Articles | Volume 15, issue 9
https://doi.org/10.5194/amt-15-2839-2022
https://doi.org/10.5194/amt-15-2839-2022
Research article
 | 
09 May 2022
Research article |  | 09 May 2022

Scan strategies for wind profiling with Doppler lidar – an large-eddy simulation (LES)-based evaluation

Charlotte Rahlves, Frank Beyrich, and Siegfried Raasch

Related authors

Historically consistent mass loss projections of the Greenland ice sheet
Charlotte Rahlves, Heiko Goelzer, Andreas Born, and Petra M. Langebroek
EGUsphere, https://doi.org/10.5194/egusphere-2024-922,https://doi.org/10.5194/egusphere-2024-922, 2024
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Enhanced quantitative precipitation estimation through the opportunistic use of Ku TV-SAT links via a dual-channel procedure
Louise Gelbart, Laurent Barthès, François Mercier-Tigrine, Aymeric Chazottes, and Cécile Mallet
Atmos. Meas. Tech., 18, 351–370, https://doi.org/10.5194/amt-18-351-2025,https://doi.org/10.5194/amt-18-351-2025, 2025
Short summary
The added value and potential of long-term radio occultation data for climatological wind field monitoring
Irena Nimac, Julia Danzer, and Gottfried Kirchengast
Atmos. Meas. Tech., 18, 265–286, https://doi.org/10.5194/amt-18-265-2025,https://doi.org/10.5194/amt-18-265-2025, 2025
Short summary
Exploring dual-lidar mean and turbulence measurements over Perdigão's complex terrain
Isadora L. Coimbra, Jakob Mann, José M. L. M. Palma, and Vasco T. P. Batista
Atmos. Meas. Tech., 18, 287–303, https://doi.org/10.5194/amt-18-287-2025,https://doi.org/10.5194/amt-18-287-2025, 2025
Short summary
Description and validation of the Japanese algorithm for radiative flux and heating rate products with all four EarthCARE instruments: pre-launch test with A-Train
Akira Yamauchi, Kentaroh Suzuki, Eiji Oikawa, Miho Sekiguchi, Takashi M. Nagao, and Haruma Ishida
Atmos. Meas. Tech., 17, 6751–6767, https://doi.org/10.5194/amt-17-6751-2024,https://doi.org/10.5194/amt-17-6751-2024, 2024
Short summary
Improving the estimate of higher-order moments from lidar observations near the top of the convective boundary layer
Tessa E. Rosenberger, David D. Turner, Thijs Heus, Girish N. Raghunathan, Timothy J. Wagner, and Julia Simonson
Atmos. Meas. Tech., 17, 6595–6602, https://doi.org/10.5194/amt-17-6595-2024,https://doi.org/10.5194/amt-17-6595-2024, 2024
Short summary

Cited articles

Antoniou, I., Courtney, M., Jorgensen, H. E., Mikkelsen, T., Von Hünerbein, S., Bradley, S., Piper, B., Harris, M., Marti, I., Aristu, M., Foussekis, D., and Nielsen, M. P.: Remote sensing the wind using lidars and sodars, in: European Wind Energy Conference and Exhibition 2007, EWEC 2007, 7–10 May 2007, Milan, Italy, vol. 3, 2007. a
Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamical processes of the UCLA general circulation model, in: Methods in Computational Physics – General circulation models of the atmosphere, Academic Press, vol. 17, 173–265, https://doi.org/10.1016/b978-0-12-460817-7.50009-4, 1977. a
Bingöl, F., Mann, J., and Foussekis, D.: Lidar error estimation with WAsP engineering, in: IOP Conference Series: Earth and Environmental Science, 14th International Symposium for the Advancement of Boundary Layer Remote Sensing, 23–25 June 2008, Roskilde, Denmark, IOP Publishing, vol. 1, https://doi.org/10.1088/1755-1315/1/1/012058, 2008. a
Bingöl, F., Mann, J., and Foussekis, D.: Conically scanning lidar error in complex terrain, Meteorol. Z., 18, 189–195, https://doi.org/10.1127/0941-2948/2009/0368, 2009a. a
Bingöl, F., Mann, J., and Foussekis, D.: Lidar performance in complex terrain modelled by WAsP Engineering, in: Proceedings of the European Wind Energy Conference, 16–19 May 2009, Marseille, France, 2009b. a
Download
Short summary
Lidars can measure the wind profile in the lower part of the atmosphere, provided that the wind field is horizontally uniform and does not change during the time of the measurement. These requirements are mostly not fulfilled in reality, and the lidar wind measurement will thus hold a certain error. We investigate different strategies for lidar wind profiling using a lidar simulator implemented in a numerical simulation of the wind field. Our findings can help to improve wind measurements.