Articles | Volume 15, issue 2
https://doi.org/10.5194/amt-15-241-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-241-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement of black carbon emissions from multiple engine and source types using laser-induced incandescence: sensitivity to laser fluence
Ruoyang Yuan
CORRESPONDING AUTHOR
Department of Mechanical Engineering, University of Sheffield,
Sheffield, S1 3JD, United Kingdom
Prem Lobo
Metrology Research Centre, National Research Council Canada, Ottawa,
Ontario, K1A 0R6, Canada
Greg J. Smallwood
Metrology Research Centre, National Research Council Canada, Ottawa,
Ontario, K1A 0R6, Canada
Mark P. Johnson
Rolls-Royce plc, Derby, DE24 8BJ, United Kingdom
Matthew C. Parker
Rolls-Royce plc, Derby, DE24 8BJ, United Kingdom
Daniel Butcher
Department of Aeronautical and Automotive Engineering, Loughborough
University, Loughborough, LE11 3TU, United Kingdom
Adrian Spencer
Department of Aeronautical and Automotive Engineering, Loughborough
University, Loughborough, LE11 3TU, United Kingdom
Related authors
No articles found.
Romain Ceolato, Andres Bedoya-Velásquez, Gerald Lemineur, Pierrick Loyers, Charles Renard, Katharina Seeliger, Louise Ganeau, Alaric Vandestoc, Ismael Ortega, Mark Johnson, and David Delhaye
EGUsphere, https://doi.org/10.5194/egusphere-2025-2612, https://doi.org/10.5194/egusphere-2025-2612, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We developed a new way to measure ultrafine particles released by aircraft engines using an aerosol lidar sensor. This method allows us to quickly check emissions from a distance, without needing to collect samples directly from the engines. Our results show that this approach works well and could help airports and regulators better monitor air quality and reduce the environmental impact of aviation.
Theresa Harlass, Rebecca Dischl, Stefan Kaufmann, Raphael Märkl, Daniel Sauer, Monika Scheibe, Paul Stock, Tiziana Bräuer, Andreas Dörnbrack, Anke Roiger, Hans Schlager, Ulrich Schumann, Magdalena Pühl, Tobias Schripp, Tobias Grein, Linda Bondorf, Charles Renard, Maxime Gauthier, Mark Johnson, Darren Luff, Paul Madden, Peter Swann, Denise Ahrens, Reetu Sallinen, and Christiane Voigt
Atmos. Chem. Phys., 24, 11807–11822, https://doi.org/10.5194/acp-24-11807-2024, https://doi.org/10.5194/acp-24-11807-2024, 2024
Short summary
Short summary
Emissions from aircraft have a direct impact on our climate. Here, we present airborne and ground-based measurement data of nitrogen oxides that were collected in the exhaust of an Airbus aircraft. We study the impact of burning fossil and sustainable aviation fuel on nitrogen oxide emissions at different engine settings related to combustor temperature, pressure and fuel flow. Further, we compare observations with engine emission models.
Rebecca Dischl, Daniel Sauer, Christiane Voigt, Theresa Harlaß, Felicitas Sakellariou, Raphael Märkl, Ulrich Schumann, Monika Scheibe, Stefan Kaufmann, Anke Roiger, Andreas Dörnbrack, Charles Renard, Maxime Gauthier, Peter Swann, Paul Madden, Darren Luff, Mark Johnson, Denise Ahrens, Reetu Sallinen, Tobias Schripp, Georg Eckel, Uwe Bauder, and Patrick Le Clercq
Atmos. Chem. Phys., 24, 11255–11273, https://doi.org/10.5194/acp-24-11255-2024, https://doi.org/10.5194/acp-24-11255-2024, 2024
Short summary
Short summary
In-flight measurements of aircraft emissions burning 100 % sustainable aviation fuel (SAF) show reduced particle number concentrations up to 41 % compared to conventional jet fuel. Particle emissions are dependent on engine power setting, flight altitude, and fuel composition. Engine models show a good correlation with measurement results. Future increased prevalence of SAF can positively influence the climate impact of aviation.
Timothy A. Sipkens, Joel C. Corbin, Brett Smith, Stéphanie Gagné, Prem Lobo, Benjamin T. Brem, Mark P. Johnson, and Gregory J. Smallwood
Atmos. Meas. Tech., 17, 4291–4302, https://doi.org/10.5194/amt-17-4291-2024, https://doi.org/10.5194/amt-17-4291-2024, 2024
Short summary
Short summary
Carbonaceous particles, such as soot, contribute to climate forcing, air pollution, and human health impacts. Thermal–optical analysis is a calibration standard used to measure these particles, but significant differences have been observed in the measurements across identical instruments. We report on the reproducibility of these measurements for aircraft emissions, which range from 8.0 % of the nominal value for organic carbon to 17 % for elemental carbon.
Joel C. Corbin, Tobias Schripp, Bruce E. Anderson, Greg J. Smallwood, Patrick LeClercq, Ewan C. Crosbie, Steven Achterberg, Philip D. Whitefield, Richard C. Miake-Lye, Zhenhong Yu, Andrew Freedman, Max Trueblood, David Satterfield, Wenyan Liu, Patrick Oßwald, Claire Robinson, Michael A. Shook, Richard H. Moore, and Prem Lobo
Atmos. Meas. Tech., 15, 3223–3242, https://doi.org/10.5194/amt-15-3223-2022, https://doi.org/10.5194/amt-15-3223-2022, 2022
Short summary
Short summary
The combustion of sustainable aviation fuels in aircraft engines produces particulate matter (PM) emissions with different properties than conventional fuels due to changes in fuel composition. Consequently, the response of various diagnostic instruments to PM emissions may be impacted. We found no significant instrument biases in terms of particle mass, number, and size measurements for conventional and sustainable aviation fuel blends despite large differences in the magnitude of emissions.
Dawei Hu, M. Rami Alfarra, Kate Szpek, Justin M. Langridge, Michael I. Cotterell, Claire Belcher, Ian Rule, Zixia Liu, Chenjie Yu, Yunqi Shao, Aristeidis Voliotis, Mao Du, Brett Smith, Greg Smallwood, Prem Lobo, Dantong Liu, Jim M. Haywood, Hugh Coe, and James D. Allan
Atmos. Chem. Phys., 21, 16161–16182, https://doi.org/10.5194/acp-21-16161-2021, https://doi.org/10.5194/acp-21-16161-2021, 2021
Short summary
Short summary
Here, we developed new techniques for investigating these properties in the laboratory and applied these to BC and BrC from different sources, including diesel exhaust, inverted propane flame and wood combustion. These have allowed us to quantify the changes in shape and chemical composition of different soots according to source and variables such as the moisture content of wood.
Cited articles
Adams, K. M., Davis, L. I., Japar, S. M., and Pierson, W. R.: Real-time, in
situ measurements of atmospheric optical absorption in the visible via
photoacoustic spectroscopy-II. Validation for atmospheric elemental carbon
aerosol, Atmos. Environ., 23, 693–700, https://doi.org/10.1016/0004-6981(89)90017-6,
1989.
Air quality expert group (AQEQ): Particulate Matter in the UK: Summary, Defra, London, ISBN 0-85521-144-X, available at: https://uk-air.defra.gov.uk/library/assets/documents/reports/aqeg/Particulate_Matter_in_The_UK_2005_Summary.pdf (last access: 10 December 2020), 2005.
Arnott, W. P.: Photoacoustic and filter-based ambient aerosol light
absorption measurements: Instrument comparisons and the role of relative
humidity, J. Geophys. Res., 108, 4034, https://doi.org/10.1029/2002JD002165, 2003.
Axelsson, B., Collin, R., and Bengtsson, P.-E.: Laser-induced incandescence
for soot particle size measurements in premixed flat flames, Appl. Optics,
39, 3683, https://doi.org/10.1364/ao.39.003683, 2000.
Bachalo, W. D., Sankar, S. V, Smallwood, G. J., and Snelling, D. R.:
Development of the Laser-Induced Incandescence Method for the Reliable
Characterization of Particulate Emissions, in: the International Symposia on
Applications of Laser Techniques to Fluid Mechanics, Lisbon, 2002.
Baumgardner, D., Popovicheva, O., Allan, J., Bernardoni, V., Cao, J., Cavalli, F., Cozic, J., Diapouli, E., Eleftheriadis, K., Genberg, P. J., Gonzalez, C., Gysel, M., John, A., Kirchstetter, T. W., Kuhlbusch, T. A. J., Laborde, M., Lack, D., Müller, T., Niessner, R., Petzold, A., Piazzalunga, A., Putaud, J. P., Schwarz, J., Sheridan, P., Subramanian, R., Swietlicki, E., Valli, G., Vecchi, R., and Viana, M.: Soot reference materials for instrument calibration and intercomparisons: a workshop summary with recommendations, Atmos. Meas. Tech., 5, 1869–1887, https://doi.org/10.5194/amt-5-1869-2012, 2012.
Black, J. D. and Johnson, M. P.: In-situ laser-induced incandescence of soot
in an aero-engine exhaust: Comparison with certification style measurements,
Aerosp. Sci. Technol., 14, 329–337, https://doi.org/10.1016/j.ast.2010.02.007, 2010.
Boiarciuc, A., Foucher, F., and Mounaïm-Rousselle, C.: Soot volume
fractions and primary particle size estimate by means of the simultaneous
two-color-time-resolved and 2D laser-induced incandescence, Appl. Phys. B,
83, 413–421, https://doi.org/10.1007/s00340-006-2236-8, 2006.
Boies, A. M., Stettler, M. E. J., Swanson, J. J., Johnson, T. J., Olfert, J.
S., Johnson, M., Eggersdorfer, M. L., Rindlisbacher, T., Wang, J., Thomson,
K., Smallwood, G., Sevcenco, Y., Walters, D., Williams, P. I., Corbin, J.,
Mensah, A. A., Symonds, J., Dastanpour, R., and Rogak, S. N.: Particle
emission characteristics of a gas turbine with a double annular combustor,
Aerosol Sci. Technol., 49, 842–855, https://doi.org/10.1080/02786826.2015.1078452,
2015.
Bond, T. C. and Bergstrom, R. W.: Light absorption by carbonaceous
particles: An investigative review, Aerosol Sci. Technol., 40, 27–67,
https://doi.org/10.1080/02786820500421521, 2006.
Choi, M. Y. and Jensen, K. A.: Calibration and correction of laser-induced
incandescence for soot volume fraction measurements, Combust. Flame, 112,
485–491, https://doi.org/10.1016/S0010-2180(97)00139-9, 1998.
Conrad, B. M. and Johnson, M. R.: Split point analysis and uncertainty
quantification of thermal-optical organic/elemental carbon measurements, J.
Vis. Exp., 151, e59742, https://doi.org/10.3791/59742, 2019.
Corbin, J. C., Czech, H., Massabò, D., de Mongeot, F. B., Jakobi, G.,
Liu, F., Lobo, P., Mennucci, C., Mensah, A. A., Orasche, J., Pieber, S. M.,
Prévôt, A. S. H., Stengel, B., Tay, L.-L., Zanatta, M., Zimmermann,
R., El Haddad, I., and Gysel, M.: Infrared-absorbing carbonaceous tar can
dominate light absorption by marine-engine exhaust, npj Clim. Atmos. Sci.,
2, 12, https://doi.org/10.1038/s41612-019-0069-5, 2019.
Corbin, J. C., Peng, W., Yang, J., Sommer, D. E., Trivanovic, U., Kirchen,
P., Miller, J. W., Rogak, S., Cocker, D. R., Smallwood, G. J., Lobo, P., and
Gagné, S.: Characterization of particulate matter emitted by a marine
engine operated with liquefied natural gas and diesel fuels, Atmos.
Environ., 220, 117030, https://doi.org/10.1016/j.atmosenv.2019.117030, 2020.
Decarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P., and Jimenez,
J. L.: Particle Morphology and Density Characterization by Combined Mobility
and Aerodynamic Diameter Measurements. Part 1: Theory, Aerosol Sci.
Technol., 38, 1185–1205, https://doi.org/10.1080/027868290903907, 2004.
Delhay, J., Desgroux, P., Therssen, E., Bladh, H., Bengtsson, P. E.,
Hönen, H., Black, J. D., and Vallet, I.: Soot volume fraction
measurements in aero-engine exhausts using extinction-calibrated backward
laser-induced incandescence, Appl. Phys. B-Lasers O., 95, 825–838,
https://doi.org/10.1007/s00340-009-3534-8, 2009.
Durdina, L., Lobo, P., Trueblood, M. B., Black, E. A., Achterberg, S.,
Hagen, D. E., Brem, B. T., and Wang, J.: Response of real-time black carbon
mass instruments to mini-CAST soot, Aerosol Sci. Technol., 50, 906–918,
https://doi.org/10.1080/02786826.2016.1204423, 2016.
Eckbreth, A. C.: Effects of laser-modulated particulate incandescence on
Raman scattering diagnostics, J. Appl. Phys., 48, 4473–4479,
https://doi.org/10.1063/1.323458, 1977.
Gysel, M., Laborde, M., Mensah, A. A., Corbin, J. C., Keller, A., Kim, J., Petzold, A., and Sierau, B.: Technical Note: The single particle soot photometer fails to reliably detect PALAS soot nanoparticles, Atmos. Meas. Tech., 5, 3099–3107, https://doi.org/10.5194/amt-5-3099-2012, 2012.
International Civil Aviation Organization (ICAO): International Standards and Recommended Practices – Annex 16 to the
Convention on International Civil Aviation: Environmental Protection, Volume
II – Aircraft Engine Emissions, 4th edn., Montreal, QC, Canada, ISBN 978-92-9258-314-9, 2017.
Kock, B., Tribalet, B., Schulz, C., and Roth, P.: Two-color time-resolved LII applied to soot particle sizing in the cylinder of a Diesel engine, Combust.
Flame, 147, 79–92, https://doi.org/10.1016/j.combustflame.2006.07.009, 2006.
Laborde, M., Mertes, P., Zieger, P., Dommen, J., Baltensperger, U., and Gysel, M.: Sensitivity of the Single Particle Soot Photometer to different black carbon types, Atmos. Meas. Tech., 5, 1031–1043, https://doi.org/10.5194/amt-5-1031-2012, 2012.
Lehre, T., Jungfleisch, B., Suntz, R., and Bockhorn, H.: Size distributions
of nanoscaled particles and gas temperatures from time-resolved
laser-induced-incandescence measurements, Appl. Optics, 42, 2021,
https://doi.org/10.1364/ao.42.002021, 2003.
Leider, H. R., Krikorian, O. H., and Young, D. A.: Thermodynamic properties
of carbon up to the critical point, Carbon, 11, 555–563,
https://doi.org/10.1016/0008-6223(73)90316-3, 1973.
Liu, F., He, X., Ma, X., Zhang, Q., Thomson, M. J., Guo, H., Smallwood, G.
J., Shuai, S., and Wang, J.: An experimental and numerical study of the
effects of dimethyl ether addition to fuel on polycyclic aromatic
hydrocarbon and soot formation in laminar coflow ethylene/air diffusion
flames, Combust. Flame, 158, 547–563,
https://doi.org/10.1016/j.combustflame.2010.10.005, 2011.
Liu, F., Rogak, S., Snelling, D. R., Saffaripour, M., Thomson, K. A., and
Smallwood, G. J.: Effects of laser fluence non-uniformity on
ambient-temperature soot measurements using the auto-compensating
laser-induced incandescence technique, Appl. Phys. B, 122, 286,
https://doi.org/10.1007/s00340-016-6553-2, 2016.
Lobo, P., Durdina, L., Smallwood, G. J., Rindlisbacher, T., Siegerist, F.,
Black, E. A., Yu, Z., Mensah, A. A., Hagen, D. E., Miake-Lye, R. C.,
Thomson, K. A., Brem, B. T., Corbin, J. C., Abegglen, M., Sierau, B.,
Whitefield, P. D., and Wang, J.: Measurement of Aircraft Engine Non-Volatile
PM Emissions: Results of the Aviation-Particle Regulatory Instrumentation
Demonstration Experiment (A-PRIDE) 4 Campaign, Aerosol Sci. Technol., 49,
472–484, https://doi.org/10.1080/02786826.2015.1047012, 2015a.
Lobo, P., Hagen, D. E., Whitefield, P. D., and Raper, D.: PM emissions
measurements of in-service commercial aircraft engines during the
Delta-Atlanta Hartsfield study, Atmos. Environ., 104, 237–245, https://doi.org/10.1016/j.atmosenv.2015.01.020, 2015b.
Lobo, P., Condevaux, J., Yu, Z., Kuhlmann, J., Hagen, D. E., Miake-Lye, R.
C., Whitefield, P. D., and Raper, D: Demonstration of a regulatory method for aircraft engine
nonvolatile PM emissions measurements with conventional and isoparaffinic
kerosene fuels, Energ. Fuel., 30, 7770–7777, https://doi.org/10.1021/acs.energyfuels.6b01581, 2016.
Lobo, P., Durdina, L., Brem, B. T., Crayford, A. P., Johnson, M. P.,
Smallwood, G. J., Siegerist, F., Williams, P. I., Black, E. A., Llamedo, A.,
Thomson, K. A., Trueblood, M. B., Yu, Z., Hagen, D. E., Whitefield, P. D.,
Miake-Lye, R. C., and Rindlisbacher, T.: Comparison of Standardized Sampling
and Measurement Reference Systems for Aircraft Engine Non-volatile
Particulate Matter Emissions, J. Aerosol Sci., 145, 105557,
https://doi.org/10.1016/j.jaerosci.2020.105557, 2020.
Makida, M., Yamada, H., Kurosawa, Y., Yamamoto, T., Matsuura, K., and Hayashi, S.: Preliminary Experimental Research to Develop A Combustor for
Small Class Aircraft Engine Utilizing Primary Rich Combustion Approach, ASME
Turbo Expo 2006: Power for Land, Sea and Air, Barcelona, Spain, 8–11 May 2006, 835–842, https://doi.org/10.1115/GT2006-91156, 2006.
Melton, L. A.: Soot diagnostics based on laser heating, Appl. Optics, 23, 2201, https://doi.org/10.1364/AO.23.002201, 1984.
Mewes, B. and Seitzman, J. M.: Soot volume fraction and particle size
measurements with laser-induced incandescence, Appl. Optics, 36, 709,
https://doi.org/10.1364/ao.36.000709, 1997.
Michelsen, H. A., Witze, P. O., Kayes, D., and Hochgreb, S.: Time-resolved
laser-induced incandescence of soot: the influence of experimental factors
and microphysical mechanisms, Appl. Optics, 42, 5577,
https://doi.org/10.1364/ao.42.005577, 2003.
Michelsen, H. A., Liu, F., Kock, B. F., Bladh, H., Boiarciuc, A., Charwath,
M., Dreier, T., Hadef, R., Hofmann, M., Reimann, J., Will, S., Bengtsson, P.
E., Bockhorn, H., Foucher, F., Geigle, K. P., Mounaïm-Rousselle, C.,
Schulz, C., Stirn, R., Tribalet, B., and Suntz, R.: Modeling laser-induced
incandescence of soot: A summary and comparison of LII models, Appl. Phys. B-Lasers O., 87, 503–521, https://doi.org/10.1007/s00340-007-2619-5, 2007.
Michelsen, H. A., Schulz, C., Smallwood, G. J., and Will, S.: Laser-induced
incandescence: Particulate diagnostics for combustion, atmospheric, and
industrial applications, Prog. Energ. Combust., 51, 2–48,
https://doi.org/10.1016/j.pecs.2015.07.001, 2015.
Migliorini, F., Thomson, K. A., and Smallwood, G. J.: Investigation of optical
properties of aging soot, Appl. Phys. B-Lasers O., 104, 273–283,
https://doi.org/10.1007/s00340-011-4396-4, 2011.
National Institute of Occupational Safety and Health (NIOSH): Elemental
Carbon (Diesel Particulate) Method 5040, issue 3, in: NIOSH Manual of
Analytical Methods, 4th edn., Cincinnati, OH, available at: https://www.cdc.gov/niosh/docs/2003-154/pdfs/5040.pdf (last access: 10 December 2020), 2003.
Olfert, J. S., Dickau, M., Momenimovahed, A., Saffaripour, M., Thomson, K.,
Smallwood, G., Stettler, M. E. J., Boies, A., Sevcenco, Y., Crayford, A.,
and Johnson M.: Effective density and volatility of particles sampled from a
helicopter gas turbine engine, Aerosol Sci. Tech., 51,
704–714, https://doi.org/10.1080/02786826.2017.1292346, 2017.
Petzold, A., Marsh, R., Johnson, M., Miller, M., Sevcenco, Y., Delhaye, D.,
Ibrahim, A., Williams, P., Bauer, H., Crayford, A., Bachalo, W. D., and
Raper, D.: Evaluation of methods for measuring particulate matter emissions
from gas turbines, Environ. Sci. Technol., 45, 3562–3568,
https://doi.org/10.1021/es103969v, 2011.
Quay, B., Lee, T. W., Ni, T., and Santoro, R. J.: Spatially resolved
measurements of soot volume fraction using laser-induced incandescence,
Combust. Flame, 97, 384–392, https://doi.org/10.1016/0010-2180(94)90029-9, 1994.
Roth, P. and Filippov, A. V.: In situ ultrafine particle sizing by a
combination of pulsed laser heatup and particle thermal emission, J. Aerosol
Sci., 27, 95–104, https://doi.org/10.1016/0021-8502(95)00531-5, 1996.
Saffaripour, M., Tay, L.-L., Thomson, K. A., Smallwood, G. J., Brem, B. T.,
Durdina, L., and Johnson, M.: Raman spectroscopy and TEM characterization of
solid particulate matter emitted from soot generators and aircraft turbine
engines, Aerosol Sci. Technol., 51, 518–531,
https://doi.org/10.1080/02786826.2016.1274368, 2017.
Saffaripour, M., Thomson, K. A., Smallwood, G. J., and Lobo P.: A review on
the morphological properties of non-volatile particulate matter emissions
from aircraft turbine engines, J. Aerosol Sci., 139, 105467,
https://doi.org/10.1016/j.jaerosci.2019.105467, 2020
Schäfer, K., Heland, J., Lister, D. H., Wilson, C. W., Howes, R. J.,
Falk, R. S., Lindermeir, E., Birk, M., Wagner, G., Haschberger, P., Bernard,
M., Legras, O., Wiesen, P., Kurtenbach, R., Brockmann, K. J., Kriesche, V.,
Hilton, M., Bishop, G., Clarke, R., Workman, J., Caola, M., Geatches, R.,
Burrows, R., Black, J. D., Hervé, P., and Vally, J.: Nonintrusive optical
measurements of aircraft engine exhaust emissions and comparison with
standard intrusive techniques, Appl. Optics, 39, 441,
https://doi.org/10.1364/ao.39.000441, 2000.
Schittkowski, T., Mewes, B., and Brüggemann, D.: Laser-induced
incandescence and Raman measurements in sooting methane and ethylene flames,
Phys. Chem. Chem. Phys., 4, 2063–2071, https://doi.org/10.1039/b111335f, 2002.
Schulz, C., Kock, B. F., Hofmann, M., Michelsen, H., Will, S., Bougie, B.,
Suntz, R., and Smallwood, G.: Laser-induced incandescence: recent trends and
current questions, Appl. Phys. B-Lasers O., 83, 333–354,
https://doi.org/10.1007/s00340-006-2260-8, 2006.
Sipkens, T. A. and Daun, K. J.: Defining regimes and analytical expressions
for fluence curves in pulsed laser heating of aerosolized nanoparticles,
Opt. Express, 25, 5684–5696, https://doi.org/10.1364/OE.25.005684, 2017.
Smallwood, G. J.: A Critique of Laser-Induced Incandescence for the
Measurement of Soot, PhD Thesis, Cranfield University, available at: https://dspace.lib.cranfield.ac.uk/handle/1826/5407 (last access: 10 December 2020), 2008.
Smallwood, G. J., Snelling, D. R., Liu, F., and Gülder, Ö. L.: Clouds
over shoot evaporation: Errors in modeling laser-induced incandescence of
soot, J. Heat Transf., 123, 814–818, https://doi.org/10.1115/1.1370507, 2001.
Smallwood, G. J., Thomson, K., Snelling, D., and Greenhalgh, D.: Mass
Concentration of Nonvolatile Nanoparticle Emissions: Comparison of
Autocompensating Laser-Induced Incandescence (AC-LII) to Other
Techniques, in: Proceedings International Energy Agency 32nd Task Leaders
Meeting on Energy Conservation and Emissions Reduction in Combustion, Nara, Japan, 25–29 July 2010, available at: https://publications-cnrc.canada.ca/fra/voir/objet/?id=cdc5bd11-1bd3-44c7-9e68-fed417767f5a (last access: 10 December 2020), 2010.
Snelling, D. R., Liu, F., Smallwood, G. J., and Gülder, Ö. L.:
Determination of the soot absorption function and thermal accommodation
coefficient using low-fluence LII in a laminar coflow ethylene diffusion
flame, Combust. Flame, 136, 180–190,
https://doi.org/10.1016/j.combustflame.2003.09.013, 2004.
Snelling, D. R., Smallwood, G. J., Liu, F., Gülder, Ö. L., and
Bachalo, W. D.: A calibration-independent laser-induced incandescence
technique for soot measurement by detecting absolute light intensity, Appl.
Optics, 44, 6773–6785, https://doi.org/10.1364/AO.44.006773, 2005.
Society of Automotive Engineers (SAE): Procedure for the Continuous Sampling and Measurement of Non-Volatile
Particle Emissions from Aircraft Turbine Engines, SAE Aerospace Information Report, 6241, https://doi.org/10.4271/AIR6241, 2013.
Society of Automotive Engineers (SAE): Procedure for the Continuous Sampling and Measurement of Non-Volatile
Particulate Matter Emissions from Aircraft Turbine Engines, SAE Aerospace Recommended Practice, 6320, https://doi.org/10.4271/ARP6320, 2018.
Thomson, K. A., Snelling, D. R., Smallwood, G. J., and Liu, F.: Laser induced
incandescence measurements of soot volume fraction and effective particle
size in a laminar co-annular non-premixed methane/air flame at pressures
between 0.5–4.0 MPa, Appl. Phys. B-Lasers O., 83, 469–475,
https://doi.org/10.1007/s00340-006-2198-x, 2006.
Tian, B., Zhang, C., Gao, Y., and Hochgreb, S.: Planar 2-color time-resolved
laser-induced incandescence measurements of soot in a diffusion flame,
Aerosol Sci. Technol., 51, 1345–1353,
https://doi.org/10.1080/02786826.2017.1366644, 2017.
United Nations Environment Programme World Health Organization: Healthy
Transport in Developing Cities, Geneva, available at:
https://www.who.int/heli/risks/urban/transportpolicybrief2010.pdf
(last access: 24 October 2019), 2009.
Zhang, Y., Liu, F., Clavel, D., Smallwood, G. J., and Lou, C.: Measurement of
soot volume fraction and primary particle diameter in oxygen enriched
ethylene diffusion flames using the laser-induced incandescence technique,
Energy, 177, 421–432, https://doi.org/10.1016/j.energy.2019.04.062, 2019.
Short summary
The relationship between the non-volatile particulate matter (nvPM) mass emissions produced by different engine sources and the response of the LII 300 instrument, used for regulatory measurements of nvPM mass emissions in aircraft engine certification tests, was investigated for different sources and operating conditions. Laser fluence optimisation was required for real-time nvPM mass concentration measurements. These results will inform the development of updated calibration protocols.
The relationship between the non-volatile particulate matter (nvPM) mass emissions produced by...