Articles | Volume 15, issue 9
Research article
09 May 2022
Research article |  | 09 May 2022

Scan strategies for wind profiling with Doppler lidar – an large-eddy simulation (LES)-based evaluation

Charlotte Rahlves, Frank Beyrich, and Siegfried Raasch

Related authors

Verifying triple and single Doppler lidar wind measurements with sonic anemometer data based on a new filter strategy for virtual tower measurements
Kevin Wolz, Christopher Holst, Frank Beyrich, Eileen Paeschke, and Matthias Mauder
EGUsphere,,, 2023
Short summary
A new scanning scheme and flexible retrieval for mean winds and gusts from Doppler lidar measurements
Julian Steinheuer, Carola Detring, Frank Beyrich, Ulrich Löhnert, Petra Friederichs, and Stephanie Fiedler
Atmos. Meas. Tech., 15, 3243–3260,,, 2022
Short summary
Wake properties and power output of very large wind farms for different meteorological conditions and turbine spacings: a large-eddy simulation case study for the German Bight
Oliver Maas and Siegfried Raasch
Wind Energ. Sci., 7, 715–739,,, 2022
Short summary
Mesoscale nesting interface of the PALM model system 6.0
Eckhard Kadasch, Matthias Sühring, Tobias Gronemeier, and Siegfried Raasch
Geosci. Model Dev., 14, 5435–5465,,, 2021
Short summary
Evaluation of the dynamic core of the PALM model system 6.0 in a neutrally stratified urban environment: comparison between LES and wind-tunnel experiments
Tobias Gronemeier, Kerstin Surm, Frank Harms, Bernd Leitl, Björn Maronga, and Siegfried Raasch
Geosci. Model Dev., 14, 3317–3333,,, 2021
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Daily satellite-based sunshine duration estimates over Brazil: validation and intercomparison
Maria Lívia L. M. Gava, Simone M. S. Costa, and Anthony C. S. Porfírio
Atmos. Meas. Tech., 16, 5429–5441,,, 2023
Short summary
Statistical assessment of a Doppler radar model of TKE dissipation rate for low Richardson numbers
Hubert Luce, Lakshmi Kantha, and Hiroyuki Hashiguchi
Atmos. Meas. Tech., 16, 5091–5101,,, 2023
Short summary
Extended validation of Aeolus winds with wind-profiling radars in Antarctica and Arctic Sweden
Sheila Kirkwood, Evgenia Belova, Peter Voelger, Sourav Chatterjee, and Karathazhiyath Satheesan
Atmos. Meas. Tech., 16, 4215–4227,,, 2023
Short summary
Assessing sampling and retrieval errors of GPROF precipitation estimates over The Netherlands
Linda Bogerd, Hidde Leijnse, Aart Overeem, and Remko Uijlenhoet
EGUsphere,,, 2023
Short summary
The impact of Aeolus winds on near-surface wind forecasts over tropical ocean and high-latitude regions
Haichen Zuo and Charlotte Bay Hasager
Atmos. Meas. Tech., 16, 3901–3913,,, 2023
Short summary

Cited articles

Antoniou, I., Courtney, M., Jorgensen, H. E., Mikkelsen, T., Von Hünerbein, S., Bradley, S., Piper, B., Harris, M., Marti, I., Aristu, M., Foussekis, D., and Nielsen, M. P.: Remote sensing the wind using lidars and sodars, in: European Wind Energy Conference and Exhibition 2007, EWEC 2007, 7–10 May 2007, Milan, Italy, vol. 3, 2007. a
Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamical processes of the UCLA general circulation model, in: Methods in Computational Physics – General circulation models of the atmosphere, Academic Press, vol. 17, 173–265,, 1977. a
Bingöl, F., Mann, J., and Foussekis, D.: Lidar error estimation with WAsP engineering, in: IOP Conference Series: Earth and Environmental Science, 14th International Symposium for the Advancement of Boundary Layer Remote Sensing, 23–25 June 2008, Roskilde, Denmark, IOP Publishing, vol. 1,, 2008. a
Bingöl, F., Mann, J., and Foussekis, D.: Conically scanning lidar error in complex terrain, Meteorol. Z., 18, 189–195,, 2009a. a
Bingöl, F., Mann, J., and Foussekis, D.: Lidar performance in complex terrain modelled by WAsP Engineering, in: Proceedings of the European Wind Energy Conference, 16–19 May 2009, Marseille, France, 2009b. a
Short summary
Lidars can measure the wind profile in the lower part of the atmosphere, provided that the wind field is horizontally uniform and does not change during the time of the measurement. These requirements are mostly not fulfilled in reality, and the lidar wind measurement will thus hold a certain error. We investigate different strategies for lidar wind profiling using a lidar simulator implemented in a numerical simulation of the wind field. Our findings can help to improve wind measurements.