceous nanoparticles formed in
laminar premixed flames, Exp. Therm. Fluid Sci., 73, 56–63,
https://doi.org/10.1016/j.expthermflusci.2015.09.005, 2016.
Ess, M. N., Ferry, D., Kireeva, E. D., Niessner, R., Ouf, F.-X., and Ivleva, N.
P.: In situ Raman microspectroscopic analysis of soot samples with different
organic carbon content: Structural changes during heating, Carbon, 105,
572–585, https://doi.org/10.1016/j.carbon.2016.04.056, 2016.
Ferrari, A. C. and Robertson, J.: Interpretation of Raman spectra of disordered
and amorphous carbon, Phys. Rev. B, 61, 14095–14107, https://doi.org/10.1103/PhysRevB.61.14095, 2000.
Fultz, B. and Howe, J. M.: Transmission electron microscopy and
diffractometry of materials, Physics and astronomy online library, Springer,
Berlin, Germany, 2001.
Gammer, C., Mangler, C., Rentenberger, C., and Karnthaler, H. P.: Quantitative
local profile analysis of nanomaterials by electron diffraction, Scripta
Mater., 63, 312–315, https://doi.org/10.1016/j.scriptamat.2010.04.019, 2010.
Gao, S., Hegg, D. A., Hobbs, P. V., Kirchstetter, T. W., Magi, B. I., and
Sadilek, M.: Water-soluble organic components in aerosols associated with
savanna fires in southern Africa: Identification, evolution, and
distribution, J. Geophys. Res., 108, 8491, https://doi.org/10.1029/2002JD002324,
2003.
Haller, T., Rentenberger, C., Meyer, J. C., Felgitsch, L., Grothe, H., and Hitzenberger, R.: Structural changes of CAST soot during a thermal–optical measurement protocol, Atmos. Meas. Tech., 12, 3503–3519, https://doi.org/10.5194/amt-12-3503-2019, 2019.
Han, Y., Cao, J., Chow, J. C., Watson, J. G., An, Z., Jin, Z., Fung, K., and
Liu, S.: Evaluation of the thermal/optical reflectance method for
discrimination between char- and soot-EC, Chemosphere, 69, 569–574, https://doi.org/10.1016/j.chemosphere.2007.03.024, 2007.
Highwood, E. J. and Kinnersley, R. P.: When smoke gets in our eyes: The
multiple impacts of atmospheric black carbon on climate, air quality and
health, Environ. Int., 32, 560–566, https://doi.org/10.1016/j.envint.2005.12.003, 2006.
Hitzenberger, R. and Tohno, S.: Comparison of black carbon (BC) aerosols in two
urban areas – concentrations and size distributions, Atmos. Environ., 35, 2153–2167, https://doi.org/10.1016/S1352-2310(00)00480-5, 2001.
Hitzenberger, R., Petzold, A., Bauer, H., Ctyroky, P., Pouresmaeil, P.,
Laskus, L., and Puxbaum, H.: Intercomparison of Thermal and Optical Measurement
Methods for Elemental Carbon and Black Carbon at an Urban Location, Environ.
Sci. Technol., 40, 6377–6383, https://doi.org/10.1021/es051228v, 2006.
Ivleva, N. P., Messerer, A., Yang, X., Niessner, R., and Pöschl, U.: Raman
Microspectroscopic Analysis of Changes in the Chemical Structure and
Reactivity of Soot in a Diesel Exhaust Aftertreatment Model System, Environ.
Sci. Technol., 41, 3702–3707, https://doi.org/10.1021/es0612448, 2007.
Jankowski, N., Schmidl, C., Marr, I. L., Bauer, H., and Puxbaum, H.: Comparison
of methods for the quantification of carbonate carbon in atmospheric PM10
aerosol samples, Atmos. Environ., 42, 8055–8064, https://doi.org/10.1016/j.atmosenv.2008.06.012, 2008.
Kirchstetter, T. W., Novakov, T., and Hobbs, P. V.: Evidence that the spectral
dependence of light absorption by aerosols is affected by organic carbon, J.
Geophys. Res., 109, D21208, https://doi.org/10.1029/2004JD004999, 2004.
Knauer, M., Schuster, M. E., Su, D., Schlögl, R., Niessner, R., and Ivleva,
N. P.: Soot structure and reactivity analysis by Raman microspectroscopy,
temperature-programmed oxidation, and high-resolution transmission electron
microscopy, J. Phys. Chem. A, 113, 13871–13880, https://doi.org/10.1021/jp905639d, 2009.
Le, K. C., Pino, T., van Pham, T., Henriksson, J., Török, S., and Bengtsson,
P.-E.: Raman spectroscopy of mini-CAST soot with various fractions of
organic compounds: Structural characterization during heating treatment from
25 ∘C to 1000 ∘C, Combust. Flame, 209, 291–302,
https://doi.org/10.1016/j.combustflame.2019.07.037, 2019.
Lukács, H., Gelencsér, A., Hammer, S., Puxbaum, H., Pio, C.,
Legrand, M., Kasper-Giebl, A., Handler, M., Limbeck, A., Simpson, D., and
Preunkert, S.: Seasonal trends and possible sources of brown carbon based on
2-year aerosol measurements at six sites in Europe, J. Geophys. Res., 112,
1052, https://doi.org/10.1029/2006JD008151, 2007.
Müller, K., Spindler, G., Maenhaut, W., Hitzenberger, R., Wieprecht, W.,
Baltensperger, U., and ten Brink, H.: INTERCOMP2000, a campaign to assess the
comparability of methods in use in Europe for measuring aerosol composition,
Atmos. Environ., 38, 6459–6466, https://doi.org/10.1016/j.atmosenv.2004.08.031, 2004.
Panteliadis, P., Hafkenscheid, T., Cary, B., Diapouli, E., Fischer, A., Favez, O., Quincey, P., Viana, M., Hitzenberger, R., Vecchi, R., Saraga, D., Sciare, J., Jaffrezo, J. L., John, A., Schwarz, J., Giannoni, M., Novak, J., Karanasiou, A., Fermo, P., and Maenhaut, W.: ECOC comparison exercise with identical thermal protocols after temperature offset correction – instrument diagnostics by in-depth evaluation of operational parameters, Atmos. Meas. Tech., 8, 779–792, https://doi.org/10.5194/amt-8-779-2015, 2015.
Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y.: Recommendations for reporting “black carbon” measurements, Atmos. Chem. Phys., 13, 8365–8379, https://doi.org/10.5194/acp-13-8365-2013, 2013.
Pöschl, U.: Atmospheric Aerosols: Composition, Transformation, Climate
and Health Effects, Angew. Chem. Int. Ed., 44, 7520–7540, https://doi.org/10.1002/anie.200501122, 2005.
Reisinger, P., Wonaschütz, A., Hitzenberger, R., Petzold, A., Bauer, H.,
Jankowski, N., Puxbaum, H., Chi, X., and Maenhaut, W.: Intercomparison of
Measurement Techniques for Black or Elemental Carbon Under Urban Background
Conditions in Wintertime: Influence of Biomass Combustion, Environ. Sci.
Technol., 42, 884–889, https://doi.org/10.1021/es0715041, 2008.
Rosen, H. and Novakov, T.: Identification of primary particulate carbon and
sulfate species by Raman spectroscopy, Atmos. Environ., 12,
923–927, https://doi.org/10.1016/0004-6981(78)90031-8, 1978.
Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., and Pöschl, U.:
Raman microspectroscopy of soot and related carbonaceous materials: Spectral
analysis and structural information, Carbon, 43, 1731–1742, https://doi.org/10.1016/j.carbon.2005.02.018, 2005.
Schmid, J., Grob, B., and Niessner, R., Ivleva, N. P.: Multiwavelength Raman
Microspectroscopy for Rapid Prediction of Soot Oxidation Reactivity, Anal.
Chem., 83, 1173–1179, https://doi.org/10.1021/ac102939w, 2011.
Sommer, E.: Long Term Trends of Black and Brown Carbon Concentrations in the
Urban Aerosol of Vienna, Master Thesis, University of
Vienna, Vienna, Austria, 2020.
Statistik Austria: https://www.statistik.at/web_de/statistiken/energie_umwelt_innovation_mobilitaet/energie_und_umwelt/energie/energieeinsatz_der_haushalte/index.html, last access 18 February 2021.
Subramanian, R., Khlystov, A. Y., and Robinson, A. L.: Effect of Peak Inert-Mode
Temperature on Elemental Carbon Measured Using Thermal-Optical Analysis,
Aerosol Sci. Tech., 40, 763–780, https://doi.org/10.1080/02786820600714403, 2006.
Sun, J., Zhang, Y., Zhi, G., Hitzenberger, R., Jin, W., Chen, Y., Wang, L., Tian, C., Li, Z., Chen, R., Xiao, W., Cheng, Y., Yang, W., Yao, L., Cao, Y., Huang, D., Qiu, Y., Xu, J., Xia, X., Yang, X., Zhang, X., Zong, Z., Song, Y., and Wu, C.: Brown carbon's emission factors and optical characteristics in household biomass burning: developing a novel algorithm for estimating the contribution of brown carbon, Atmos. Chem. Phys., 21, 2329–2341, https://doi.org/10.5194/acp-21-2329-2021, 2021.
ten Brink, H., Maenhaut, W., Hitzenberger, R., Gnauk, T., Spindler, G.,
Even, A., Chi, X., Bauer, H., Puxbaum, H., Putaud, J.-P., Tursic, J., and
Berner, A.: INTERCOMP2000: the comparability of methods in use in Europe for
measuring the carbon content of aerosol, Atmos. Environ., 38,
6507–6519, https://doi.org/10.1016/j.atmosenv.2004.08.027, 2004.
Tuinstra, F. and Koenig, J. L.: Raman Spectrum of Graphite, J.
Chem. Phys., 53, 1126–1130, https://doi.org/10.1063/1.1674108, 1970.
Venkatachari, P., Zhou, L., Hopke, P. K., Schwab, J. J., Demerjian, K. L.,
Weimer, S., Hogrefe, O., Felton, D., and Rattigan, O.: An Intercomparison of
Measurement Methods for Carbonaceous Aerosol in the Ambient Air in New York
City, Aerosol Sci. Tech., 40, 788–795, https://doi.org/10.1080/02786820500380289, 2006.
Wang, Y., Chung, A., and Paulson, S. E.: The effect of metal salts on quantification of elemental and organic carbon in diesel exhaust particles using thermal-optical evolved gas analysis, Atmos. Chem. Phys., 10, 11447–11457, https://doi.org/10.5194/acp-10-11447-2010, 2010.
Watson, J. G., Chow, J. C., and Chen, L.-W. A.: Summary of Organic and Elemental
Carbon/Black Carbon Analysis Methods and Intercomparisons, Aerosol Air Qual.
Res., 5, 65–102, https://doi.org/10.4209/aaqr.2005.06.0006, 2005.
WKO, Mineralölindustrie:
https://www.wko.at/branchen/industrie/mineraloelindustrie/statistik.html,
last access: 19 February 2020.
Wonaschütz, A., Hitzenberger, R., Bauer, H., Pouresmaeil, P., Klatzer,
B., Caseiro, A., and Puxbaum, H.: Application of the Integrating Sphere Method
to Separate the Contributions of Brown and Black Carbon in Atmospheric
Aerosols, Environ. Sci. Technol., 43, 1141–1146, https://doi.org/10.1021/es8008503,
2009.
Yu, J. Z., Xu, J., and Yang, H.: Charring Characteristics of Atmospheric Organic
Particulate Matter in Thermal Analysis, Environ. Sci. Technol., 36,
754–761, https://doi.org/10.1021/es015540q, 2002.
Zickler, G. A., Smarsly, B., Gierlinger, N., Peterlik, H., and Paris, O.: A
reconsideration of the relationship between the crystallite size La of
carbons determined by X-ray diffraction and Raman spectroscopy, Carbon, 44,
3239–3246, https://doi.org/10.1016/j.carbon.2006.06.029, 2006.
Short summary
Structural changes of carbonaceous aerosol samples during thermal–optical measurement techniques cause a darkening of the sample during the heating procedure which can influence the attribution of the carbonaceous material to organic and elemental carbon. We analyzed structural changes of atmospheric aerosol samples occurring during the EUSAAR2 and NIOSH870 measurement protocols with Raman spectroscopy. We found that the darkening of the sample is not necessarily caused by graphitization.
Structural changes of carbonaceous aerosol samples during thermal–optical measurement...