Articles | Volume 15, issue 13
Atmos. Meas. Tech., 15, 4023–4045, 2022
https://doi.org/10.5194/amt-15-4023-2022
Atmos. Meas. Tech., 15, 4023–4045, 2022
https://doi.org/10.5194/amt-15-4023-2022
Research article
07 Jul 2022
Research article | 07 Jul 2022

Instabilities, Dynamics, and Energetics accompanying Atmospheric Layering (IDEAL): high-resolution in situ observations and modeling in and above the nocturnal boundary layer

Abhiram Doddi et al.

Related authors

The DataHawk2 Uncrewed Aircraft System for Atmospheric Research
Jonathan Hamilton, Gijs de Boer, Abhiram Doddi, and Dale Lawrence
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-96,https://doi.org/10.5194/amt-2022-96, 2022
Revised manuscript under review for AMT
Short summary
University of Colorado and Black Swift Technologies RPAS-based measurements of the lower atmosphere during LAPSE-RATE
Gijs de Boer, Cory Dixon, Steven Borenstein, Dale A. Lawrence, Jack Elston, Daniel Hesselius, Maciej Stachura, Roger Laurence III, Sara Swenson, Christopher M. Choate, Abhiram Doddi, Aiden Sesnic, Katherine Glasheen, Zakariya Laouar, Flora Quinby, Eric Frew, and Brian M. Argrow
Earth Syst. Sci. Data, 13, 2515–2528, https://doi.org/10.5194/essd-13-2515-2021,https://doi.org/10.5194/essd-13-2515-2021, 2021
Short summary
Atmospheric observations made at Oliktok Point, Alaska, as part of the Profiling at Oliktok Point to Enhance YOPP Experiments (POPEYE) campaign
Gijs de Boer, Darielle Dexheimer, Fan Mei, John Hubbe, Casey Longbottom, Peter J. Carroll, Monty Apple, Lexie Goldberger, David Oaks, Justin Lapierre, Michael Crume, Nathan Bernard, Matthew D. Shupe, Amy Solomon, Janet Intrieri, Dale Lawrence, Abhiram Doddi, Donna J. Holdridge, Michael Hubbell, Mark D. Ivey, and Beat Schmid
Earth Syst. Sci. Data, 11, 1349–1362, https://doi.org/10.5194/essd-11-1349-2019,https://doi.org/10.5194/essd-11-1349-2019, 2019
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Instruments and Platforms
The measurement of mean wind, variances and covariances from an instrumented mobile car in a rural environment
Stefan Miller and Mark Gordon
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-163,https://doi.org/10.5194/amt-2022-163, 2022
Revised manuscript accepted for AMT
Short summary
Towards vertical wind and turbulent flux estimation with multicopter UAS
Norman Wildmann and Tamino Wetz
EGUsphere, https://doi.org/10.5194/egusphere-2022-110,https://doi.org/10.5194/egusphere-2022-110, 2022
Short summary
Infrasound measurement system for real-time in situ tornado measurements
Brandon C. White, Brian R. Elbing, and Imraan A. Faruque
Atmos. Meas. Tech., 15, 2923–2938, https://doi.org/10.5194/amt-15-2923-2022,https://doi.org/10.5194/amt-15-2923-2022, 2022
Short summary
Quantifying the coastal urban surface layer structure using distributed temperature sensing in Helsinki, Finland
Sasu Karttunen, Ewan O'Connor, Olli Peltola, and Leena Järvi
Atmos. Meas. Tech., 15, 2417–2432, https://doi.org/10.5194/amt-15-2417-2022,https://doi.org/10.5194/amt-15-2417-2022, 2022
Short summary
3D trajectories and velocities of rainfall drops in a multifractal turbulent wind field
Auguste Gires, Ioulia Tchiguirinskaia, and Daniel Schertzer
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-434,https://doi.org/10.5194/amt-2021-434, 2022
Revised manuscript accepted for AMT
Short summary

Cited articles

Alaoui-Sosse, S., Durand, P., Medina, P., Pastor, P., Lothon, M., and Cernov, I.: OVLI-TA: An Unmanned Aerial System for Measuring Profiles and Turbulence in the Atmospheric Boundary Layer, Sensors, 19, 581, https://doi.org/10.3390/s19030581, 2019. a
Altstädter, B., Platis, A., Wehner, B., Scholtz, A., Wildmann, N., Hermann, M., Käthner, R., Baars, H., Bange, J., and Lampert, A.: ALADINA – an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer, Atmos. Meas. Tech., 8, 1627–1639, https://doi.org/10.5194/amt-8-1627-2015, 2015. a
Balsley, B. B., Frehlich, R. G., Jensen, M. L., Meillier, Y., and Muschinski, A.: Extreme Gradients in the Nocturnal Boundary Layer: Structure, Evolution, and Potential Causes, J. Atmos. Sci., 60, 2496–2508, https://doi.org/10.1175/1520-0469(2003)060<2496:EGITNB>2.0.CO;2, 2003. a, b, c, d
Balsley, B. B., Frehlich, R. G., Jensen, M. L., and Meillier, Y.: High-Resolution In Situ Profiling through the Stable Boundary Layer: Examination of the SBL Top in Terms of Minimum Shear, Maximum Stratification, and Turbulence Decrease, J. Atmos. Sci., 63, 1291–1307, https://doi.org/10.1175/JAS3671.1, 2006. a, b, c
Balsley, B. B., Lawrence, D. A., Woodman, R. F., Fritts, D. C., Balsley, B. B., Lawrence, D. A., and Woodman, R. F.: Fine-Scale Characteristics of Temperature, Wind, and Turbulence in the Lower Atmosphere (0–1,300 m) Over the South Peruvian Coast, Bound.-Lay. Meteorol., 147, 165–178, https://doi.org/10.1007/s10546-012-9774-x, 2013. a
Download
Short summary
Small-scale turbulent structures are ubiquitous in the atmosphere, yet our understanding of their structure and dynamics is vastly incomplete. IDEAL aimed to improve our understanding of small-scale turbulent flow features in the lower atmosphere. A small, unmanned, fixed-wing aircraft was employed to make targeted observations of atmospheric columns. Measured data were used to guide atmospheric model simulations designed to describe the structure and dynamics of small-scale turbulence.