Articles | Volume 15, issue 8
https://doi.org/10.5194/amt-15-2417-2022
https://doi.org/10.5194/amt-15-2417-2022
Research article
 | 
21 Apr 2022
Research article |  | 21 Apr 2022

Quantifying the coastal urban surface layer structure using distributed temperature sensing in Helsinki, Finland

Sasu Karttunen, Ewan O'Connor, Olli Peltola, and Leena Järvi

Related authors

Sensitivity of spatial aerosol particle distributions to the boundary conditions in the PALM model system 6.0
Mona Kurppa, Pontus Roldin, Jani Strömberg, Anna Balling, Sasu Karttunen, Heino Kuuluvainen, Jarkko V. Niemi, Liisa Pirjola, Topi Rönkkö, Hilkka Timonen, Antti Hellsten, and Leena Järvi
Geosci. Model Dev., 13, 5663–5685, https://doi.org/10.5194/gmd-13-5663-2020,https://doi.org/10.5194/gmd-13-5663-2020, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Instruments and Platforms
Modelling of cup anemometry and dynamic overspeeding in average wind speed measurements
Troels Friis Pedersen and Jan-Åke Dahlberg
Atmos. Meas. Tech., 17, 1441–1461, https://doi.org/10.5194/amt-17-1441-2024,https://doi.org/10.5194/amt-17-1441-2024, 2024
Short summary
Introducing the Video In Situ Snowfall Sensor (VISSS)
Maximilian Maahn, Dmitri Moisseev, Isabelle Steinke, Nina Maherndl, and Matthew D. Shupe
Atmos. Meas. Tech., 17, 899–919, https://doi.org/10.5194/amt-17-899-2024,https://doi.org/10.5194/amt-17-899-2024, 2024
Short summary
Quality evaluation for measurements of wind field and turbulent fluxes from a UAV-based eddy covariance system
Yibo Sun, Bilige Sude, Xingwen Lin, Bing Geng, Bo Liu, Shengnan Ji, Junping Jing, Zhiping Zhu, Ziwei Xu, Shaomin Liu, and Zhanjun Quan
Atmos. Meas. Tech., 16, 5659–5679, https://doi.org/10.5194/amt-16-5659-2023,https://doi.org/10.5194/amt-16-5659-2023, 2023
Short summary
A new reference-quality precipitation gauge wind shield
John Kochendorfer, Tilden P. Meyers, Mark E. Hall, Scott D. Landolt, Justin Lentz, and Howard J. Diamond
Atmos. Meas. Tech., 16, 5647–5657, https://doi.org/10.5194/amt-16-5647-2023,https://doi.org/10.5194/amt-16-5647-2023, 2023
Short summary
Cost Effective Off-Grid Automatic Precipitation Samplers for Pollutant and Biogeochemical Atmospheric Deposition
Alessia A. Colussi, Daniel Persaud, Melodie Lao, Bryan K. Place, Rachel F. Hems, Susan E. Ziegler, Kate A. Edwards, Cora J. Young, and Trevor C. VandenBoer
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-231,https://doi.org/10.5194/amt-2023-231, 2023
Revised manuscript accepted for AMT
Short summary

Cited articles

Andreas, E. L., Hill, R. J., Gosz, J. R., Moore, D. I., Otto, W. D., and Sarma, A. D.: Statistics of surface-layer turbulence over terrain with metre-scale heterogeneity, Bound.-Lay. Meteorol., 86, 379–408, https://doi.org/10.1023/A:1000609131683, 1998. a, b
Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T., Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, C., Clement, R., Elbers, J., Granier, A., Grünwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., and Vesala, T.: Estimates of the Annual Net Carbon and Water Exchange of Forests: The EUROFLUX Methodology, Adv. Ecol. Res., 30, 113–175, https://doi.org/10.1016/S0065-2504(08)60018-5, 1999. a
Aubinet, M., Vesala, T., and Papale, D. (Eds.): Eddy Covariance, 1st edn., Springer, Dordrecht, https://doi.org/10.1007/978-94-007-2351-1, 2012. a
Baars, W. J., Talluru, K. M., Hutchins, N., and Marusic, I.: Wavelet analysis of wall turbulence to study large-scale modulation of small scales, Exp. Fluids, 56, 188, https://doi.org/10.1007/s00348-015-2058-8, 2015. a
Barlow, J. F.: Progress in observing and modelling the urban boundary layer, Urban Climate, 10, 216–240, https://doi.org/10.1016/j.uclim.2014.03.011, 2014. a, b
Download
Short summary
To study the complex structure of the lowest tens of metres of atmosphere in urban areas, measurement methods with great spatial and temporal coverage are needed. In our study, we analyse measurements with a promising and relatively new method, distributed temperature sensing, capable of providing detailed information on the near-surface atmosphere. We present multiple ways to utilise these kinds of measurements, as well as important considerations for planning new studies using the method.