Articles | Volume 15, issue 18
https://doi.org/10.5194/amt-15-5323-2022
https://doi.org/10.5194/amt-15-5323-2022
Research article
 | 
20 Sep 2022
Research article |  | 20 Sep 2022

Quantification of motion-induced measurement error on floating lidar systems

Felix Kelberlau and Jakob Mann

Related authors

Cross-contamination effect on turbulence spectra from Doppler beam swinging wind lidar
Felix Kelberlau and Jakob Mann
Wind Energ. Sci., 5, 519–541, https://doi.org/10.5194/wes-5-519-2020,https://doi.org/10.5194/wes-5-519-2020, 2020
Short summary
Better turbulence spectra from velocity–azimuth display scanning wind lidar
Felix Kelberlau and Jakob Mann
Atmos. Meas. Tech., 12, 1871–1888, https://doi.org/10.5194/amt-12-1871-2019,https://doi.org/10.5194/amt-12-1871-2019, 2019
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
The Atmospheric Sounder Spectrometer by Infrared Spectral Technology (ASSIST): instrument design and signal processing
Vincent Michaud-Belleau, Michel Gaudreau, Jean Lacoursière, Éric Boisvert, Lalaina Ravelomanantsoa, David D. Turner, and Luc Rochette
Atmos. Meas. Tech., 18, 3585–3609, https://doi.org/10.5194/amt-18-3585-2025,https://doi.org/10.5194/amt-18-3585-2025, 2025
Short summary
Characterization of surface clutter signal in the presence of orography for a spaceborne conically scanning W-band Doppler radar
Francesco Manconi, Alessandro Battaglia, and Pavlos Kollias
Atmos. Meas. Tech., 18, 2295–2310, https://doi.org/10.5194/amt-18-2295-2025,https://doi.org/10.5194/amt-18-2295-2025, 2025
Short summary
Spectral performance analysis of the Fizeau interferometer on board ESA's Aeolus wind lidar satellite
Michael Vaughan, Kevin Ridley, Benjamin Witschas, Oliver Lux, Ines Nikolaus, and Oliver Reitebuch
Atmos. Meas. Tech., 18, 2149–2181, https://doi.org/10.5194/amt-18-2149-2025,https://doi.org/10.5194/amt-18-2149-2025, 2025
Short summary
The Arctic Weather Satellite radiometer
Patrick Eriksson, Anders Emrich, Kalle Kempe, Johan Riesbeck, Alhassan Aljarosha, Olivier Auriacombe, Joakim Kugelberg, Enne Hekma, Roland Albers, Axel Murk, Søren Møller Pedersen, Laurenz John, Jan Stake, Peter McEvoy, Bengt Rydberg, Adam Dybbroe, Anke Thoss, Alessio Canestri, Christophe Accadia, Paolo Colucci, Daniele Gherardi, and Ville Kangas
EGUsphere, https://doi.org/10.5194/egusphere-2025-1769,https://doi.org/10.5194/egusphere-2025-1769, 2025
Short summary
Tracking traveling ionospheric disturbances through Doppler-shifted AM radio transmissions
Claire C. Trop, James LaBelle, Philip J. Erickson, Shun-Rong Zhang, David McGaw, and Terrence Kovacs
Atmos. Meas. Tech., 18, 1909–1925, https://doi.org/10.5194/amt-18-1909-2025,https://doi.org/10.5194/amt-18-1909-2025, 2025
Short summary

Cited articles

Bischoff, O., Schlipf, D., Würth, I., and Cheng, P. W.: Dynamic Motion Effects and Compensation Methods of a Floating Lidar Buoy, EERA DeepWind 2015 Deep Sea Offshore Wind Conference, Trondheim, Norway, 4–6 February 2015, https://doi.org/10.7567/JJAP.54.07JA03, 2015. a
Bischoff, O., Yu, W., Gottschall, J., and Cheng, P. W.: Validating a simulation environment for floating lidar systems, in: J. Phys.: Conference Series, 1037, 052036, https://doi.org/10.1088/1742-6596/1037/5/052036, 2018. a
Bischoff, O., Wolken-Möhlmann, G., and Cheng, P. W.: An approach and discussion of a simulation based measurement uncertainty estimation for a floating lidar system, J. Phys.: Conference Series, 2265, 022077, https://doi.org/10.1088/1742-6596/2265/2/022077, 2022. a
Carbon Trust: OWA roadmap for the commercial acceptance of floating LiDAR technology, Version 2.0, 2018. a, b, c
Désert, T., Knapp, G., and Aubrun, S.: Quantification and correction of wave-induced turbulence intensity bias for a floating lidar system, Remote Sens., 13, 2973, https://doi.org/10.3390/rs13152973, 2021. a, b
Download
Short summary
Floating lidar systems are used for measuring wind speeds offshore, and their motion influences the measurements. This study describes the motion-induced bias on mean wind speed estimates by simulating the lidar sampling pattern of a moving lidar. An analytic model is used to validate the simulations. The bias is low and depends on amplitude and frequency of motion as well as on wind shear. It has been estimated for the example of the Fugro SEAWATCH wind lidar buoy carrying a ZX 300M lidar.
Share