Articles | Volume 15, issue 5
https://doi.org/10.5194/amt-15-1201-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-1201-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
MULTICHARME: a modified Chernin-type multi-pass cell designed for IR and THz long-path absorption measurements in the CHARME atmospheric simulation chamber
Jean Decker
Laboratoire de Physico-Chimie de l'Atmosphère, UR4493, LPCA, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
Éric Fertein
Laboratoire de Physico-Chimie de l'Atmosphère, UR4493, LPCA, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
Jonas Bruckhuisen
Laboratoire de Physico-Chimie de l'Atmosphère, UR4493, LPCA, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
Nicolas Houzel
Laboratoire de Physico-Chimie de l'Atmosphère, UR4493, LPCA, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
Pierre Kulinski
Laboratoire de Physico-Chimie de l'Atmosphère, UR4493, LPCA, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
Weixiong Zhao
Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
Francis Hindle
Laboratoire de Physico-Chimie de l'Atmosphère, UR4493, LPCA, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
Guillaume Dhont
Laboratoire de Physico-Chimie de l'Atmosphère, UR4493, LPCA, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
Robin Bocquet
Laboratoire de Physico-Chimie de l'Atmosphère, UR4493, LPCA, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
Gaël Mouret
Laboratoire de Physico-Chimie de l'Atmosphère, UR4493, LPCA, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
Cécile Coeur
Laboratoire de Physico-Chimie de l'Atmosphère, UR4493, LPCA, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
Arnaud Cuisset
CORRESPONDING AUTHOR
Laboratoire de Physico-Chimie de l'Atmosphère, UR4493, LPCA, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
Related authors
No articles found.
Bo Fang, Nana Wei, Weixiong Zhao, Nana Yang, Hao Zhou, Heng Zhang, Jiarong Li, Weijun Zhang, Yanyu Lu, Zhu Zhu, and Yue Liu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-184, https://doi.org/10.5194/amt-2024-184, 2024
Revised manuscript under review for AMT
Short summary
Short summary
A portable LP-FRS instrument with dimensions of 130 cm × 40 cm × 35 cm was developed. A specific pump-probe MPC was designed to offer a high overlapping factor of 75.4 %. The precision and uncertainty of the LP-FRS instrument for measuring kOH' were 1.0 s-1 (1σ, 300 s) and within 2 s-1, respectively. The developed portable LP-FRS instrument expands the measurement capabilities for atmospheric total OH reactivity and will be employed in more field observations.
Chunxiang Ye, Shuzheng Guo, Weili Lin, Fangjie Tian, Jianshu Wang, Chong Zhang, Suzhen Chi, Yi Chen, Yingjie Zhang, Limin Zeng, Xin Li, Duo Bu, Jiacheng Zhou, and Weixiong Zhao
Atmos. Chem. Phys., 23, 10383–10397, https://doi.org/10.5194/acp-23-10383-2023, https://doi.org/10.5194/acp-23-10383-2023, 2023
Short summary
Short summary
Online volatile organic compound (VOC) measurements by gas chromatography–mass spectrometry, with other O3 precursors, were used to identify key VOC and other key sources in Lhasa. Total VOCs (TVOCs), alkanes, and aromatics are half as abundant as in Beijing. Oxygenated VOCs (OVOCs) consist of 52 % of the TVOCs. Alkenes and OVOCs account for 80 % of the ozone formation potential. Aromatics dominate secondary organic aerosol potential. Positive matrix factorization decomposed residential sources.
Yaru Wang, Yi Chen, Suzhen Chi, Jianshu Wang, Chong Zhang, Weixiong Zhao, Weili Lin, and Chunxiang Ye
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-192, https://doi.org/10.5194/amt-2023-192, 2023
Revised manuscript not accepted
Short summary
Short summary
We reported an optimized system (Mea-OPR) for direct measurement of ozone production rate, which showed a precise, sensitive and reliable measurement of OPR for at least urban and suburban atmosphere, and active O3 photochemical production in winter Beijing. Herein, the Mea-OPR system also shows its potential in exploring the fundamental O3 photochemistry, i.e., surprisingly high ozone production even under high-NOx conditions.
Lizi Tang, Min Hu, Dongjie Shang, Xin Fang, Jianjiong Mao, Wanyun Xu, Jiacheng Zhou, Weixiong Zhao, Yaru Wang, Chong Zhang, Yingjie Zhang, Jianlin Hu, Limin Zeng, Chunxiang Ye, Song Guo, and Zhijun Wu
Atmos. Chem. Phys., 23, 4343–4359, https://doi.org/10.5194/acp-23-4343-2023, https://doi.org/10.5194/acp-23-4343-2023, 2023
Short summary
Short summary
There was an evident distinction in the frequency of new particle formation (NPF) events at Nam Co station on the Tibetan Plateau: 15 % in pre-monsoon season and 80 % in monsoon season. The frequent NPF events in monsoon season resulted from the higher frequency of southerly air masses, which brought the organic precursors to participate in the NPF process. It increased the amount of aerosol and CCN compared with those in pre-monsoon season, which may markedly affect earth's radiation balance.
Junchen Guo, Shengzhen Zhou, Mingfu Cai, Jun Zhao, Wei Song, Weixiong Zhao, Weiwei Hu, Yele Sun, Yao He, Chengqiang Yang, Xuezhe Xu, Zhisheng Zhang, Peng Cheng, Qi Fan, Jian Hang, Shaojia Fan, Xinming Wang, and Xuemei Wang
Atmos. Chem. Phys., 20, 7595–7615, https://doi.org/10.5194/acp-20-7595-2020, https://doi.org/10.5194/acp-20-7595-2020, 2020
Short summary
Short summary
We characterized non-refractory submicron particulate matter (PM1.0) during winter in Guangzhou, south China. Chemical composition and key sources of ambient PM1.0 are revealed, highlighting the significant role of SOA. The relationship with SOA and peroxy radicals indicated gas-phase oxidation contributed predominantly to SOA formation during non-pollution periods, while heterogeneous/multiphase reactions played more important roles in SOA formation during pollution periods.
Jiacheng Zhou, Xuezhe Xu, Weixiong Zhao, Bo Fang, Qianqian Liu, Yuanqing Cai, Weijun Zhang, Dean S. Venables, and Weidong Chen
Atmos. Meas. Tech., 13, 2623–2634, https://doi.org/10.5194/amt-13-2623-2020, https://doi.org/10.5194/amt-13-2623-2020, 2020
Short summary
Short summary
We report the first demonstration of a humidified cavity-enhanced albedometer (H-CEA) that combines a broadband cavity-enhanced aerosol albedometer with a humidigraph system for simultaneous and accurate measurements of multiple optical hygroscopic parameters (f(RH)ext,scat,abs,ω) at λ = 532 nm. The instrument is suitable for operating under high RH-conditions and has sampling advantages over independent measurements of different parameters with different instruments.
Xuezhe Xu, Weixiong Zhao, Xiaodong Qian, Shuo Wang, Bo Fang, Qilei Zhang, Weijun Zhang, Dean S. Venables, Weidong Chen, Yong Huang, Xueliang Deng, Biwen Wu, Xinfeng Lin, Sen Zhao, and Yingxiang Tong
Atmos. Chem. Phys., 18, 16829–16844, https://doi.org/10.5194/acp-18-16829-2018, https://doi.org/10.5194/acp-18-16829-2018, 2018
Short summary
Short summary
We report the direct field measurement of size-resolved mixing state, Eabs, and aerosol single-scattering albedo (SSA) at λ = 532 nm at a rural site in east China in summer. Parameterization of Eabs and SSA captures much of the influence of black carbon (BC) coating and particle absorption. The results show that absorption amplification depends on the coating thickness and the absorption of coating materials, and photochemistry plays role in modifying the absorption of BC-containing particles.
Changjin Hu, Qiao Ma, Zhi Liu, Yue Cheng, Liqing Hao, Nana Wei, Yanbo Gai, Xiaoxiao Lin, Xuejun Gu, Weixiong Zhao, Mingqiang Huang, Zhenya Wang, and Weijun Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-433, https://doi.org/10.5194/acp-2017-433, 2017
Revised manuscript not accepted
Short summary
Short summary
The effect of NO2 on SOA formation from oxidation of limonene is found to be related to the competition between O3- and NO3-initiated oxidation as well as the competition between RO2 + HO2 and RO2 + NO2 (or NO3) following the initial ozonolysis, and organic nitrates is believed to play an important role in aerosol particle formation. It is suggested that SOA formation in the regions with substantial anthropogenic-biogenic interactions should be evaluated more systematically than before.
Xuezhe Xu, Weixiong Zhao, Qilei Zhang, Shuo Wang, Bo Fang, Weidong Chen, Dean S. Venables, Xinfeng Wang, Wei Pu, Xin Wang, Xiaoming Gao, and Weijun Zhang
Atmos. Chem. Phys., 16, 6421–6439, https://doi.org/10.5194/acp-16-6421-2016, https://doi.org/10.5194/acp-16-6421-2016, 2016
Short summary
Short summary
We report on the field measurement of the optical properties and chemical composition of PM1.0 particles in a suburban environment in Beijing during the winter coal heating season. Organic mass was the largest contributor to the total extinction of PM1.0, while EC, owing to its high absorption efficiency, contributed appreciably to PM1.0 extinction and should be a key target to air quality controls. Non-BC absorption from secondary organic aerosol also contributes to particle absorption.
W. Zhao, X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang
Atmos. Meas. Tech., 7, 2551–2566, https://doi.org/10.5194/amt-7-2551-2014, https://doi.org/10.5194/amt-7-2551-2014, 2014
Related subject area
Subject: Gases | Technique: Laboratory Measurement | Topic: Instruments and Platforms
High-precision oxygen isotope (δ18O) measurements of atmospheric dioxygen using optical-feedback cavity-enhanced absorption spectroscopy (OF-CEAS)
Water vapor stable isotope memory effects of common tubing materials
Product Ion Distributions using H3O+ PTR-ToF-MS: Mechanisms, Transmission Effects, and Instrument-to-Instrument Variability
Evaluation of a reduced-pressure chemical ion reactor utilizing adduct ionization for the detection of gaseous organic and inorganic species
Ammonium CI-Orbitrap: a tool for characterizing the reactivity of oxygenated organic molecules
A high-accuracy dynamic dilution method for generating reference gas mixtures of carbonyl sulfide at sub-nanomole-per-mole levels for long-term atmospheric observation
Optimizing the iodide-adduct chemical ionization mass spectrometry (CIMS) quantitative method for toluene oxidation intermediates: experimental insights into functional-group differences
Simultaneous measurement of greenhouse gases (CH4, CO2 and N2O) at atmospheric levels using a gas chromatography system
A new portable sampler of atmospheric methane for radiocarbon measurements
Characterization of a new Teflon chamber and on-line analysis of isomeric multifunctional photooxidation products
A versatile water vapor generation module for vapor isotope calibration and liquid isotope measurements
Extraction, purification, and clumped isotope analysis of methane (Δ13CDH3 and Δ12CD2H2) from sources and the atmosphere
Response of protonated, adduct, and fragmented ions in Vocus proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS)
Absorption of volatile organic compounds (VOCs) by polymer tubing: implications for indoor air and use as a simple gas-phase volatility separation technique
A flexible device to produce a gas stream with a precisely controlled water vapour mixing ratio and isotope composition based on microdrop dispensing technology
Revision of an open-split-based dual-inlet system for elemental and isotope ratio mass spectrometers with a focus on clumped-isotope measurements
Characterisation of gaseous iodine species detection using the multi-scheme chemical ionisation inlet 2 with bromide and nitrate chemical ionisation methods
A novel inlet for enriching concentrations of reactive organic gases in low sampling flows
Characterizing the automatic radon flux transfer standard system Autoflux: laboratory calibration and field experiments
Influence of ozone and humidity on PTR-MS and GC-MS VOC measurements with and without a Na2S2O3 ozone scrubber
Laser-induced sublimation extraction for centimeter-resolution multi-species greenhouse gas analysis on ice cores
Ozone reactivity measurement of biogenic volatile organic compound emissions
Comparison of two photolytic calibration methods for nitrous acid
Measurement of enantiomer percentages for five monoterpenes from six conifer species by cartridge-tube-based passive sampling adsorption–thermal desorption (ps-ATD)
Identification, monitoring, and reaction kinetics of reactive trace species using time-resolved mid-infrared quantum cascade laser absorption spectroscopy: development, characterisation, and initial results for the CH2OO Criegee intermediate
Air pollution monitoring: development of ammonia (NH3) dynamic reference gas mixtures at nanomoles per mole levels to improve the lack of traceability of measurements
Formaldehyde and glyoxal measurement deploying a selected ion flow tube mass spectrometer (SIFT-MS)
Fragmentation inside proton-transfer-reaction-based mass spectrometers limits the detection of ROOR and ROOH peroxides
Silicone tube humidity generator
A source for the continuous generation of pure and quantifiable HONO mixtures
Photochemical method for removing methane interference for improved gas analysis
A simulation chamber for absorption spectroscopy in planetary atmospheres
An automated system for trace gas flux measurements from plant foliage and other plant compartments
Simultaneous measurement of δ13C, δ18O and δ17O of atmospheric CO2 – performance assessment of a dual-laser absorption spectrometer
Measurement of iodine species and sulfuric acid using bromide chemical ionization mass spectrometers
A method for resolving changes in atmospheric He ∕ N2 as an indicator of fossil fuel extraction and stratospheric circulation
Application of chemical derivatization techniques combined with chemical ionization mass spectrometry to detect stabilized Criegee intermediates and peroxy radicals in the gas phase
Atomic emission detector with gas chromatographic separation and cryogenic pre-concentration (CryoTrap–GC–AED) for atmospheric trace gas measurements
New technique for high-precision, simultaneous measurements of CH4, N2O and CO2 concentrations; isotopic and elemental ratios of N2, O2 and Ar; and total air content in ice cores by wet extraction
High-precision laser spectrometer for multiple greenhouse gas analysis in 1 mL air from ice core samples
A thermal-dissociation–cavity ring-down spectrometer (TD-CRDS) for the detection of organic nitrates in gas and particle phases
Interference from alkenes in chemiluminescent NOx measurements
Calibration of an airborne HOx instrument using the All Pressure Altitude-based Calibrator for HOx Experimentation (APACHE)
Measurement of ammonia, amines and iodine compounds using protonated water cluster chemical ionization mass spectrometry
An instrument for in situ measurement of total ozone reactivity
Portable calibrator for NO based on the photolysis of N2O and a combined NO2∕NO∕O3 source for field calibrations of air pollution monitors
A new instrument for time-resolved measurement of HO2 radicals
Investigation of adsorption and desorption behavior of small-volume cylinders and its relevance for atmospheric trace gas analysis
Towards an understanding of surface effects: testing of various materials in a small volume measurement chamber and its relevance for atmospheric trace gas analysis
Stability of halocarbons in air samples stored in stainless- steel canisters
Clément Piel, Daniele Romanini, Morgane Farradèche, Justin Chaillot, Clémence Paul, Nicolas Bienville, Thomas Lauwers, Joana Sauze, Kévin Jaulin, Frédéric Prié, and Amaëlle Landais
Atmos. Meas. Tech., 17, 6647–6658, https://doi.org/10.5194/amt-17-6647-2024, https://doi.org/10.5194/amt-17-6647-2024, 2024
Short summary
Short summary
This paper introduces a new optical gas analyzer based on an optical-feedback cavity-enhanced absorption spectroscopy (OF-CEAS) technique enabling high-temporal-resolution and high-precision measurements of oxygen isotopes (δ18O) and dioxygen (O2) concentration of atmospheric O2 (respectively 0.06 ‰ and 0.002 % over 10 min integration). The results underscore the good agreement with isotope ratio mass spectrometry measurements and the ability of the instrument to monitor biological processes.
Alexandra L. Meyer and Lisa R. Welp
Atmos. Meas. Tech., 17, 6193–6212, https://doi.org/10.5194/amt-17-6193-2024, https://doi.org/10.5194/amt-17-6193-2024, 2024
Short summary
Short summary
Water molecules stick to air intake tubing wall surfaces, smoothing measurements of fast isotopic variability in the atmosphere. We tested this stickiness and saw small differences in isotopic signal speed between materials, tubing inner dimensions, and isotopic switch direction, although no consistent temperature effects. Researchers can confidently compare measurements across observation systems using different commonly used tubing materials and plan for optimal inlet designs of new systems.
Michael F. Link, Megan S. Claflin, Christina E. Cecelski, Ayomide A. Akande, Delaney Kilgour, Paul A. Heine, Matthew Coggon, Chelsea E. Stockwell, Andrew Jensen, Jie Yu, Han N. Huynh, Jenna C. Ditto, Carsten Warneke, William Dresser, Keighan Gemmell, Spiro Jorga, Rileigh L. Robertson, Joost de Gouw, Timothy Bertram, Jonathan P. D. Abbatt, Nadine Borduas-Dedekind, and Dustin Poppendieck
EGUsphere, https://doi.org/10.5194/egusphere-2024-3132, https://doi.org/10.5194/egusphere-2024-3132, 2024
Short summary
Short summary
Proton-transfer-reaction mass spectrometry (PTR-MS) is widely used for the measurement of volatile organic compounds (VOCs) both indoors and outdoors. An analytical challenge for PTR-MS measurements is the formation of unintended measurement interferences, product ion distributions (PIDs), that may appear in the data as VOCs of interest. We developed a method for quantifying PID formation and use interlaboratory comparison data to put quantitative constraints on PID formation.
Matthieu Riva, Veronika Pospisilova, Carla Frege, Sebastien Perrier, Priyanka Bansal, Spiro Jorga, Patrick Sturm, Joel A. Thornton, Urs Rohner, and Felipe Lopez-Hilfiker
Atmos. Meas. Tech., 17, 5887–5901, https://doi.org/10.5194/amt-17-5887-2024, https://doi.org/10.5194/amt-17-5887-2024, 2024
Short summary
Short summary
We present a newly designed reduced-pressure chemical ionization reactor for detection of gas-phase organic and inorganic species. The system operates through the combined use of vacuum ultraviolet ionization and photosensitizers to generate numerous adduct ionization schemes. As a result, it offers the ability to simultaneously measure a wide variety of organic and inorganic species in terms of compound volatility and functionality, while being largely independent of changes in sample humidity.
Dandan Li, Dongyu Wang, Lucia Caudillo, Wiebke Scholz, Mingyi Wang, Sophie Tomaz, Guillaume Marie, Mihnea Surdu, Elias Eccli, Xianda Gong, Loic Gonzalez-Carracedo, Manuel Granzin, Joschka Pfeifer, Birte Rörup, Benjamin Schulze, Pekka Rantala, Sébastien Perrier, Armin Hansel, Joachim Curtius, Jasper Kirkby, Neil M. Donahue, Christian George, Imad El-Haddad, and Matthieu Riva
Atmos. Meas. Tech., 17, 5413–5428, https://doi.org/10.5194/amt-17-5413-2024, https://doi.org/10.5194/amt-17-5413-2024, 2024
Short summary
Short summary
Due to the analytical challenges of measuring organic vapors, it remains challenging to identify and quantify organic molecules present in the atmosphere. Here, we explore the performance of the Orbitrap chemical ionization mass spectrometer (CI-Orbitrap) using ammonium ion chemistry. This study shows that ammonium-ion-based chemistry associated with the high mass resolution of the Orbitrap mass analyzer can measure almost all inclusive compounds.
Hideki Nara, Takuya Saito, Taku Umezawa, and Yasunori Tohjima
Atmos. Meas. Tech., 17, 5187–5200, https://doi.org/10.5194/amt-17-5187-2024, https://doi.org/10.5194/amt-17-5187-2024, 2024
Short summary
Short summary
We have developed a high-accuracy dynamic dilution system for generating reference gas mixtures containing carbonyl sulfide (COS). Although COS at ambient levels generally has poor storage stability, our approach involves the dilution of a gas mixture containing micromole-per-mole levels of COS, the stability of which was validated for more than 1 decade. The developed system has excellent dilution performance and will facilitate accurate instrumental calibration for atmospheric COS observation.
Mengdi Song, Shuyu He, Xin Li, Ying Liu, Shengrong Lou, Sihua Lu, Limin Zeng, and Yuanhang Zhang
Atmos. Meas. Tech., 17, 5113–5127, https://doi.org/10.5194/amt-17-5113-2024, https://doi.org/10.5194/amt-17-5113-2024, 2024
Short summary
Short summary
We introduce detailed and improved quantitation and semi-quantitation methods of iodide-adduct time-of-flight chemical ionization mass spectrometry (I-CIMS) to measure toluene oxidation intermediates. We assess the experimental sensitivity of various functional group species and their binding energy with iodide ions in I-CIMS. A novel classification approach was introduced to significantly enhance the accuracy of semi-quantitative methods (improving R2 values from 0.52 to beyond 0.88).
Michal Bucha, Dominika Lewicka-Szczebak, and Piotr Wójtowicz
EGUsphere, https://doi.org/10.5194/egusphere-2024-2125, https://doi.org/10.5194/egusphere-2024-2125, 2024
Short summary
Short summary
Manuscript presents new method for determination of GHG’s (CH4, CO2 and N2O) at ambient levels using chromatographic system with barrier ion discharge detector (BID) and Carboxen 1010 column. System is omitting the need for an electron capture detector (ECD) containing radiogenic components for N2O analysis and a flame ionisation detector (FID) with a methaniser for CO2 samples. This simplification reduces analytical costs, facilitates instrument maintenance and improves measurement robustness.
Giulia Zazzeri, Lukas Wacker, Negar Haghipour, Philip Gautchi, Thomas Laemmel, Sönke Szidat, and Heather Graven
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-123, https://doi.org/10.5194/amt-2024-123, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Radiocarbon (14C) is an optimal tracer of methane (CH4) emissions, as 14C measurements enable distinguishing fossil from biogenic methane. However, these measurements are particularly challenging, mainly due to technical difficulties in the sampling procedure. With this work we made the sample extraction much simpler and time efficient, providing a new technology that can be used by any research group, with the goal of expanding 14C measurements for an improved understanding of methane sources.
Finja Löher, Esther Borrás, Amalia Muñoz, and Anke Christine Nölscher
Atmos. Meas. Tech., 17, 4553–4579, https://doi.org/10.5194/amt-17-4553-2024, https://doi.org/10.5194/amt-17-4553-2024, 2024
Short summary
Short summary
We constructed and characterized a new indoor Teflon atmospheric simulation chamber. We evaluated wall losses, photolysis rates, and secondary reactions of multifunctional photooxidation products in the chamber. To measure these products on-line, we combined chromatographic and mass spectrometric analyses to obtain both isomeric information and a high temporal resolution. For method validation, we studied the formation yields of the main ring-retaining products of toluene.
Hans Christian Steen-Larsen and Daniele Zannoni
Atmos. Meas. Tech., 17, 4391–4409, https://doi.org/10.5194/amt-17-4391-2024, https://doi.org/10.5194/amt-17-4391-2024, 2024
Short summary
Short summary
The water vapor generation module is completely scalable, allowing autonomous calibrations to use N standards and providing integration times only restricted by sample availability. We document improved reproducibility in 17O-excess liquid measurements. This module makes spectroscopy measurements comparable to mass spectrometry. We document that the vapor generation module can be used to analyze instrument performance and for vapor isotope calibration during field campaign measurements.
Malavika Sivan, Thomas Röckmann, Carina van der Veen, and Maria Elena Popa
Atmos. Meas. Tech., 17, 2687–2705, https://doi.org/10.5194/amt-17-2687-2024, https://doi.org/10.5194/amt-17-2687-2024, 2024
Short summary
Short summary
We have set up a measurement system for methane-clumped isotopologues. We have built an extraction and purification system to extract pure methane for these measurements, for samples of various origins, including atmospheric air, for which we need to process about 1000 L of air for one measurement. We report here the technical setup for extraction and measurements, as well as the calibration, and we give an overview of the samples measured so far.
Fangbing Li, Dan Dan Huang, Linhui Tian, Bin Yuan, Wen Tan, Liang Zhu, Penglin Ye, Douglas Worsnop, Ka In Hoi, Kai Meng Mok, and Yong Jie Li
Atmos. Meas. Tech., 17, 2415–2427, https://doi.org/10.5194/amt-17-2415-2024, https://doi.org/10.5194/amt-17-2415-2024, 2024
Short summary
Short summary
The responses of protonated, adduct, and fragmented ions of 21 volatile organic compounds (VOCs) were investigated with varying instrument settings and relative humidity (RH) in a Vocus proton-transfer-reaction mass spectrometer (PTR-MS). The protonated ions of most VOCs studied show < 15 % variation in sensitivity, except for some long-chain aldehydes. The relationship between sensitivity and PTR rate constant is complicated by the influences from ion transmission and protonated ion fraction.
Melissa A. Morris, Demetrios Pagonis, Douglas A. Day, Joost A. de Gouw, Paul J. Ziemann, and Jose L. Jimenez
Atmos. Meas. Tech., 17, 1545–1559, https://doi.org/10.5194/amt-17-1545-2024, https://doi.org/10.5194/amt-17-1545-2024, 2024
Short summary
Short summary
Polymer absorption of volatile organic compounds (VOCs) is important to characterize for atmospheric sampling setups (as interactions cause sampling delays) and indoor air quality. Here we test different polymer materials and quantify their absorptive capacities through modeling. We found the main polymers in carpets to be highly absorptive, acting as large reservoirs for indoor pollution. We also demonstrated how polymer tubes can be used as a low-cost gas separation technique.
Harald Sodemann, Alena Dekhtyareva, Alvaro Fernandez, Andrew Seidl, and Jenny Maccali
Atmos. Meas. Tech., 16, 5181–5203, https://doi.org/10.5194/amt-16-5181-2023, https://doi.org/10.5194/amt-16-5181-2023, 2023
Short summary
Short summary
We describe a device that allows one to produce a continuous stream of water vapour with a specified level of humidity. As a main innovation, we can mix waters with different water isotope composition. Through a series of tests we show that the performance characteristics of the device are in line with specifications. We present two laboratory applications where the device proves useful, first in characterizing instruments, and second for the analysis of water contained in stalagmites.
Stephan Räss, Peter Nyfeler, Paul Wheeler, Will Price, and Markus Christian Leuenberger
Atmos. Meas. Tech., 16, 4489–4505, https://doi.org/10.5194/amt-16-4489-2023, https://doi.org/10.5194/amt-16-4489-2023, 2023
Short summary
Short summary
Due to technological advances clumped-isotope studies have gained importance in recent years. Typically, these studies are performed with high-resolution isotope ratio mass spectrometers (IRMSs) along with a changeover-valve-based dual-inlet system (DIS). We are taking a different approach, namely performing clumped-isotope measurements with a compact low-resolution IRMS with an open-split-based DIS. Currently, we are working with pure-oxygen gas for which we are providing a proof of concept.
Xu-Cheng He, Jiali Shen, Siddharth Iyer, Paxton Juuti, Jiangyi Zhang, Mrisha Koirala, Mikko M. Kytökari, Douglas R. Worsnop, Matti Rissanen, Markku Kulmala, Norbert M. Maier, Jyri Mikkilä, Mikko Sipilä, and Juha Kangasluoma
Atmos. Meas. Tech., 16, 4461–4487, https://doi.org/10.5194/amt-16-4461-2023, https://doi.org/10.5194/amt-16-4461-2023, 2023
Short summary
Short summary
In this study, the upgraded multi-scheme chemical ionisation inlet 2 is presented. Sulfuric acid, hypoiodous acid, iodine, sulfur dioxide, and hydroperoxyl radicals are calibrated, and the improved ion optics allow us to detect sulfuric acid and iodine-containing molecules at as low as a few parts per quadrillion by volume. Additionally, we confirm the reliable detection of iodic acid using both the nitrate and bromide chemical ionisation methods under atmospherically relevant conditions.
Namrata Shanmukh Panji and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 16, 4319–4330, https://doi.org/10.5194/amt-16-4319-2023, https://doi.org/10.5194/amt-16-4319-2023, 2023
Short summary
Short summary
Measuring volatile organic compounds (VOCs) in the atmosphere is crucial for understanding air quality and environmental impact. Since these compounds are present in low concentrations, preconcentration of samples is often necessary for accurate detection. To address this issue, we have developed a novel inlet that uses selective permeation to concentrate organic gases in small sample flows. This device offers a promising approach for accurately detecting low levels of VOCs in the atmosphere.
Claudia Grossi, Daniel Rabago, Scott Chambers, Carlos Sáinz, Roger Curcoll, Peter P. S. Otáhal, Eliška Fialová, Luis Quindos, and Arturo Vargas
Atmos. Meas. Tech., 16, 2655–2672, https://doi.org/10.5194/amt-16-2655-2023, https://doi.org/10.5194/amt-16-2655-2023, 2023
Short summary
Short summary
The automatic and low-maintenance radon flux system Autoflux, completed with environmental soil and atmosphere sensors, has been theoretically and experimentally characterized and calibrated under laboratory conditions to be used as transfer standard for in situ measurements. It will offer for the first time long-term measurements to validate radon flux maps used by the climate and the radiation protection communities for assessing the radon gas emissions in the atmosphere.
Lisa Ernle, Monika Akima Ringsdorf, and Jonathan Williams
Atmos. Meas. Tech., 16, 1179–1194, https://doi.org/10.5194/amt-16-1179-2023, https://doi.org/10.5194/amt-16-1179-2023, 2023
Short summary
Short summary
Atmospheric ozone can induce artefacts in volatile organic compound measurements. Laboratory tests were made using GC-MS and PTR-MS aircraft systems under tropospheric and stratospheric conditions of humidity and ozone, with and without sodium thiosulfate filter scrubbers. Ozone in dry air produces some carbonyls and degrades alkenes. The scrubber lifetime depends on ozone concentration, flow rate and humidity. For the troposphere with scrubber, no significant artefacts were found over 14 d.
Lars Mächler, Daniel Baggenstos, Florian Krauss, Jochen Schmitt, Bernhard Bereiter, Remo Walther, Christoph Reinhard, Béla Tuzson, Lukas Emmenegger, and Hubertus Fischer
Atmos. Meas. Tech., 16, 355–372, https://doi.org/10.5194/amt-16-355-2023, https://doi.org/10.5194/amt-16-355-2023, 2023
Short summary
Short summary
We present a new method to extract the gases from ice cores and measure their greenhouse gas composition. The ice is sublimated continuously with a near-infrared laser, releasing the gases, which are then analyzed on a laser absorption spectrometer. The main advantage over previous efforts is a low effective resolution of 1–2 cm. This capability is crucial for the analysis of highly thinned ice, as expected from ongoing drilling efforts to extend ice core history further back in time.
Detlev Helmig, Alex Guenther, Jacques Hueber, Ryan Daly, Wei Wang, Jeong-Hoo Park, Anssi Liikanen, and Arnaud P. Praplan
Atmos. Meas. Tech., 15, 5439–5454, https://doi.org/10.5194/amt-15-5439-2022, https://doi.org/10.5194/amt-15-5439-2022, 2022
Short summary
Short summary
This research demonstrates a new method for determination of the chemical reactivity of volatile organic compounds that are emitted from the leaves and needles of trees. These measurements allow elucidating if and how much of these emissions and their associated reactivity are captured and quantified by currently applicable chemical analysis methods.
Andrew J. Lindsay and Ezra C. Wood
Atmos. Meas. Tech., 15, 5455–5464, https://doi.org/10.5194/amt-15-5455-2022, https://doi.org/10.5194/amt-15-5455-2022, 2022
Short summary
Short summary
Nitrous acid (HONO) is an important source of the main atmospheric oxidant – the hydroxyl radical (OH). Advances in nitrous acid measurement techniques and calibration methods therefore improve our understanding of atmospheric oxidation processes. In this paper, we present two calibration methods based on photo-dissociating water vapor. These calibration methods are useful alternatives to conventional calibrations that involve a reacting hydrogen chloride vapor with sodium nitrite.
Ying Wang, Wentai Luo, Todd N. Rosenstiel, and James F. Pankow
Atmos. Meas. Tech., 15, 4651–4661, https://doi.org/10.5194/amt-15-4651-2022, https://doi.org/10.5194/amt-15-4651-2022, 2022
Short summary
Short summary
A rapid, sensitive, and precise analytical method was developed for measuring the fractional amounts of the (−) and (+) forms of chiral enantiomeric forms of monoterpenes in air containing biogenic plant emissions. The method uses passive air sampling onto adsorption–thermal desorption (ATD) gas sampling cartridge tubes; this is followed by automatable thermal desorption onto a chiral gas chromatography (GC) column, followed by detection with mass spectrometry (MS).
Zara S. Mir, Matthew Jamieson, Nicholas R. Greenall, Paul W. Seakins, Mark A. Blitz, and Daniel Stone
Atmos. Meas. Tech., 15, 2875–2887, https://doi.org/10.5194/amt-15-2875-2022, https://doi.org/10.5194/amt-15-2875-2022, 2022
Short summary
Short summary
In this work we describe the development and characterisation of an experiment using laser flash photolysis coupled with time-resolved mid-infrared (mid-IR) quantum cascade laser (QCL) absorption spectroscopy, with initial results reported for measurements of the infrared spectrum, kinetics, and product yields for the reaction of the CH2OO Criegee intermediate with SO2. This work has significance for the identification and measurement of reactive trace species in complex systems.
Tatiana Macé, Maitane Iturrate-Garcia, Céline Pascale, Bernhard Niederhauser, Sophie Vaslin-Reimann, and Christophe Sutour
Atmos. Meas. Tech., 15, 2703–2718, https://doi.org/10.5194/amt-15-2703-2022, https://doi.org/10.5194/amt-15-2703-2022, 2022
Short summary
Short summary
LNE developed, with the company 2M PROCESS, a gas reference generator to dynamically generate NH3 reference gas mixtures in the air at very low fractions between 1 and 400 nmol/mol. The procedure defined by LNE for calibrating NH3 analyzers used for monitoring air quality guarantees relative expanded uncertainties lower than 2 % for this measurement range. The results of a comparison organized between METAS and LNE allowed the validation of LNE's reference generator and calibration procedure.
Antonia G. Zogka, Manolis N. Romanias, and Frederic Thevenet
Atmos. Meas. Tech., 15, 2001–2019, https://doi.org/10.5194/amt-15-2001-2022, https://doi.org/10.5194/amt-15-2001-2022, 2022
Short summary
Short summary
We emphasize the application of SIFT-MS to detect two important atmospheric pollutants, i.e., formaldehyde (FM) and glyoxal (GL). FM and GL are secondary products formed by volatile organic compound oxidation in indoor and outdoor environments and play a key role in air quality and climate. We show that SIFT-MS is able to monitor these species selectively and in real time, overcoming the limitations of other, classical analytical techniques used to monitor these species in the atmosphere.
Haiyan Li, Thomas Golin Almeida, Yuanyuan Luo, Jian Zhao, Brett B. Palm, Christopher D. Daub, Wei Huang, Claudia Mohr, Jordan E. Krechmer, Theo Kurtén, and Mikael Ehn
Atmos. Meas. Tech., 15, 1811–1827, https://doi.org/10.5194/amt-15-1811-2022, https://doi.org/10.5194/amt-15-1811-2022, 2022
Short summary
Short summary
This work evaluated the potential for PTR-based mass spectrometers to detect ROOR and ROOH peroxides both experimentally and through computations. Laboratory experiments using a Vocus PTR observed only noisy signals of potential dimers during α-pinene ozonolysis and a few small signals of dimeric compounds during cyclohexene ozonolysis. Quantum chemical calculations for model ROOR and ROOH systems showed that most of these peroxides should fragment partially following protonation.
Robert F. Berg, Nicola Chiodo, and Eric Georgin
Atmos. Meas. Tech., 15, 819–832, https://doi.org/10.5194/amt-15-819-2022, https://doi.org/10.5194/amt-15-819-2022, 2022
Short summary
Short summary
We made a humidity generator that adds water vapor to a flowing gas. Its range of humidity is useful for calibrating balloon-borne probes to the Earth's stratosphere. The generator’s novel feature is a saturator that comprises 5 m of silicone tubing immersed in water. The length was enough to ensure that the saturator’s output was independent of the dimensions and permeability of the tube. This simple, low-cost design provides an accuracy that is acceptable for many applications.
Guillermo Villena and Jörg Kleffmann
Atmos. Meas. Tech., 15, 627–637, https://doi.org/10.5194/amt-15-627-2022, https://doi.org/10.5194/amt-15-627-2022, 2022
Short summary
Short summary
A continuous source for the generation of pure HONO mixtures was developed and characterized, which is based on the Henry's law solubility of HONO in acidic aqueous solutions. The source shows a fast time response and an excellent long-term stability and can be easily adjusted to HONO mixing ratios in the range 0.05–500 ppb. A general equation based on Henry's law is developed, whereby the HONO concentration of the source can be absolutely calculated with an accuracy of better than 10 %.
Merve Polat, Jesper Baldtzer Liisberg, Morten Krogsbøll, Thomas Blunier, and Matthew S. Johnson
Atmos. Meas. Tech., 14, 8041–8067, https://doi.org/10.5194/amt-14-8041-2021, https://doi.org/10.5194/amt-14-8041-2021, 2021
Short summary
Short summary
We have designed a process for removing methane from a gas stream so that nitrous oxide can be measured without interference. These are both key long-lived greenhouse gases frequently studied in relation to ice cores, plants, water treatment and so on. However, many researchers are not aware of the problem of methane interference, and in addition there have not been good methods available for solving the problem. Here we present and evaluate such a method.
Marcel Snels, Stefania Stefani, Angelo Boccaccini, David Biondi, and Giuseppe Piccioni
Atmos. Meas. Tech., 14, 7187–7197, https://doi.org/10.5194/amt-14-7187-2021, https://doi.org/10.5194/amt-14-7187-2021, 2021
Short summary
Short summary
A novel simulation chamber, PASSxS (Planetary Atmosphere Simulation System for Spectroscopy), has been developed for absorption measurements with a Fourier transform spectrometer (FTS) and possibly a cavity ring-down (CRD) spectrometer, with a sample temperature ranging from 100 K up to 550 K, while the pressure of the gas can be varied up to 60 bar. These temperature and pressure ranges cover a significant part of the planetary atmospheres in the solar system and possibly extrasolar planets.
Lukas Kohl, Markku Koskinen, Tatu Polvinen, Salla Tenhovirta, Kaisa Rissanen, Marjo Patama, Alessandro Zanetti, and Mari Pihlatie
Atmos. Meas. Tech., 14, 4445–4460, https://doi.org/10.5194/amt-14-4445-2021, https://doi.org/10.5194/amt-14-4445-2021, 2021
Short summary
Short summary
We present ShoTGa-FluMS, a measurement system designed for continuous and automated measurements of trace gas and volatile organic compound (VOC) fluxes from plant shoots. ShoTGa-FluMS uses transparent shoot enclosures equipped with cooling elements, automatically replaces fixated CO2, and removes transpired water from the enclosure, thus solving multiple technical problems that have so far prevented automated plant shoot trace gas flux measurements.
Pharahilda M. Steur, Hubertus A. Scheeren, Dave D. Nelson, J. Barry McManus, and Harro A. J. Meijer
Atmos. Meas. Tech., 14, 4279–4304, https://doi.org/10.5194/amt-14-4279-2021, https://doi.org/10.5194/amt-14-4279-2021, 2021
Short summary
Short summary
For understanding the sources and sinks of atmospheric CO2, measurement of stable isotopes has proven to be highly valuable. We present a new method using laser absorption spectroscopy to simultaneously conduct measurements of three CO2 isotopes, directly on dry-air samples. This new method reduces sample preparation time significantly, compared to the conventional method in which measurements are conducted on pure CO2, and avoids measurement biases introduced by CO2 extraction.
Mingyi Wang, Xu-Cheng He, Henning Finkenzeller, Siddharth Iyer, Dexian Chen, Jiali Shen, Mario Simon, Victoria Hofbauer, Jasper Kirkby, Joachim Curtius, Norbert Maier, Theo Kurtén, Douglas R. Worsnop, Markku Kulmala, Matti Rissanen, Rainer Volkamer, Yee Jun Tham, Neil M. Donahue, and Mikko Sipilä
Atmos. Meas. Tech., 14, 4187–4202, https://doi.org/10.5194/amt-14-4187-2021, https://doi.org/10.5194/amt-14-4187-2021, 2021
Short summary
Short summary
Atmospheric iodine species are often short-lived with low abundance and have thus been challenging to measure. We show that the bromide chemical ionization mass spectrometry, compatible with both the atmospheric pressure and reduced pressure interfaces, can simultaneously detect various gas-phase iodine species. Combining calibration experiments and quantum chemical calculations, we quantify detection sensitivities to HOI, HIO3, I2, and H2SO4, giving detection limits down to < 106 molec. cm-3.
Benjamin Birner, William Paplawsky, Jeffrey Severinghaus, and Ralph F. Keeling
Atmos. Meas. Tech., 14, 2515–2527, https://doi.org/10.5194/amt-14-2515-2021, https://doi.org/10.5194/amt-14-2515-2021, 2021
Short summary
Short summary
The atmospheric helium-to-nitrogen ratio is a promising indicator for circulation changes in the upper atmosphere and fossil fuel burning by humans. We present a very precise analysis method to determine changes in the helium-to-nitrogen ratio of air samples. The method relies on stabilizing the gas flow to a mass spectrometer and continuous removal of reactive gases. These advances enable new insights and monitoring possibilities for anthropogenic and natural processes.
Alexander Zaytsev, Martin Breitenlechner, Anna Novelli, Hendrik Fuchs, Daniel A. Knopf, Jesse H. Kroll, and Frank N. Keutsch
Atmos. Meas. Tech., 14, 2501–2513, https://doi.org/10.5194/amt-14-2501-2021, https://doi.org/10.5194/amt-14-2501-2021, 2021
Short summary
Short summary
We have developed an online method for speciated measurements of organic peroxy radicals and stabilized Criegee intermediates using chemical derivatization combined with chemical ionization mass spectrometry. Chemical derivatization prevents secondary radical reactions and eliminates potential interferences. Comparison between our measurements and results from numeric modeling shows that the method can be used for the quantification of a wide range of atmospheric radicals and intermediates.
Einar Karu, Mengze Li, Lisa Ernle, Carl A. M. Brenninkmeijer, Jos Lelieveld, and Jonathan Williams
Atmos. Meas. Tech., 14, 1817–1831, https://doi.org/10.5194/amt-14-1817-2021, https://doi.org/10.5194/amt-14-1817-2021, 2021
Short summary
Short summary
A gas measurement device was developed to measure trace gases (ppt level) in the air based on an atomic emission detector. It combines a cryogenic pre-concentrator (CryoTrap), a gas chromatograph (GC), and a new high-resolution atomic emission detector (AED). The CryoTrap–GC–AED instrumental setup, limits of detection, and elemental performance are presented and discussed. Two measurement case studies are reported: one in a Finnish boreal forest and the other based on an aircraft campaign.
Ikumi Oyabu, Kenji Kawamura, Kyotaro Kitamura, Remi Dallmayr, Akihiro Kitamura, Chikako Sawada, Jeffrey P. Severinghaus, Ross Beaudette, Anaïs Orsi, Satoshi Sugawara, Shigeyuki Ishidoya, Dorthe Dahl-Jensen, Kumiko Goto-Azuma, Shuji Aoki, and Takakiyo Nakazawa
Atmos. Meas. Tech., 13, 6703–6731, https://doi.org/10.5194/amt-13-6703-2020, https://doi.org/10.5194/amt-13-6703-2020, 2020
Short summary
Short summary
Air in polar ice cores provides information on past atmosphere and climate. We present a new method for simultaneously measuring eight gases (CH4, N2O and CO2 concentrations; isotopic ratios of N2 and O2; elemental ratios between N2, O2 and Ar; and total air content) from single ice-core samples with high precision.
Bernhard Bereiter, Béla Tuzson, Philipp Scheidegger, André Kupferschmid, Herbert Looser, Lars Mächler, Daniel Baggenstos, Jochen Schmitt, Hubertus Fischer, and Lukas Emmenegger
Atmos. Meas. Tech., 13, 6391–6406, https://doi.org/10.5194/amt-13-6391-2020, https://doi.org/10.5194/amt-13-6391-2020, 2020
Short summary
Short summary
The record of past greenhouse gas composition from ice cores is crucial for our understanding of global climate change. Deciphering this archive requires highly accurate and spatially resolved analysis of the very small amount of gas that is trapped in the ice. This is achieved with a mid-IR laser absorption spectrometer that provides simultaneous, high-precision measurements of CH4, N2O, CO2, and δ13C(CO2) and which will be coupled to a quantitative sublimation extraction method.
Natalie I. Keehan, Bellamy Brownwood, Andrey Marsavin, Douglas A. Day, and Juliane L. Fry
Atmos. Meas. Tech., 13, 6255–6269, https://doi.org/10.5194/amt-13-6255-2020, https://doi.org/10.5194/amt-13-6255-2020, 2020
Short summary
Short summary
This paper describes a new instrument (a thermal-dissociation–cavity ring-down spectrometer, TD-CRDS) for the measurement of key atmospheric gaseous and particle-phase molecules containing the nitrate functional group. Several operational considerations affecting the measurements are described, as well as several characterization experiments comparing the TD-CRDS measurements to analogous measurements from other instruments. Examples are given using a TD-CRDS for ambient and laboratory studies.
Mohammed S. Alam, Leigh R. Crilley, James D. Lee, Louisa J. Kramer, Christian Pfrang, Mónica Vázquez-Moreno, Milagros Ródenas, Amalia Muñoz, and William J. Bloss
Atmos. Meas. Tech., 13, 5977–5991, https://doi.org/10.5194/amt-13-5977-2020, https://doi.org/10.5194/amt-13-5977-2020, 2020
Short summary
Short summary
We report on the interference arising in measurements of nitrogen oxides (NOx) from the presence of a range of alkenes in sampled air when using the most widespread air quality monitoring technique for chemiluminescence detection. Interferences of up to 11 % are reported, depending upon the alkene present and conditions used. Such interferences may be of substantial importance for the interpretation of ambient NOx data, particularly for high volatile organic compound and low NOx environments.
Daniel Marno, Cheryl Ernest, Korbinian Hens, Umar Javed, Thomas Klimach, Monica Martinez, Markus Rudolf, Jos Lelieveld, and Hartwig Harder
Atmos. Meas. Tech., 13, 2711–2731, https://doi.org/10.5194/amt-13-2711-2020, https://doi.org/10.5194/amt-13-2711-2020, 2020
Short summary
Short summary
In this study, a calibration device for OH and HO2 instruments is characterized at pressures of 275 to 1000 mbar, allowing instrument pressure sensitivity to be quantified to an accuracy of 22 % (1σ). Computational fluid dynamic simulations supporting the understanding of interactions between generated HOx and the instrument inlet led to enhanced determination of factors affecting instrument sensitivity.
Joschka Pfeifer, Mario Simon, Martin Heinritzi, Felix Piel, Lena Weitz, Dongyu Wang, Manuel Granzin, Tatjana Müller, Steffen Bräkling, Jasper Kirkby, Joachim Curtius, and Andreas Kürten
Atmos. Meas. Tech., 13, 2501–2522, https://doi.org/10.5194/amt-13-2501-2020, https://doi.org/10.5194/amt-13-2501-2020, 2020
Short summary
Short summary
Ammonia is an important atmospheric trace gas that affects secondary aerosol formation and, together with sulfuric acid, the formation of new particles. A measurement technique is presented that uses high-resolution mass spectrometry and protonated water clusters for the ultrasensitive detection of ammonia at single-digit parts per trillion by volume levels. The instrument is further capable of measuring amines and a suite of iodine compounds at sub-parts per trillion by volume levels.
Roberto Sommariva, Louisa J. Kramer, Leigh R. Crilley, Mohammed S. Alam, and William J. Bloss
Atmos. Meas. Tech., 13, 1655–1670, https://doi.org/10.5194/amt-13-1655-2020, https://doi.org/10.5194/amt-13-1655-2020, 2020
Short summary
Short summary
Ozone is a key atmospheric pollutant formed through chemical processing of natural and anthropogenic emissions and removed by reaction with organic compounds emitted by plants. We describe a new instrument – the
Total Ozone Reactivity Systemor TORS – that measures the total loss of ozone in the troposphere. The objective of the TORS instrument is to provide an estimate of the organic compounds emitted by plants which are not measured and thus to improve our understanding of the ozone budget.
John W. Birks, Andrew A. Turnipseed, Peter C. Andersen, Craig J. Williford, Stanley Strunk, Brian Carpenter, and Christine A. Ennis
Atmos. Meas. Tech., 13, 1001–1018, https://doi.org/10.5194/amt-13-1001-2020, https://doi.org/10.5194/amt-13-1001-2020, 2020
Short summary
Short summary
We describe a portable calibration source of nitric oxide (NO) based on the photolysis of nitrous oxide. Combining this with a previous photolytic ozone (O3) source yields a calibrator that produces known mixing ratios of NO, O3, and nitrogen dioxide (NO2); NO2 is produced by the reaction of NO with O3. This portable
NO2/NO/O3 calibration source requires no external gas cylinders and can be used as a standard to calibrate O3 and NOx air pollution monitors in the field.
Thomas H. Speak, Mark A. Blitz, Daniel Stone, and Paul W. Seakins
Atmos. Meas. Tech., 13, 839–852, https://doi.org/10.5194/amt-13-839-2020, https://doi.org/10.5194/amt-13-839-2020, 2020
Short summary
Short summary
OH and HO2 radicals are important trace constituents of the atmosphere that are closely coupled via several types of reaction. This paper describes a new laboratory method to simultaneously determine OH kinetics and HO2 yields from chemical processes. The instrument also provides some time resolution on HO2 detection allowing one to separate HO2 produced from the target reaction from HO2 arising from secondary chemistry. Examples of applications are presented.
Ece Satar, Peter Nyfeler, Bernhard Bereiter, Céline Pascale, Bernhard Niederhauser, and Markus Leuenberger
Atmos. Meas. Tech., 13, 101–117, https://doi.org/10.5194/amt-13-101-2020, https://doi.org/10.5194/amt-13-101-2020, 2020
Short summary
Short summary
Good-quality measurements of atmospheric trace gases are only possible with regular calibrations and stable measurements from the standard cylinders. This study investigates instabilities due to surface effects on newly built aluminum and steel cylinders. We present measurements over a set of temperature and pressure ranges for the amount fractions of CO2, CO, CH4 and H2O using a commercial and a novel laser spectroscopic analyzer.
Ece Satar, Peter Nyfeler, Céline Pascale, Bernhard Niederhauser, and Markus Leuenberger
Atmos. Meas. Tech., 13, 119–130, https://doi.org/10.5194/amt-13-119-2020, https://doi.org/10.5194/amt-13-119-2020, 2020
Short summary
Short summary
To ensure the best preparation and measurement conditions for trace gases, usage of coated materials is in demand in gas metrology and atmospheric measurement communities. In this article, the previously introduced aluminum measurement chamber is used to investigate materials such as glass, aluminum, copper, brass, steel and three different commercially available coatings. Our measurements focus on temperature and pressure dependencies for the species CO2, CO, CH4 and H2O using a CRDS analyzer.
Tanja J. Schuck, Ann-Katrin Blank, Elisa Rittmeier, Jonathan Williams, Carl A. M. Brenninkmeijer, Andreas Engel, and Andreas Zahn
Atmos. Meas. Tech., 13, 73–84, https://doi.org/10.5194/amt-13-73-2020, https://doi.org/10.5194/amt-13-73-2020, 2020
Short summary
Short summary
Air sample collection aboard aircraft is a tool to measure atmospheric trace gas mixing ratios at altitude. We present results on the stability of 28 halocarbons during storage of air samples collected in stainless-steel flasks inside an automated air sampling unit which is part of the CARIBIC instrument package. Selected fluorinated compounds grew during the experiments while short-lived compounds were depleted. Individual substances were additionally influenced by high mixing ratios of ozone.
Cited articles
Barnes, I., Becker, K. H., and Mihalopoulos, N.: An FTIR product study of the photooxidation of dimethyl disulfide, J. Atmos. Chem., 18, 267–289, https://doi.org/10.1007/BF00696783, 1994.
Bigourd, D., Cuisset, A., Hindle, F., Matton, S., Fertein, E., Bocquet, R.,
and Mouret, G.: Detection and quantification of multiple molecular species
in mainstream cigarette smoke by continuous-wave terahertz spectroscopy,
Opt. Lett., 31, 2356–2358, https://doi.org/10.1364/OL.31.002356, 2006.
Bigourd, D., Cuisset, A., Hindle, F., Matton, S., Bocquet, R., Mouret, G.,
Cazier, F., Dewaele, D., and Nouali, H.: Multiple component analysis of
cigarette smoke using THz spectroscopy, comparison with standard chemical
analytical methods, Appl. Phys. B, 86, 579–586,
https://doi.org/10.1007/s00340-006-2495-4, 2007.
Birk, M., Wagner, G., and Flaud, J. M.: Experimental Linestrengths of
Far-Infrared Pure Rotational Transitions of Ozone, J. Mol. Spectrosc., 163,
245–261, https://doi.org/10.1006/jmsp.1994.1021, 1994.
Bloss, C., Wagner, V., Jenkin, M. E., Volkamer, R., Bloss, W. J., Lee, J. D., Heard, D. E., Wirtz, K., Martin-Reviejo, M., Rea, G., Wenger, J. C., and Pilling, M. J.: Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons, Atmos. Chem. Phys., 5, 641–664, https://doi.org/10.5194/acp-5-641-2005, 2005a.
Bloss, C., Wagner, V., Bonzanini, A., Jenkin, M. E., Wirtz, K., Martin-Reviejo, M., and Pilling, M. J.: Evaluation of detailed aromatic mechanisms (MCMv3 and MCMv3.1) against environmental chamber data, Atmos. Chem. Phys., 5, 623–639, https://doi.org/10.5194/acp-5-623-2005, 2005b.
Brubach, J., Manceron, L., Rouzières, M., Pirali, O., Balcon, D.,
Tchana, F. K., Boudon, V., Tudorie, M., Huet, T., Cuisset, A., and Roy, P.:
Performance of the AILES THz-Infrared beamline at SOLEIL for High resolution
spectroscopy, AIP Conf. Proc., 1214, 81–84,
https://doi.org/10.1063/1.3326356, 2010.
Chernin, S. M.: Development of optical multipass matrix systems, J. Mod.
Opt., 48, 619–632, https://doi.org/10.1080/09500340108230936, 2001.
Chernin, S. M. and Barskaya, E. G.: Optical multipass matrix systems, Appl.
Opt., 30, 51–58, https://doi.org/10.1364/AO.30.000051, 1991.
Clerbaux, C., Boynard, A., Clarisse, L., George, M., Hadji-Lazaro, J., Herbin, H., Hurtmans, D., Pommier, M., Razavi, A., Turquety, S., Wespes, C., and Coheur, P.-F.: Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder, Atmos. Chem. Phys., 9, 6041–6054, https://doi.org/10.5194/acp-9-6041-2009, 2009.
Colmont, J.-M., Bakri, B., Demaison, J., Mäder, H., Willaert, F.,
Tyuterev, V. G., and Barbe, A.: Microwave Fourier transform, millimeterwave,
and submillimeterwave spectra of ozone in its vibrational ground state, J.
Mol. Spectrosc., 2, 293–296, https://doi.org/10.1016/j.jms.2005.06.017,
2005.
Cuisset, A., Hindle, F., Mouret, G., Bocquet, R., Bruckhuisen, J., Decker,
J., Pienkina, A., Bray, C., Fertein, É., and Boudon, V.: Terahertz
Rotational Spectroscopy of Greenhouse Gases Using Long Interaction
Pathlengths, Appl. Sci., 11, 1229, https://doi.org/10.3390/app11031229,
2021.
De Lucia, F. C.: The submillimeter: A spectroscopist's view, J. Mol.
Spectrosc., 261, 1–17, https://doi.org/10.1016/j.jms.2010.01.002, 2010.
EUROCHAMP 2020: https://www.eurochamp.org/publications/guidelines-publishing, last access: 18 August 2021.
Fang, B., Yang, N., Wang, C., Zhao, W., Xu, X., Zhang, Y., and Zhang, W.:
Detection of nitric oxide with Faraday rotation spectroscopy at 5.33 µm, Chin. J. Chem. Phys., 33, 37–42, https://doi.org/10.1063/1674-0068/cjcp1910182, 2020.
Fayad, L.: Characterization of the new atmospheric simulation chamber
CHARME, and study of the ozonolysis reaction of a biogenic VOC, the γ-terpinene, PhD thesis, Earth Sciences, Université du Littoral Côte d'Opale, English, NNT: 2019DUNK0550, 2019.
Fiedler, S. E., Hese, A., and Ruth, A. A.: Incoherent broad-band
cavity-enhanced absorption spectroscopy, Chem. Phys. Lett., 371, 284–294,
https://doi.org/10.1016/S0009-2614(03)00263-X, 2003.
Finlayson-Pitts, B. and Pitts Jr., J. P.: Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications, Elsevier, 993 pp., https://doi.org/10.1016/B978-0-12-257060-5.X5000-X, 1999.
Glowacki, D. R., Goddard, A., and Seakins, P. W.: Design and performance of
a throughput-matched, zero-geometric-loss, modified three objective
multipass matrix system for FTIR spectrometry, Appl. Opt., 46, 7872–7883,
https://doi.org/10.1364/AO.46.007872, 2007a.
Glowacki, D. R., Goddard, A., Hemavibool, K., Malkin, T. L., Commane, R., Anderson, F., Bloss, W. J., Heard, D. E., Ingham, T., Pilling, M. J., and Seakins, P. W.: Design of and initial results from a Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC), Atmos. Chem. Phys., 7, 5371–5390, https://doi.org/10.5194/acp-7-5371-2007, 2007b.
Gordon, I. E., Rothman, L. S., Hargreaves, R. J., Hashemi, R., Karlovets, E.
V., Skinner, F. M., Conway, E. K., Hill, C., Kochanov, R. V., Tan, Y.,
Wcisło, P., Finenko, A. A., Nelson, K., Bernath, P. F., Birk, M., Boudon,
V., Campargue, A., Chance, K. V., Coustenis, A., Drouin, B. J., Flaud, J.-M., Gamache, R. R., Hodges, J. T., Jacquemart, D., Mlawer, E. J., Nikitin,
A. V., Perevalov, V. I., Rotger, M., Tennyson, J., Toon, G. C., Tran, H.,
Tyuterev, V. G., Adkins, E. M., Baker, A., Barbe, A., Canè, E.,
Császár, A. G., Dudaryonok, A., Egorov, O., Fleisher, A. J.,
Fleurbaey, H., Foltynowicz, A., Furtenbacher, T., Harrison, J. J., Hartmann,
J.-M., Horneman, V.-M., Huang, X., Karman, T., Karns, J., Kassi, S.,
Kleiner, I., Kofman, V., Kwabia-Tchana, F., Lavrentieva, N. N., Lee, T. J.,
Long, D. A., Lukashevskaya, A. A., Lyulin, O. M., Makhnev, V. Yu., Matt, W.,
Massie, S. T., Melosso, M., Mikhailenko, S. N., Mondelain, D., Müller,
H. S. P., Naumenko, O. V., Perrin, A., Polyansky, O. L., Raddaoui, E.,
Raston, P. L., Reed, Z. D., Rey, M., Richard, C., Tóbiás, R.,
Sadiek, I., Schwenke, D. W., Starikova, E., Sung, K., Tamassia, F., Tashkun,
S. A., Vander Auwera, J., Vasilenko, I. A., Vigasin, A. A., Villanueva, G.
L., Vispoel, B., Wagner, G., Yachmenev, A., and Yurchenko, S. N.: The
HITRAN2020 molecular spectroscopic database, J. Quant. Spectrosc. Radiat.
Transf., 277, 107949, https://doi.org/10.1016/j.jqsrt.2021.107949, 2022.
Harris, S. J., Liisberg, J., Xia, L., Wei, J., Zeyer, K., Yu, L., Barthel, M., Wolf, B., Kelly, B. F. J., Cendón, D. I., Blunier, T., Six, J., and Mohn, J.: N2O isotopocule measurements using laser spectroscopy: analyzer characterization and intercomparison, Atmos. Meas. Tech., 13, 2797–2831, https://doi.org/10.5194/amt-13-2797-2020, 2020.
Hindle, F., Kuuliala, L., Mouelhi, M., Cuisset, A., Bray, C., Vanwolleghem,
M., Devlieghere, F., Mouret, G., and Bocquet, R.: Monitoring of food
spoilage by high resolution THz analysis, Analyst, 143, 5536–5544,
https://doi.org/10.1039/C8AN01180J, 2018.
Hindle, F., Bocquet, R., Pienkina, A., Cuisset, A., and Mouret, G.:
Terahertz gas phase spectroscopy using a high-finesse Fabry–Pérot
cavity, Optica, 6, 1449, https://doi.org/10.1364/OPTICA.6.001449, 2019.
Hoor, P. M., Fischer, H., Wong, S., Engel, A., and Wetter, T.:
Intercomparison of airborne N2O measurements using tunable diode laser
absorption spectroscopy and in situ gas chromatography, SPIE's International
Symposium on Optical Science, Engineering, and Instrumentation, 25 October 1999, Denver, CO, USA, 109–115, https://doi.org/10.1117/12.366442, 1999.
Itoh, H., Suzuki, T., Suzuki, S., and Rusinov, I. M.: Investigation of Ozone
Loss Rate Influenced by the Surface Material of a Discharge Chamber, Ozone
Sci. Eng., 26, 487–497, https://doi.org/10.1080/01919510490507847, 2004.
Itoh, H., Isegame, S., Miura, H., Suzuki, S., and Rusinov, I. M.: Surface
Loss Rate of Ozone in a Cylindrical Tube, Ozone Sci. Eng., 33, 106–113,
https://doi.org/10.1080/01919512.2011.548295, 2011.
Kwabia Tchana, F., Willaert, F., Landsheere, X., Flaud, J.-M., Lago, L.,
Chapuis, M., Herbeaux, C., Roy, P., and Manceron, L.: A new, low temperature
long-pass cell for mid-infrared to terahertz spectroscopy and synchrotron
radiation use, Rev. Sci. Instrum., 84, 093101,
https://doi.org/10.1063/1.4819066, 2013.
Lou, M., Swearer, D. F., Gottheim, S., Phillips, D. J., Simmons, J. G.,
Halas, N. J., and Everitt, H. O.: Quantitative analysis of gas phase
molecular constituents using frequency-modulated rotational spectroscopy,
Rev. Sci. Instrum., 90, 053110, https://doi.org/10.1063/1.5093912, 2019.
Massabò, D., Danelli, S. G., Brotto, P., Comite, A., Costa, C., Di Cesare, A., Doussin, J. F., Ferraro, F., Formenti, P., Gatta, E., Negretti, L., Oliva, M., Parodi, F., Vezzulli, L., and Prati, P.: ChAMBRe: a new atmospheric simulation chamber for aerosol modelling and bio-aerosol research, Atmos. Meas. Tech., 11, 5885–5900, https://doi.org/10.5194/amt-11-5885-2018, 2018.
Meng, L., Wang, G., Augustin, P., Fourmentin, M., Gou, Q., Fertein, E., Ba,
T. N., Coeur, C., Tomas, A., and Chen, W.: Incoherent broadband cavity
enhanced absorption spectroscopy (IBBCEAS)-based strategy for direct
measurement of aerosol extinction in a lidar blind zone, Opt. Lett., 45,
1611–1614, https://doi.org/10.1364/OL.389093, 2020.
Mouret, G., Guinet, M., Cuisset, A., Croize, L., Eliet, S., Bocquet, R., and
Hindle, F.: Versatile Sub-THz Spectrometer for Trace Gas Analysis, IEEE
Sens. J., 13, 133–138, https://doi.org/10.1109/JSEN.2012.2227055, 2013.
Omar, A., Eliet, S., Cuisset, A., Dhont, G., Coeur-Tourneur, C., Bocquet,
R., Mouret, G., and Hindle, F.: Continuous Monitoring of Formaldehyde
Photolysis Products by THz Spectroscopy, IEEE Sens. J., 15, 6141–6146,
https://doi.org/10.1109/JSEN.2015.2453271, 2015.
Pickett, H. M., Poynter, R. L., Cohen, E. A., Delitsky, M. L., Pearson, J.
C., and Müller, H. S. P.: Submillimeter, Millimeter, And Microwave
Spectral Line Catalog, J. Quant. Spectrosc. Radiat. Transf., 60, 883–890,
https://doi.org/10.1016/S0022-4073(98)00091-0, 1998.
Ravishankara, A. R., Daniel, J. S., and Portmann, R. W.: Nitrous Oxide
(N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century, Science, 326, 123–125, https://doi.org/10.1126/science.1176985, 2009.
Ren, Y., Grosselin, B., Daële, V., and Mellouki, A.: Investigation of
the reaction of ozone with isoprene, methacrolein and methyl vinyl ketone
using the HELIOS chamber, Faraday Discuss., 200, 289–311,
https://doi.org/10.1039/C7FD00014F, 2017.
Röckmann, T., Kaiser, J., Crowley, J. N., Brenninkmeijer, C. A. M., and
Crutzen, P. J.: The origin of the anomalous or “mass-independent” oxygen
isotope fractionation in tropospheric N2O, Geophys. Res. Lett., 28,
503–506, https://doi.org/10.1029/2000GL012295, 2001.
Rohart, F., Colmont, J.-M., Wlodarczak, G., and Bouanich, J.-P.: N2- and
O2-broadening coefficients and profiles for millimeter lines of 14N2O, J. Mol. Spectrosc., 222, 159–171, https://doi.org/10.1016/S0022-2852(03)00220-0, 2003.
Rohrer, F., Bohn, B., Brauers, T., Brüning, D., Johnen, F.-J., Wahner, A., and Kleffmann, J.: Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR, Atmos. Chem. Phys., 5, 2189–2201, https://doi.org/10.5194/acp-5-2189-2005, 2005.
Roucou, A., Fontanari, D., Dhont, G., Jabri, A., Bray, C., Hindle, F.,
Mouret, G., Bocquet, R., and Cuisset, A.: Full Conformational Landscape of
3-Methoxyphenol Revealed by Room Temperature mm-wave Rotational Spectroscopy
Supported by Quantum Chemical Calculations, ChemPhysChem, 19, 1572–1578,
https://doi.org/10.1002/cphc.201800148, 2018.
Roucou, A., Goubet, M., Kleiner, I., Bteich, S., and Cuisset, A.: Large
Amplitude Torsions in Nitrotoluene Isomers Studied by Rotational
Spectroscopy and Quantum Chemistry Calculations, ChemPhysChem, 21,
2523–2538, https://doi.org/10.1002/cphc.202000591, 2020.
Sigrist, M. W. (Ed.): Air monitoring by spectroscopic techniques, chap. 5, Wiley, New York, 241–243, ISBN 978-0-471-55875-0, 1994.
Wagner, R., Bunz, H., Linke, C., Möhler, O., Naumann, K.-H., Saathoff,
H., Schnaiter, M., and Schurath, U.: Chamber Simulations of Cloud Chemistry:
The AIDA Chamber, in: Environmental Simulation Chambers: Application to
Atmospheric Chemical Processes, Dordrecht, 67–82,
https://doi.org/10.1007/1-4020-4232-9_5, 2006.
Wang, J., Doussin, J. F., Perrier, S., Perraudin, E., Katrib, Y., Pangui, E., and Picquet-Varrault, B.: Design of a new multi-phase experimental simulation chamber for atmospheric photosmog, aerosol and cloud chemistry research, Atmos. Meas. Tech., 4, 2465–2494, https://doi.org/10.5194/amt-4-2465-2011, 2011.
Wang, W., Wang, Z., and Duan, Y.: Performance evaluation of THz Atmospheric Limb Sounder (TALIS) of China, Atmos. Meas. Tech., 13, 13–38, https://doi.org/10.5194/amt-13-13-2020, 2020.
White, J. U.: Long Optical Paths of Large Aperture, J. Opt. Soc. Am., 32,
285–288, https://doi.org/10.1364/JOSA.32.000285, 1942.
Williams, E.: Gaussian Beam Propagation, LightMachinery Inc., https://lightmachinery.com/optical-design-center/more-optical-design-tools/gaussian-beam-propagation/, last access: 29 August 2019.
Wu, T., Coeur-Tourneur, C., Dhont, G., Cassez, A., Fertein, E., He, X., and
Chen, W.: Simultaneous monitoring of temporal profiles of NO3, NO2
and O3 by incoherent broadband cavity enhanced absorption spectroscopy
for atmospheric applications, J. Quant. Spectrosc. Radiat. Transf., 133, 199–205, https://doi.org/10.1016/j.jqsrt.2013.08.002, 2014.
Short summary
We present a multiple pass system developed for the CHamber for Atmospheric Reactivity and Metrology of the Environment. This multi-pass cell allows monitoring of atmospheric species at trace levels by high-resolution spectroscopy with long interaction path lengths in the IR and for the first time in the terahertz range. Interesting prospects are highlighted in this frequency domain, such as a high degree of selectivity or the possibility to monitor in real-time atmospheric processes.
We present a multiple pass system developed for the CHamber for Atmospheric Reactivity and...