Articles | Volume 14, issue 11
https://doi.org/10.5194/amt-14-7103-2021
https://doi.org/10.5194/amt-14-7103-2021
Research article
 | 
12 Nov 2021
Research article |  | 12 Nov 2021

Global ensemble of temperatures over 1850–2018: quantification of uncertainties in observations, coverage, and spatial modeling (GETQUOCS)

Maryam Ilyas, Douglas Nychka, Chris Brierley, and Serge Guillas

Related authors

North Atlantic Oscillation (NAO) in the Paleoclimate Modelling Intercomparison Project (PMIP)
Anni Zhao, Chris Brierley, Venni Arra, Xiaoxu Shi, and Yongyun Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3140,https://doi.org/10.5194/egusphere-2025-3140, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
CMIP7 Data Request: Earth System Priorities and Opportunities
Mara Y. McPartland, Tomas Lovato, Charles D. Koven, Jamie D. Wilson, Briony Turner, Colleen M. Petrik, José Licón-Saláiz, Fang Li, Fanny Lhardy, Jaclyn Clement Kinney, Michio Kawamiya, Birgit Hassler, Nathan P. Gillett, Cheikh Modou Noreyni Fall, Christopher Danek, Chris M. Brierley, Ana Bastos, and Oliver Andrews
EGUsphere, https://doi.org/10.5194/egusphere-2025-3246,https://doi.org/10.5194/egusphere-2025-3246, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Aerosol uncertainties in tropical precipitation changes for the mid-Pliocene warm period
Anni Zhao, Ran Feng, Chris M. Brierley, Jian Zhang, and Yongyun Hu
Clim. Past, 20, 1195–1211, https://doi.org/10.5194/cp-20-1195-2024,https://doi.org/10.5194/cp-20-1195-2024, 2024
Short summary
ParticleDA.jl v.1.0: a distributed particle-filtering data assimilation package
Daniel Giles, Matthew M. Graham, Mosè Giordano, Tuomas Koskela, Alexandros Beskos, and Serge Guillas
Geosci. Model Dev., 17, 2427–2445, https://doi.org/10.5194/gmd-17-2427-2024,https://doi.org/10.5194/gmd-17-2427-2024, 2024
Short summary
jsmetrics v0.2.0: a Python package for metrics and algorithms used to identify or characterise atmospheric jet streams
Tom Keel, Chris Brierley, and Tamsin Edwards
Geosci. Model Dev., 17, 1229–1247, https://doi.org/10.5194/gmd-17-1229-2024,https://doi.org/10.5194/gmd-17-1229-2024, 2024
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
EMADDC: high-volume, high-quality, and timely wind and temperature observations from aircraft surveillance data (Mode-S EHS)
Siebren de Haan, Paul de Jong, Michal Koutek, Jan Sondij, and Lukas Strauss
Atmos. Meas. Tech., 18, 3341–3359, https://doi.org/10.5194/amt-18-3341-2025,https://doi.org/10.5194/amt-18-3341-2025, 2025
Short summary
Turbulent transport extraction in time and frequency and the estimation of eddy fluxes at high resolution
Gabriel Destouet, Nikola Besic, Emilie Joetzjer, and Matthias Cuntz
Atmos. Meas. Tech., 18, 3193–3215, https://doi.org/10.5194/amt-18-3193-2025,https://doi.org/10.5194/amt-18-3193-2025, 2025
Short summary
Adaptation of RainGaugeQC algorithms for quality control of rain gauge data from professional and non-professional measurement networks
Katarzyna Ośródka, Jan Szturc, Anna Jurczyk, and Agnieszka Kurcz
Atmos. Meas. Tech., 18, 3229–3245, https://doi.org/10.5194/amt-18-3229-2025,https://doi.org/10.5194/amt-18-3229-2025, 2025
Short summary
Bias correction and application of labeled smartphone pressure data for evaluating the best track of landfalling tropical cyclones
Ge Qiao, Yuyao Cao, Qinghong Zhang, Juanzhen Sun, Hui Yu, and Lina Bai
Atmos. Meas. Tech., 18, 829–841, https://doi.org/10.5194/amt-18-829-2025,https://doi.org/10.5194/amt-18-829-2025, 2025
Short summary
Double-moment normalization of hail size number distributions over Switzerland
Alfonso Ferrone, Jérôme Kopp, Martin Lainer, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 17, 7143–7168, https://doi.org/10.5194/amt-17-7143-2024,https://doi.org/10.5194/amt-17-7143-2024, 2024
Short summary

Cited articles

Beaumont, M.: Approximate Bayesian computation in evolution and ecology, Annu. Rev. Ecol. Evol. S., 41, 379–406, 2010. a
Beaumont, M.: Approximate bayesian computation, Annu. Rev. Stat. Appl., 6, 379–403, 2019. a
Beaumont, M., Zhang, W., and Balding, D.: Approximate Bayesian computation in population genetics, Genetics, 162, 2025–2035, 2002. a
Beguería, S., Vicente-Serrano, S. M., Tomás-Burguera, M., and Maneta, M.: Bias in the variance of gridded data sets leads to misleading conclusions about changes in climate variability, Int. J. Climatol., 36, 3413–3422, https://doi.org/10.1002/joc.4561, 2016. a
Brohan, P., Kennedy, J., Harris, I., Tett, S., and Jones, P.: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850, J. Geophys. Res.-Atmos., 111, 1–21, 2006. a, b
Download
Short summary
Instrumental temperature records are fundamental to climate science. There are spatial gaps in the distribution of these measurements across the globe. This lack of spatial coverage introduces coverage error. In this research, a methodology is developed and used to quantify the coverage errors. It results in a data product that, for the first time, provides a full description of both the spatial coverage uncertainties along with the uncertainties in the modeling of these spatial gaps.
Share