Articles | Volume 14, issue 11
https://doi.org/10.5194/amt-14-7243-2021
https://doi.org/10.5194/amt-14-7243-2021
Research article
 | 
17 Nov 2021
Research article |  | 17 Nov 2021

Triple-frequency radar retrieval of microphysical properties of snow

Kamil Mroz, Alessandro Battaglia, Cuong Nguyen, Andrew Heymsfield, Alain Protat, and Mengistu Wolde

Related authors

Estimating Ice Water Content and Snowfall Rate from radar measurements in the G-band
Karina McCusker, Chris Westbrook, Alessandro Battaglia, Kamil Mroz, Benjamin M. Courtier, Peter G. Huggard, Hui Wang, Richard Reeves, Christopher J. Walden, Richard Cotton, Stuart Fox, and Anthony J. Baran
EGUsphere, https://doi.org/10.5194/egusphere-2025-3974,https://doi.org/10.5194/egusphere-2025-3974, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Hydrometeor partitioning ratios for dual-frequency space-borne and polarimetric ground-based radar observations
Velibor Pejcic, Kamil Mroz, Kai Mühlbauer, and Silke Trömel
EGUsphere, https://doi.org/10.5194/egusphere-2025-1414,https://doi.org/10.5194/egusphere-2025-1414, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Advantages of G-band radar in multi-frequency liquid-phase microphysical retrievals
Benjamin M. Courtier, Alessandro Battaglia, and Kamil Mroz
Atmos. Meas. Tech., 17, 6875–6888, https://doi.org/10.5194/amt-17-6875-2024,https://doi.org/10.5194/amt-17-6875-2024, 2024
Short summary
Enhancing consistency of microphysical properties of precipitation across the melting layer in dual-frequency precipitation radar data
Kamil Mroz, Alessandro Battaglia, and Ann M. Fridlind
Atmos. Meas. Tech., 17, 1577–1597, https://doi.org/10.5194/amt-17-1577-2024,https://doi.org/10.5194/amt-17-1577-2024, 2024
Short summary
In-orbit cross-calibration of millimeter conically scanning spaceborne radars
Alessandro Battaglia, Filippo Emilio Scarsi, Kamil Mroz, and Anthony Illingworth
Atmos. Meas. Tech., 16, 3283–3297, https://doi.org/10.5194/amt-16-3283-2023,https://doi.org/10.5194/amt-16-3283-2023, 2023
Short summary

Cited articles

Battaglia, A., Kollias, P., Dhillon, R., Roy, R., Tanelli, S., Lamer, K., Grecu, M., Lebsock, M., Watters, D., Mroz, K., Heymsfield, G., Li, L., and Furukawa, K.: Spaceborne Cloud and Precipitation Radars: Status, Challenges, and Ways Forward, Rev. Geophys., 58, e2019RG000686, https://doi.org/10.1029/2019RG000686, 2020a. a
Battaglia, A., Tanelli, S., Tridon, F., Kneifel, S., Leinonen, J., and Kollias, P.: Satellite Precipitation Measurement, Advances in Global Change Research, Vol. 67, Springer, Cham, ISBN: 978-3-030-24567-2, 2020b. a
Delene, D. and Poellot, M. R.: GPM GROUND VALIDATION UND CITATION CLOUD MICROPHYSICS MC3E, NASA Global Hydrology Resource Center DAAC [data set], Huntsville, Alabama, U.S.A., https://doi.org/10.5067/GPMGV/MC3E/MULTIPLE/DATA201, 2012. a
Ekelund, R., Eriksson, P., and Kahnert, M.: Microwave single-scattering properties of non-spheroidal raindrops, Atmos. Meas. Tech., 13, 6933–6944, https://doi.org/10.5194/amt-13-6933-2020, 2020a. a
Ekelund, R., Brath, M., Mendrok, J., and Eriksson, P.: ARTS Microwave Single Scattering Properties Database (1.1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.4646605, 2020b. a
Download
Short summary
A method for estimating microphysical properties of ice clouds based on radar measurements is presented. The algorithm exploits the information provided by differences in the radar response at different frequency bands in relation to changes in the snow morphology. The inversion scheme is based on a statistical relation between the radar simulations and the properties of snow calculated from in-cloud sampling.
Share