Articles | Volume 15, issue 1
Atmos. Meas. Tech., 15, 165–183, 2022
https://doi.org/10.5194/amt-15-165-2022
Atmos. Meas. Tech., 15, 165–183, 2022
https://doi.org/10.5194/amt-15-165-2022
Research article
11 Jan 2022
Research article | 11 Jan 2022

On the quality of RS41 radiosonde descent data

Bruce Ingleby et al.

Related authors

Managing the transition from Vaisala RS92 to RS41 radiosondes within the Global Climate Observing System Reference Upper-Air Network (GRUAN): a progress report
Ruud J. Dirksen, Greg E. Bodeker, Peter W. Thorne, Andrea Merlone, Tony Reale, Junhong Wang, Dale F. Hurst, Belay B. Demoz, Tom D. Gardiner, Bruce Ingleby, Michael Sommer, Christoph von Rohden, and Thierry Leblanc
Geosci. Instrum. Method. Data Syst., 9, 337–355, https://doi.org/10.5194/gi-9-337-2020,https://doi.org/10.5194/gi-9-337-2020, 2020
Short summary
Use of automatic radiosonde launchers to measure temperature and humidity profiles from the GRUAN perspective
Fabio Madonna, Rigel Kivi, Jean-Charles Dupont, Bruce Ingleby, Masatomo Fujiwara, Gonzague Romanens, Miguel Hernandez, Xavier Calbet, Marco Rosoldi, Aldo Giunta, Tomi Karppinen, Masami Iwabuchi, Shunsuke Hoshino, Christoph von Rohden, and Peter William Thorne
Atmos. Meas. Tech., 13, 3621–3649, https://doi.org/10.5194/amt-13-3621-2020,https://doi.org/10.5194/amt-13-3621-2020, 2020
Short summary
Using reference radiosondes to characterise NWP model uncertainty for improved satellite calibration and validation
Fabien Carminati, Stefano Migliorini, Bruce Ingleby, William Bell, Heather Lawrence, Stuart Newman, James Hocking, and Andrew Smith
Atmos. Meas. Tech., 12, 83–106, https://doi.org/10.5194/amt-12-83-2019,https://doi.org/10.5194/amt-12-83-2019, 2019
Short summary
Making better sense of the mosaic of environmental measurement networks: a system-of-systems approach and quantitative assessment
Peter W. Thorne, Fabio Madonna, Joerg Schulz, Tim Oakley, Bruce Ingleby, Marco Rosoldi, Emanuele Tramutola, Antti Arola, Matthias Buschmann, Anna C. Mikalsen, Richard Davy, Corinne Voces, Karin Kreher, Martine De Maziere, and Gelsomina Pappalardo
Geosci. Instrum. Method. Data Syst., 6, 453–472, https://doi.org/10.5194/gi-6-453-2017,https://doi.org/10.5194/gi-6-453-2017, 2017
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Instruments and Platforms
Instabilities, Dynamics, and Energetics accompanying Atmospheric Layering (IDEAL): high-resolution in situ observations and modeling in and above the nocturnal boundary layer
Abhiram Doddi, Dale Lawrence, David Fritts, Ling Wang, Thomas Lund, William Brown, Dragan Zajic, and Lakshmi Kantha
Atmos. Meas. Tech., 15, 4023–4045, https://doi.org/10.5194/amt-15-4023-2022,https://doi.org/10.5194/amt-15-4023-2022, 2022
Short summary
Infrasound measurement system for real-time in situ tornado measurements
Brandon C. White, Brian R. Elbing, and Imraan A. Faruque
Atmos. Meas. Tech., 15, 2923–2938, https://doi.org/10.5194/amt-15-2923-2022,https://doi.org/10.5194/amt-15-2923-2022, 2022
Short summary
Quantifying the coastal urban surface layer structure using distributed temperature sensing in Helsinki, Finland
Sasu Karttunen, Ewan O'Connor, Olli Peltola, and Leena Järvi
Atmos. Meas. Tech., 15, 2417–2432, https://doi.org/10.5194/amt-15-2417-2022,https://doi.org/10.5194/amt-15-2417-2022, 2022
Short summary
Idealized simulation study of the relationship of disdrometer sampling statistics with the precision of precipitation rate measurement
Karlie N. Rees and Timothy J. Garrett
Atmos. Meas. Tech., 14, 7681–7691, https://doi.org/10.5194/amt-14-7681-2021,https://doi.org/10.5194/amt-14-7681-2021, 2021
Short summary
Use of thermal signal for the investigation of near-surface turbulence
Matthias Zeeman
Atmos. Meas. Tech., 14, 7475–7493, https://doi.org/10.5194/amt-14-7475-2021,https://doi.org/10.5194/amt-14-7475-2021, 2021
Short summary

Cited articles

de Podesta, M., Bell, S., and Underwood, R.: Air temperature sensors: dependence of radiative errors on sensor diameter in precision metrology and meteorology, Metrologia, 55, 229, https://doi.org/10.1088/1681-7575/aaaa52, 2018.  
Dirksen, R. J., Sommer, M., Immler, F. J., Hurst, D. F., Kivi, R., and Vömel, H.: Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde, Atmos. Meas. Tech., 7, 4463–4490, https://doi.org/10.5194/amt-7-4463-2014, 2014. 
ECMWF: ecCodes, ECMWF [code], available at: https://confluence.ecmwf.int/display/ECC/ecCodes+Home (last access: 6 January 2022), 2021. 
Edwards, D., Anderson, G., Oakley, T., and Gault, P.: Met Office Intercomparison of Vaisala RS92 and RS41 Radiosondes, available at: https://www.vaisala.com/sites/default/files/documents/Met_Office_Intercomparison_of_Vaisala_RS41_and_RS92_Radiosondes.pdf (last access: 5 January 2022), 2014. 
Download
Short summary
Radiosonde descent data could provide extra profiles of the atmosphere for forecasting and other uses. Descent data from Vaisala RS41 radiosondes have been compared with the ascent profiles and with ECMWF short-range forecasts. The agreement is mostly good. The descent rate is very variable and high descent rates cause temperature biases, especially at upper levels. Ascent winds are affected by pendulum motion; on average, the descent winds are smoother.