Articles | Volume 15, issue 18
https://doi.org/10.5194/amt-15-5323-2022
https://doi.org/10.5194/amt-15-5323-2022
Research article
 | 
20 Sep 2022
Research article |  | 20 Sep 2022

Quantification of motion-induced measurement error on floating lidar systems

Felix Kelberlau and Jakob Mann

Related authors

The LOLland offshore Lidar EXperiment (LOLLEX): A novel observational approach for the study of wind farm flow and entrainment
Shokoufeh Malekmohammadi, Etienne Cheynet, Joachim Reuder, Claus Linnemann, Mikael Sjöholm, Jakob Mann, and Gregor Giebel
EGUsphere, https://doi.org/10.5194/egusphere-2025-3148,https://doi.org/10.5194/egusphere-2025-3148, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Measurement of turbulence energy dissipation rate by a standalone high-resolution Doppler lidar
Abdul Haseeb Syed, Jakob Mann, and Mohammadreza Manami
EGUsphere, https://doi.org/10.5194/egusphere-2025-5214,https://doi.org/10.5194/egusphere-2025-5214, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Improving Wind Speed Availability of a Six-Beam Doppler Lidar
Mohammadreza Manami, Guillaume Léa, Jakob Mann, Mikael Sjöholm, and Guillaume Gorju
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-165,https://doi.org/10.5194/wes-2025-165, 2025
Preprint under review for WES
Short summary
Squeezing Turbulence Statistics out of a Pulsed Lidar
Mohammadreza Manami, Jakob Mann, Mikael Sjöholm, Guillaume Léa, and Guillaume Gorju
EGUsphere, https://doi.org/10.5194/egusphere-2025-2226,https://doi.org/10.5194/egusphere-2025-2226, 2025
Short summary
Exploring dual-lidar mean and turbulence measurements over Perdigão's complex terrain
Isadora L. Coimbra, Jakob Mann, José M. L. M. Palma, and Vasco T. P. Batista
Atmos. Meas. Tech., 18, 287–303, https://doi.org/10.5194/amt-18-287-2025,https://doi.org/10.5194/amt-18-287-2025, 2025
Short summary

Cited articles

Bischoff, O., Schlipf, D., Würth, I., and Cheng, P. W.: Dynamic Motion Effects and Compensation Methods of a Floating Lidar Buoy, EERA DeepWind 2015 Deep Sea Offshore Wind Conference, Trondheim, Norway, 4–6 February 2015, https://doi.org/10.7567/JJAP.54.07JA03, 2015. a
Bischoff, O., Yu, W., Gottschall, J., and Cheng, P. W.: Validating a simulation environment for floating lidar systems, in: J. Phys.: Conference Series, 1037, 052036, https://doi.org/10.1088/1742-6596/1037/5/052036, 2018. a
Bischoff, O., Wolken-Möhlmann, G., and Cheng, P. W.: An approach and discussion of a simulation based measurement uncertainty estimation for a floating lidar system, J. Phys.: Conference Series, 2265, 022077, https://doi.org/10.1088/1742-6596/2265/2/022077, 2022. a
Carbon Trust: OWA roadmap for the commercial acceptance of floating LiDAR technology, Version 2.0, 2018. a, b, c
Désert, T., Knapp, G., and Aubrun, S.: Quantification and correction of wave-induced turbulence intensity bias for a floating lidar system, Remote Sens., 13, 2973, https://doi.org/10.3390/rs13152973, 2021. a, b
Download
Short summary
Floating lidar systems are used for measuring wind speeds offshore, and their motion influences the measurements. This study describes the motion-induced bias on mean wind speed estimates by simulating the lidar sampling pattern of a moving lidar. An analytic model is used to validate the simulations. The bias is low and depends on amplitude and frequency of motion as well as on wind shear. It has been estimated for the example of the Fugro SEAWATCH wind lidar buoy carrying a ZX 300M lidar.
Share