Articles | Volume 15, issue 5
https://doi.org/10.5194/amt-15-1201-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-1201-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
MULTICHARME: a modified Chernin-type multi-pass cell designed for IR and THz long-path absorption measurements in the CHARME atmospheric simulation chamber
Jean Decker
Laboratoire de Physico-Chimie de l'Atmosphère, UR4493, LPCA, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
Éric Fertein
Laboratoire de Physico-Chimie de l'Atmosphère, UR4493, LPCA, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
Jonas Bruckhuisen
Laboratoire de Physico-Chimie de l'Atmosphère, UR4493, LPCA, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
Nicolas Houzel
Laboratoire de Physico-Chimie de l'Atmosphère, UR4493, LPCA, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
Pierre Kulinski
Laboratoire de Physico-Chimie de l'Atmosphère, UR4493, LPCA, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
Weixiong Zhao
Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui, China
Francis Hindle
Laboratoire de Physico-Chimie de l'Atmosphère, UR4493, LPCA, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
Guillaume Dhont
Laboratoire de Physico-Chimie de l'Atmosphère, UR4493, LPCA, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
Robin Bocquet
Laboratoire de Physico-Chimie de l'Atmosphère, UR4493, LPCA, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
Gaël Mouret
Laboratoire de Physico-Chimie de l'Atmosphère, UR4493, LPCA, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
Cécile Coeur
Laboratoire de Physico-Chimie de l'Atmosphère, UR4493, LPCA, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
Arnaud Cuisset
CORRESPONDING AUTHOR
Laboratoire de Physico-Chimie de l'Atmosphère, UR4493, LPCA, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
Related authors
No articles found.
Bo Fang, Nana Wei, Weixiong Zhao, Nana Yang, Hao Zhou, Heng Zhang, Jiarong Li, Weijun Zhang, Yanyu Lu, Zhu Zhu, and Yue Liu
Atmos. Meas. Tech., 18, 1243–1256, https://doi.org/10.5194/amt-18-1243-2025, https://doi.org/10.5194/amt-18-1243-2025, 2025
Short summary
Short summary
A portable laser-flash photolysis Faraday rotation spectrometer for measuring atmospheric total hydroxyl (OH) reactivity was developed, with optical box dimensions of 130 cm × 40 cm × 35 cm. It features a pump–probe multi-pass cell with a high overlapping factor of 75.4 %. The instrument’s precision and uncertainty are 1.0 s-1 (1σ, 300 s) and within 2 s-1, respectively. This portable, cost-effective instrument expands current measurement capabilities and is convenient for field applications.
Chunxiang Ye, Shuzheng Guo, Weili Lin, Fangjie Tian, Jianshu Wang, Chong Zhang, Suzhen Chi, Yi Chen, Yingjie Zhang, Limin Zeng, Xin Li, Duo Bu, Jiacheng Zhou, and Weixiong Zhao
Atmos. Chem. Phys., 23, 10383–10397, https://doi.org/10.5194/acp-23-10383-2023, https://doi.org/10.5194/acp-23-10383-2023, 2023
Short summary
Short summary
Online volatile organic compound (VOC) measurements by gas chromatography–mass spectrometry, with other O3 precursors, were used to identify key VOC and other key sources in Lhasa. Total VOCs (TVOCs), alkanes, and aromatics are half as abundant as in Beijing. Oxygenated VOCs (OVOCs) consist of 52 % of the TVOCs. Alkenes and OVOCs account for 80 % of the ozone formation potential. Aromatics dominate secondary organic aerosol potential. Positive matrix factorization decomposed residential sources.
Yaru Wang, Yi Chen, Suzhen Chi, Jianshu Wang, Chong Zhang, Weixiong Zhao, Weili Lin, and Chunxiang Ye
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-192, https://doi.org/10.5194/amt-2023-192, 2023
Revised manuscript not accepted
Short summary
Short summary
We reported an optimized system (Mea-OPR) for direct measurement of ozone production rate, which showed a precise, sensitive and reliable measurement of OPR for at least urban and suburban atmosphere, and active O3 photochemical production in winter Beijing. Herein, the Mea-OPR system also shows its potential in exploring the fundamental O3 photochemistry, i.e., surprisingly high ozone production even under high-NOx conditions.
Lizi Tang, Min Hu, Dongjie Shang, Xin Fang, Jianjiong Mao, Wanyun Xu, Jiacheng Zhou, Weixiong Zhao, Yaru Wang, Chong Zhang, Yingjie Zhang, Jianlin Hu, Limin Zeng, Chunxiang Ye, Song Guo, and Zhijun Wu
Atmos. Chem. Phys., 23, 4343–4359, https://doi.org/10.5194/acp-23-4343-2023, https://doi.org/10.5194/acp-23-4343-2023, 2023
Short summary
Short summary
There was an evident distinction in the frequency of new particle formation (NPF) events at Nam Co station on the Tibetan Plateau: 15 % in pre-monsoon season and 80 % in monsoon season. The frequent NPF events in monsoon season resulted from the higher frequency of southerly air masses, which brought the organic precursors to participate in the NPF process. It increased the amount of aerosol and CCN compared with those in pre-monsoon season, which may markedly affect earth's radiation balance.
Cited articles
Barnes, I., Becker, K. H., and Mihalopoulos, N.: An FTIR product study of the photooxidation of dimethyl disulfide, J. Atmos. Chem., 18, 267–289, https://doi.org/10.1007/BF00696783, 1994.
Bigourd, D., Cuisset, A., Hindle, F., Matton, S., Fertein, E., Bocquet, R.,
and Mouret, G.: Detection and quantification of multiple molecular species
in mainstream cigarette smoke by continuous-wave terahertz spectroscopy,
Opt. Lett., 31, 2356–2358, https://doi.org/10.1364/OL.31.002356, 2006.
Bigourd, D., Cuisset, A., Hindle, F., Matton, S., Bocquet, R., Mouret, G.,
Cazier, F., Dewaele, D., and Nouali, H.: Multiple component analysis of
cigarette smoke using THz spectroscopy, comparison with standard chemical
analytical methods, Appl. Phys. B, 86, 579–586,
https://doi.org/10.1007/s00340-006-2495-4, 2007.
Birk, M., Wagner, G., and Flaud, J. M.: Experimental Linestrengths of
Far-Infrared Pure Rotational Transitions of Ozone, J. Mol. Spectrosc., 163,
245–261, https://doi.org/10.1006/jmsp.1994.1021, 1994.
Bloss, C., Wagner, V., Jenkin, M. E., Volkamer, R., Bloss, W. J., Lee, J. D., Heard, D. E., Wirtz, K., Martin-Reviejo, M., Rea, G., Wenger, J. C., and Pilling, M. J.: Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons, Atmos. Chem. Phys., 5, 641–664, https://doi.org/10.5194/acp-5-641-2005, 2005a.
Bloss, C., Wagner, V., Bonzanini, A., Jenkin, M. E., Wirtz, K., Martin-Reviejo, M., and Pilling, M. J.: Evaluation of detailed aromatic mechanisms (MCMv3 and MCMv3.1) against environmental chamber data, Atmos. Chem. Phys., 5, 623–639, https://doi.org/10.5194/acp-5-623-2005, 2005b.
Brubach, J., Manceron, L., Rouzières, M., Pirali, O., Balcon, D.,
Tchana, F. K., Boudon, V., Tudorie, M., Huet, T., Cuisset, A., and Roy, P.:
Performance of the AILES THz-Infrared beamline at SOLEIL for High resolution
spectroscopy, AIP Conf. Proc., 1214, 81–84,
https://doi.org/10.1063/1.3326356, 2010.
Chernin, S. M.: Development of optical multipass matrix systems, J. Mod.
Opt., 48, 619–632, https://doi.org/10.1080/09500340108230936, 2001.
Chernin, S. M. and Barskaya, E. G.: Optical multipass matrix systems, Appl.
Opt., 30, 51–58, https://doi.org/10.1364/AO.30.000051, 1991.
Clerbaux, C., Boynard, A., Clarisse, L., George, M., Hadji-Lazaro, J., Herbin, H., Hurtmans, D., Pommier, M., Razavi, A., Turquety, S., Wespes, C., and Coheur, P.-F.: Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder, Atmos. Chem. Phys., 9, 6041–6054, https://doi.org/10.5194/acp-9-6041-2009, 2009.
Colmont, J.-M., Bakri, B., Demaison, J., Mäder, H., Willaert, F.,
Tyuterev, V. G., and Barbe, A.: Microwave Fourier transform, millimeterwave,
and submillimeterwave spectra of ozone in its vibrational ground state, J.
Mol. Spectrosc., 2, 293–296, https://doi.org/10.1016/j.jms.2005.06.017,
2005.
Cuisset, A., Hindle, F., Mouret, G., Bocquet, R., Bruckhuisen, J., Decker,
J., Pienkina, A., Bray, C., Fertein, É., and Boudon, V.: Terahertz
Rotational Spectroscopy of Greenhouse Gases Using Long Interaction
Pathlengths, Appl. Sci., 11, 1229, https://doi.org/10.3390/app11031229,
2021.
De Lucia, F. C.: The submillimeter: A spectroscopist's view, J. Mol.
Spectrosc., 261, 1–17, https://doi.org/10.1016/j.jms.2010.01.002, 2010.
EUROCHAMP 2020: https://www.eurochamp.org/publications/guidelines-publishing, last access: 18 August 2021.
Fang, B., Yang, N., Wang, C., Zhao, W., Xu, X., Zhang, Y., and Zhang, W.:
Detection of nitric oxide with Faraday rotation spectroscopy at 5.33 µm, Chin. J. Chem. Phys., 33, 37–42, https://doi.org/10.1063/1674-0068/cjcp1910182, 2020.
Fayad, L.: Characterization of the new atmospheric simulation chamber
CHARME, and study of the ozonolysis reaction of a biogenic VOC, the γ-terpinene, PhD thesis, Earth Sciences, Université du Littoral Côte d'Opale, English, NNT: 2019DUNK0550, 2019.
Fiedler, S. E., Hese, A., and Ruth, A. A.: Incoherent broad-band
cavity-enhanced absorption spectroscopy, Chem. Phys. Lett., 371, 284–294,
https://doi.org/10.1016/S0009-2614(03)00263-X, 2003.
Finlayson-Pitts, B. and Pitts Jr., J. P.: Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications, Elsevier, 993 pp., https://doi.org/10.1016/B978-0-12-257060-5.X5000-X, 1999.
Glowacki, D. R., Goddard, A., and Seakins, P. W.: Design and performance of
a throughput-matched, zero-geometric-loss, modified three objective
multipass matrix system for FTIR spectrometry, Appl. Opt., 46, 7872–7883,
https://doi.org/10.1364/AO.46.007872, 2007a.
Glowacki, D. R., Goddard, A., Hemavibool, K., Malkin, T. L., Commane, R., Anderson, F., Bloss, W. J., Heard, D. E., Ingham, T., Pilling, M. J., and Seakins, P. W.: Design of and initial results from a Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC), Atmos. Chem. Phys., 7, 5371–5390, https://doi.org/10.5194/acp-7-5371-2007, 2007b.
Gordon, I. E., Rothman, L. S., Hargreaves, R. J., Hashemi, R., Karlovets, E.
V., Skinner, F. M., Conway, E. K., Hill, C., Kochanov, R. V., Tan, Y.,
Wcisło, P., Finenko, A. A., Nelson, K., Bernath, P. F., Birk, M., Boudon,
V., Campargue, A., Chance, K. V., Coustenis, A., Drouin, B. J., Flaud, J.-M., Gamache, R. R., Hodges, J. T., Jacquemart, D., Mlawer, E. J., Nikitin,
A. V., Perevalov, V. I., Rotger, M., Tennyson, J., Toon, G. C., Tran, H.,
Tyuterev, V. G., Adkins, E. M., Baker, A., Barbe, A., Canè, E.,
Császár, A. G., Dudaryonok, A., Egorov, O., Fleisher, A. J.,
Fleurbaey, H., Foltynowicz, A., Furtenbacher, T., Harrison, J. J., Hartmann,
J.-M., Horneman, V.-M., Huang, X., Karman, T., Karns, J., Kassi, S.,
Kleiner, I., Kofman, V., Kwabia-Tchana, F., Lavrentieva, N. N., Lee, T. J.,
Long, D. A., Lukashevskaya, A. A., Lyulin, O. M., Makhnev, V. Yu., Matt, W.,
Massie, S. T., Melosso, M., Mikhailenko, S. N., Mondelain, D., Müller,
H. S. P., Naumenko, O. V., Perrin, A., Polyansky, O. L., Raddaoui, E.,
Raston, P. L., Reed, Z. D., Rey, M., Richard, C., Tóbiás, R.,
Sadiek, I., Schwenke, D. W., Starikova, E., Sung, K., Tamassia, F., Tashkun,
S. A., Vander Auwera, J., Vasilenko, I. A., Vigasin, A. A., Villanueva, G.
L., Vispoel, B., Wagner, G., Yachmenev, A., and Yurchenko, S. N.: The
HITRAN2020 molecular spectroscopic database, J. Quant. Spectrosc. Radiat.
Transf., 277, 107949, https://doi.org/10.1016/j.jqsrt.2021.107949, 2022.
Harris, S. J., Liisberg, J., Xia, L., Wei, J., Zeyer, K., Yu, L., Barthel, M., Wolf, B., Kelly, B. F. J., Cendón, D. I., Blunier, T., Six, J., and Mohn, J.: N2O isotopocule measurements using laser spectroscopy: analyzer characterization and intercomparison, Atmos. Meas. Tech., 13, 2797–2831, https://doi.org/10.5194/amt-13-2797-2020, 2020.
Hindle, F., Kuuliala, L., Mouelhi, M., Cuisset, A., Bray, C., Vanwolleghem,
M., Devlieghere, F., Mouret, G., and Bocquet, R.: Monitoring of food
spoilage by high resolution THz analysis, Analyst, 143, 5536–5544,
https://doi.org/10.1039/C8AN01180J, 2018.
Hindle, F., Bocquet, R., Pienkina, A., Cuisset, A., and Mouret, G.:
Terahertz gas phase spectroscopy using a high-finesse Fabry–Pérot
cavity, Optica, 6, 1449, https://doi.org/10.1364/OPTICA.6.001449, 2019.
Hoor, P. M., Fischer, H., Wong, S., Engel, A., and Wetter, T.:
Intercomparison of airborne N2O measurements using tunable diode laser
absorption spectroscopy and in situ gas chromatography, SPIE's International
Symposium on Optical Science, Engineering, and Instrumentation, 25 October 1999, Denver, CO, USA, 109–115, https://doi.org/10.1117/12.366442, 1999.
Itoh, H., Suzuki, T., Suzuki, S., and Rusinov, I. M.: Investigation of Ozone
Loss Rate Influenced by the Surface Material of a Discharge Chamber, Ozone
Sci. Eng., 26, 487–497, https://doi.org/10.1080/01919510490507847, 2004.
Itoh, H., Isegame, S., Miura, H., Suzuki, S., and Rusinov, I. M.: Surface
Loss Rate of Ozone in a Cylindrical Tube, Ozone Sci. Eng., 33, 106–113,
https://doi.org/10.1080/01919512.2011.548295, 2011.
Kwabia Tchana, F., Willaert, F., Landsheere, X., Flaud, J.-M., Lago, L.,
Chapuis, M., Herbeaux, C., Roy, P., and Manceron, L.: A new, low temperature
long-pass cell for mid-infrared to terahertz spectroscopy and synchrotron
radiation use, Rev. Sci. Instrum., 84, 093101,
https://doi.org/10.1063/1.4819066, 2013.
Lou, M., Swearer, D. F., Gottheim, S., Phillips, D. J., Simmons, J. G.,
Halas, N. J., and Everitt, H. O.: Quantitative analysis of gas phase
molecular constituents using frequency-modulated rotational spectroscopy,
Rev. Sci. Instrum., 90, 053110, https://doi.org/10.1063/1.5093912, 2019.
Massabò, D., Danelli, S. G., Brotto, P., Comite, A., Costa, C., Di Cesare, A., Doussin, J. F., Ferraro, F., Formenti, P., Gatta, E., Negretti, L., Oliva, M., Parodi, F., Vezzulli, L., and Prati, P.: ChAMBRe: a new atmospheric simulation chamber for aerosol modelling and bio-aerosol research, Atmos. Meas. Tech., 11, 5885–5900, https://doi.org/10.5194/amt-11-5885-2018, 2018.
Meng, L., Wang, G., Augustin, P., Fourmentin, M., Gou, Q., Fertein, E., Ba,
T. N., Coeur, C., Tomas, A., and Chen, W.: Incoherent broadband cavity
enhanced absorption spectroscopy (IBBCEAS)-based strategy for direct
measurement of aerosol extinction in a lidar blind zone, Opt. Lett., 45,
1611–1614, https://doi.org/10.1364/OL.389093, 2020.
Mouret, G., Guinet, M., Cuisset, A., Croize, L., Eliet, S., Bocquet, R., and
Hindle, F.: Versatile Sub-THz Spectrometer for Trace Gas Analysis, IEEE
Sens. J., 13, 133–138, https://doi.org/10.1109/JSEN.2012.2227055, 2013.
Omar, A., Eliet, S., Cuisset, A., Dhont, G., Coeur-Tourneur, C., Bocquet,
R., Mouret, G., and Hindle, F.: Continuous Monitoring of Formaldehyde
Photolysis Products by THz Spectroscopy, IEEE Sens. J., 15, 6141–6146,
https://doi.org/10.1109/JSEN.2015.2453271, 2015.
Pickett, H. M., Poynter, R. L., Cohen, E. A., Delitsky, M. L., Pearson, J.
C., and Müller, H. S. P.: Submillimeter, Millimeter, And Microwave
Spectral Line Catalog, J. Quant. Spectrosc. Radiat. Transf., 60, 883–890,
https://doi.org/10.1016/S0022-4073(98)00091-0, 1998.
Ravishankara, A. R., Daniel, J. S., and Portmann, R. W.: Nitrous Oxide
(N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century, Science, 326, 123–125, https://doi.org/10.1126/science.1176985, 2009.
Ren, Y., Grosselin, B., Daële, V., and Mellouki, A.: Investigation of
the reaction of ozone with isoprene, methacrolein and methyl vinyl ketone
using the HELIOS chamber, Faraday Discuss., 200, 289–311,
https://doi.org/10.1039/C7FD00014F, 2017.
Röckmann, T., Kaiser, J., Crowley, J. N., Brenninkmeijer, C. A. M., and
Crutzen, P. J.: The origin of the anomalous or “mass-independent” oxygen
isotope fractionation in tropospheric N2O, Geophys. Res. Lett., 28,
503–506, https://doi.org/10.1029/2000GL012295, 2001.
Rohart, F., Colmont, J.-M., Wlodarczak, G., and Bouanich, J.-P.: N2- and
O2-broadening coefficients and profiles for millimeter lines of 14N2O, J. Mol. Spectrosc., 222, 159–171, https://doi.org/10.1016/S0022-2852(03)00220-0, 2003.
Rohrer, F., Bohn, B., Brauers, T., Brüning, D., Johnen, F.-J., Wahner, A., and Kleffmann, J.: Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR, Atmos. Chem. Phys., 5, 2189–2201, https://doi.org/10.5194/acp-5-2189-2005, 2005.
Roucou, A., Fontanari, D., Dhont, G., Jabri, A., Bray, C., Hindle, F.,
Mouret, G., Bocquet, R., and Cuisset, A.: Full Conformational Landscape of
3-Methoxyphenol Revealed by Room Temperature mm-wave Rotational Spectroscopy
Supported by Quantum Chemical Calculations, ChemPhysChem, 19, 1572–1578,
https://doi.org/10.1002/cphc.201800148, 2018.
Roucou, A., Goubet, M., Kleiner, I., Bteich, S., and Cuisset, A.: Large
Amplitude Torsions in Nitrotoluene Isomers Studied by Rotational
Spectroscopy and Quantum Chemistry Calculations, ChemPhysChem, 21,
2523–2538, https://doi.org/10.1002/cphc.202000591, 2020.
Sigrist, M. W. (Ed.): Air monitoring by spectroscopic techniques, chap. 5, Wiley, New York, 241–243, ISBN 978-0-471-55875-0, 1994.
Wagner, R., Bunz, H., Linke, C., Möhler, O., Naumann, K.-H., Saathoff,
H., Schnaiter, M., and Schurath, U.: Chamber Simulations of Cloud Chemistry:
The AIDA Chamber, in: Environmental Simulation Chambers: Application to
Atmospheric Chemical Processes, Dordrecht, 67–82,
https://doi.org/10.1007/1-4020-4232-9_5, 2006.
Wang, J., Doussin, J. F., Perrier, S., Perraudin, E., Katrib, Y., Pangui, E., and Picquet-Varrault, B.: Design of a new multi-phase experimental simulation chamber for atmospheric photosmog, aerosol and cloud chemistry research, Atmos. Meas. Tech., 4, 2465–2494, https://doi.org/10.5194/amt-4-2465-2011, 2011.
Wang, W., Wang, Z., and Duan, Y.: Performance evaluation of THz Atmospheric Limb Sounder (TALIS) of China, Atmos. Meas. Tech., 13, 13–38, https://doi.org/10.5194/amt-13-13-2020, 2020.
White, J. U.: Long Optical Paths of Large Aperture, J. Opt. Soc. Am., 32,
285–288, https://doi.org/10.1364/JOSA.32.000285, 1942.
Williams, E.: Gaussian Beam Propagation, LightMachinery Inc., https://lightmachinery.com/optical-design-center/more-optical-design-tools/gaussian-beam-propagation/, last access: 29 August 2019.
Wu, T., Coeur-Tourneur, C., Dhont, G., Cassez, A., Fertein, E., He, X., and
Chen, W.: Simultaneous monitoring of temporal profiles of NO3, NO2
and O3 by incoherent broadband cavity enhanced absorption spectroscopy
for atmospheric applications, J. Quant. Spectrosc. Radiat. Transf., 133, 199–205, https://doi.org/10.1016/j.jqsrt.2013.08.002, 2014.
Short summary
We present a multiple pass system developed for the CHamber for Atmospheric Reactivity and Metrology of the Environment. This multi-pass cell allows monitoring of atmospheric species at trace levels by high-resolution spectroscopy with long interaction path lengths in the IR and for the first time in the terahertz range. Interesting prospects are highlighted in this frequency domain, such as a high degree of selectivity or the possibility to monitor in real-time atmospheric processes.
We present a multiple pass system developed for the CHamber for Atmospheric Reactivity and...