Articles | Volume 15, issue 20
https://doi.org/10.5194/amt-15-6051-2022
https://doi.org/10.5194/amt-15-6051-2022
Research article
 | 
21 Oct 2022
Research article |  | 21 Oct 2022

Source apportionment resolved by time of day for improved deconvolution of primary source contributions to air pollution

Sahil Bhandari, Zainab Arub, Gazala Habib, Joshua S. Apte, and Lea Hildebrandt Ruiz

Related authors

Contributions of primary sources to submicron organic aerosols in Delhi, India
Sahil Bhandari, Zainab Arub, Gazala Habib, Joshua S. Apte, and Lea Hildebrandt Ruiz
Atmos. Chem. Phys., 22, 13631–13657, https://doi.org/10.5194/acp-22-13631-2022,https://doi.org/10.5194/acp-22-13631-2022, 2022
Short summary

Cited articles

Abdullahi, K. L., Delgado-Saborit, J. M., and Harrison, R. M.: Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: a review, Atmos. Environ., 71, 260–294, https://doi.org/10.1016/j.atmosenv.2013.01.061, 2013. 
Allan, J. D., Williams, P. I., Morgan, W. T., Martin, C. L., Flynn, M. J., Lee, J., Nemitz, E., Phillips, G. J., Gallagher, M. W., and Coe, H.: Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities, Atmos. Chem. Phys., 10, 647–668, https://doi.org/10.5194/acp-10-647-2010, 2010. 
Amato, F. and Hopke, P. K.: Source apportionment of the ambient PM2.5 across St. Louis using constrained positive matrix factorization, Atmos. Environ., 46, 329–337, https://doi.org/10.1016/j.atmosenv.2011.09.062, 2012. 
Amato, F., Pandolfi, M., Escrig, A., Querol, X., Alastuey, A., Pey, J., Perez, N., and Hopke, P. K.: Quantifying road dust resuspension in urban environment by Multilinear Engine: a comparison with PMF2, Atmos. Environ., 43, 2770–2780, https://doi.org/10.1016/j.atmosenv.2009.02.039, 2009. 
Amil, N., Latif, M. T., Khan, M. F., and Mohamad, M.: Seasonal variability of PM2.5 composition and sources in the Klang Valley urban-industrial environment, Atmos. Chem. Phys., 16, 5357–5381, https://doi.org/10.5194/acp-16-5357-2016, 2016. 
Short summary
We present a new method to conduct source apportionment resolved by time of day using the underlying approach of positive matrix factorization. We report results for four example time periods in two seasons (winter and monsoon 2017) in Delhi, India. Compared to the traditional approach, we extract a larger number of factors that represent the expected sources of primary organic aerosol. This method can capture diurnal time series patterns of sources at low computational cost.
Share