Articles | Volume 15, issue 20
https://doi.org/10.5194/amt-15-6051-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-6051-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Source apportionment resolved by time of day for improved deconvolution of primary source contributions to air pollution
Sahil Bhandari
McKetta Department of Chemical Engineering, The University of Texas at Austin, Texas, USA
Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada
Zainab Arub
Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, India
Gazala Habib
Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, India
Joshua S. Apte
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, UC Berkeley,
Berkeley, California, USA
School of Public Health, UC Berkeley, Berkeley, California, USA
McKetta Department of Chemical Engineering, The University of Texas at Austin, Texas, USA
Related authors
Sahil Bhandari, Zainab Arub, Gazala Habib, Joshua S. Apte, and Lea Hildebrandt Ruiz
Atmos. Chem. Phys., 22, 13631–13657, https://doi.org/10.5194/acp-22-13631-2022, https://doi.org/10.5194/acp-22-13631-2022, 2022
Short summary
Short summary
Here we determine the sources of primary organic aerosol in Delhi, India, in two different seasons. In winter, the main sources are traffic and biomass burning; in the summer, the main sources are traffic and cooking. We obtain this result by conducting source apportionment resolved by time of day, using data from an aerosol chemical speciation monitor. Results from this work can be used to better design policies that target sources of organic aerosol.
Erin F. Katz, Caleb M. Arata, Eva Y. Pfannerstill, Robert J. Weber, Darian Ng, Michael J. Milazzo, Haley Byrne, Hui Wang, Alex B. Guenther, Camilo Rey-Sanchez, Joshua Apte, Dennis D. Baldocchi, and Allen H. Goldstein
EGUsphere, https://doi.org/10.5194/egusphere-2025-2682, https://doi.org/10.5194/egusphere-2025-2682, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Terpenoids are organic gases that can originate from natural and human-caused sources, and their fast reactions in the atmosphere can cause air pollution. Emissions of organic gases in an urban environment were measured. For some terpenoids, human-caused sources were responsible for about a quarter of the emissions, while others were likely to be entirely from vegetation. The terpenoids contributed substantially to the potential to form secondary pollutants.
Anil Kumar Mandariya, Ajit Ahlawat, Mohammed Haneef, Nisar Ali Baig, Kanan Patel, Joshua Apte, Lea Hildebrandt Ruiz, Alfred Wiedensohler, and Gazala Habib
Atmos. Chem. Phys., 24, 3627–3647, https://doi.org/10.5194/acp-24-3627-2024, https://doi.org/10.5194/acp-24-3627-2024, 2024
Short summary
Short summary
The current study explores the temporal variation of size-selected particle hygroscopicity in Delhi for the first time. Here, we report that the high volume fraction contribution of ammonium chloride to aerosol governs the high aerosol hygroscopicity and associated liquid water content based on the experimental data. The episodically high ammonium chloride present in Delhi's atmosphere could lead to haze and fog formation under high relative humidity in the region.
Mark Joseph Campmier, Jonathan Gingrich, Saumya Singh, Nisar Baig, Shahzad Gani, Adithi Upadhya, Pratyush Agrawal, Meenakshi Kushwaha, Harsh Raj Mishra, Ajay Pillarisetti, Sreekanth Vakacherla, Ravi Kant Pathak, and Joshua S. Apte
Atmos. Meas. Tech., 16, 4357–4374, https://doi.org/10.5194/amt-16-4357-2023, https://doi.org/10.5194/amt-16-4357-2023, 2023
Short summary
Short summary
We studied a low-cost air pollution sensor called PurpleAir PA-II in three different locations in India (Delhi, Hamirpur, and Bangalore) to characterize its performance. We compared its signal to more expensive reference sensors and found that the PurpleAir sensor was precise but inaccurate without calibration. We created a custom calibration equation for each location, which improved the accuracy of the PurpleAir sensor, and found that calibrations should be adjusted for different seasons.
Sahil Bhandari, Zainab Arub, Gazala Habib, Joshua S. Apte, and Lea Hildebrandt Ruiz
Atmos. Chem. Phys., 22, 13631–13657, https://doi.org/10.5194/acp-22-13631-2022, https://doi.org/10.5194/acp-22-13631-2022, 2022
Short summary
Short summary
Here we determine the sources of primary organic aerosol in Delhi, India, in two different seasons. In winter, the main sources are traffic and biomass burning; in the summer, the main sources are traffic and cooking. We obtain this result by conducting source apportionment resolved by time of day, using data from an aerosol chemical speciation monitor. Results from this work can be used to better design policies that target sources of organic aerosol.
Cited articles
Abdullahi, K. L., Delgado-Saborit, J. M., and Harrison, R. M.: Emissions and
indoor concentrations of particulate matter and its specific chemical
components from cooking: a review, Atmos. Environ., 71, 260–294,
https://doi.org/10.1016/j.atmosenv.2013.01.061, 2013.
Allan, J. D., Williams, P. I., Morgan, W. T., Martin, C. L., Flynn, M. J., Lee, J., Nemitz, E., Phillips, G. J., Gallagher, M. W., and Coe, H.: Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities, Atmos. Chem. Phys., 10, 647–668, https://doi.org/10.5194/acp-10-647-2010, 2010.
Amato, F. and Hopke, P. K.: Source apportionment of the ambient PM2.5 across
St. Louis using constrained positive matrix factorization, Atmos.
Environ., 46, 329–337,
https://doi.org/10.1016/j.atmosenv.2011.09.062, 2012.
Amato, F., Pandolfi, M., Escrig, A., Querol, X., Alastuey, A., Pey, J.,
Perez, N., and Hopke, P. K.: Quantifying road dust resuspension in urban
environment by Multilinear Engine: a comparison with PMF2, Atmos.
Environ., 43, 2770–2780,
https://doi.org/10.1016/j.atmosenv.2009.02.039, 2009.
Amil, N., Latif, M. T., Khan, M. F., and Mohamad, M.: Seasonal variability of PM2.5 composition and sources in the Klang Valley urban-industrial environment, Atmos. Chem. Phys., 16, 5357–5381, https://doi.org/10.5194/acp-16-5357-2016, 2016.
Angelis, E. D., Carnevale, C., Turrini, E., and Volta, M.: Source
apportionment and integrated assessment modelling for air quality planning,
Electronics, 9, 1098, https://doi.org/10.3390/electronics9071098, 2020.
Arub, Z., Bhandari, S., Gani, S., Apte, J. S., Hildebrandt Ruiz, L., and Habib, G.: Air mass physiochemical characteristics over New Delhi: impacts on aerosol hygroscopicity and cloud condensation nuclei (CCN) formation, Atmos. Chem. Phys., 20, 6953–6971, https://doi.org/10.5194/acp-20-6953-2020, 2020.
Bahreini, R., Keywood, M. D., Ng, N. L., Varutbangkul, V., Gao, S., Flagan,
R. C., Seinfeld, J. H., Worsnop, D. R., and Jimenez, J. L.: Measurements of
secondary organic aerosol from oxidation of cycloalkenes, terpenes, and
m-xylene using an aerodyne aerosol mass spectrometer, Environ. Sci.
Technol., 39, 5674–5688, https://doi.org/10.1021/es048061a, 2005.
Belis, C. A., Karagulian, F., Larsen, B. R., and Hopke, P. K.: Critical
review and meta-analysis of ambient particulate matter source apportionment
using receptor models in Europe, Atmos. Environ., 69, 94–108, https://doi.org/10.1016/j.atmosenv.2012.11.009, 2013.
Belis, C. A., Larsen, B. R., Amato, F., Haddad, E., Favez, O., Harrison, R.
M., Hopke, P. K., Nava, S., Paatero, P., Prévôt, A., Quass, U., and
Vecchi, R.: European guide on air pollution source apportionment with
receptor models, https://publications.jrc.ec.europa.eu/repository/handle/JRC83309
(last access: 10 March 2022),
2014.
Belis, C. A., Karagulian, F., Amato, F., Almeida, M., Artaxo, P., Beddows,
D. C., Bernardoni, V., Bove, M. C., Carbone, S., Cesari, D., Contini, D.,
Cuccia, E., Diapouli, E., Eleftheriadis, K., Favez, O., Haddad, I. E.,
Harrison, R. M., Hellebust, S., Hovorka, J., Jang, E., Jorquera, H.,
Kammermeier, T., Karl, M., Lucarelli, F., Mooibroek, D., Nava, S.,
Nøjgaard, J. K., Paatero, P., Pandolfi, M., Perrone, M. G., Petit, J. E.,
Pietrodangelo, A., Pokorná, P., Prati, P., Prevot, A. S., Quass, U.,
Querol, X., Saraga, D., Sciare, J., Sfetsos, A., Valli, G., Vecchi, R.,
Vestenius, M., Yubero, E., and Hopke, P. K.: A new methodology to assess the
performance and uncertainty of source apportionment models II: the results
of two European intercomparison exercises, Atmos. Environ., 123,
240–250, https://doi.org/10.1016/j.atmosenv.2015.10.068, 2015.
Bertrand, A., Stefenelli, G., Bruns, E. A., Pieber, S. M., Temime-Roussel,
B., Slowik, J. G., Prévôt, A. S., Wortham, H., Haddad, I. E., and
Marchand, N.: Primary emissions and secondary aerosol production potential
from woodstoves for residential heating: influence of the stove technology
and combustion efficiency, Atmos. Environ., 169, 65–79,
https://doi.org/10.1016/j.atmosenv.2017.09.005, 2017.
Bhandari, S., Gani, S., Patel, K., Wang, D. S., Soni, P., Arub, Z., Habib, G., Apte, J. S., and Hildebrandt Ruiz, L.: Sources and atmospheric dynamics of organic aerosol in New Delhi, India: insights from receptor modeling, Atmos. Chem. Phys., 20, 735–752, https://doi.org/10.5194/acp-20-735-2020, 2020.
Bhandari, S., Arub, Z., Habib, G., Apte, J. S., and Hildebrandt Ruiz, L.: Contributions of primary sources to submicron organic aerosols in Delhi, India, Atmos. Chem. Phys., 22, 13631–13657, https://doi.org/10.5194/acp-22-13631-2022, 2022.
Bikkina, S., Andersson, A., Kirillova, E. N., Holmstrand, H., Tiwari, S.,
Srivastava, A. K., Bisht, D. S., and Örjan Gustafsson: Air quality in
megacity Delhi affected by countryside biomass burning, Nat.
Sustain., 2, 200–205, https://doi.org/10.1038/s41893-019-0219-0,
2019.
Brown, S. G., Lee, T., Norris, G. A., Roberts, P. T., Collett Jr., J. L., Paatero, P., and Worsnop, D. R.: Receptor modeling of near-roadway aerosol mass spectrometer data in Las Vegas, Nevada, with EPA PMF, Atmos. Chem. Phys., 12, 309–325, https://doi.org/10.5194/acp-12-309-2012, 2012.
Brown, S. G., Eberly, S., Paatero, P., and Norris, G. A.: Methods for
estimating uncertainty in PMF solutions: examples with ambient air and water
quality data and guidance on reporting PMF results, Sci. Total
Environm., 518–519, 626–635,
https://doi.org/10.1016/j.scitotenv.2015.01.022, 2015.
California Air Resources Board: AB 617 recommended source attribution
technical approaches,
https://ww2.arb.ca.gov/resources/documents/ab-617-recommended-source-attribution-technical-approaches (last access: 10 March 2022),
2018.
Canonaco, F., Crippa, M., Slowik, J. G., Baltensperger, U., and Prévôt, A. S. H.: SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data, Atmos. Meas. Tech., 6, 3649–3661, https://doi.org/10.5194/amt-6-3649-2013, 2013.
Canonaco, F., Slowik, J. G., Baltensperger, U., and Prévôt, A. S. H.: Seasonal differences in oxygenated organic aerosol composition: implications for emissions sources and factor analysis, Atmos. Chem. Phys., 15, 6993–7002, https://doi.org/10.5194/acp-15-6993-2015, 2015.
Canonaco, F., Tobler, A., Chen, G., Sosedova, Y., Slowik, J. G., Bozzetti, C., Daellenbach, K. R., El Haddad, I., Crippa, M., Huang, R.-J., Furger, M., Baltensperger, U., and Prévôt, A. S. H.: A new method for long-term source apportionment with time-dependent factor profiles and uncertainty assessment using SoFi Pro: application to 1 year of organic aerosol data, Atmos. Meas. Tech., 14, 923–943, https://doi.org/10.5194/amt-14-923-2021, 2021.
Carslaw, D. C. and Ropkins, K.: openair: an R package for air quality data
analysis, Environ. Modell. Softw., 27–28, 52–61,
https://doi.org/10.1016/j.envsoft.2011.09.008, 2012.
Chakraborty, J. and Basu, P.: Air Quality and Environmental Injustice in India: Connecting Particulate Pollution to Social Disadvantages, Int. J. Environ. Res. Pub. Health, 18, 304, https://doi.org/10.3390/ijerph18010304, 2021.
Crippa, M., DeCarlo, P. F., Slowik, J. G., Mohr, C., Heringa, M. F., Chirico, R., Poulain, L., Freutel, F., Sciare, J., Cozic, J., Di Marco, C. F., Elsasser, M., Nicolas, J. B., Marchand, N., Abidi, E., Wiedensohler, A., Drewnick, F., Schneider, J., Borrmann, S., Nemitz, E., Zimmermann, R., Jaffrezo, J.-L., Prévôt, A. S. H., and Baltensperger, U.: Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris, Atmos. Chem. Phys., 13, 961–981, https://doi.org/10.5194/acp-13-961-2013, 2013.
Crippa, M., Canonaco, F., Lanz, V. A., Äijälä, M., Allan, J. D., Carbone, S., Capes, G., Ceburnis, D., Dall'Osto, M., Day, D. A., DeCarlo, P. F., Ehn, M., Eriksson, A., Freney, E., Hildebrandt Ruiz, L., Hillamo, R., Jimenez, J. L., Junninen, H., Kiendler-Scharr, A., Kortelainen, A.-M., Kulmala, M., Laaksonen, A., Mensah, A. A., Mohr, C., Nemitz, E., O'Dowd, C., Ovadnevaite, J., Pandis, S. N., Petäjä, T., Poulain, L., Saarikoski, S., Sellegri, K., Swietlicki, E., Tiitta, P., Worsnop, D. R., Baltensperger, U., and Prévôt, A. S. H.: Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach, Atmos. Chem. Phys., 14, 6159–6176, https://doi.org/10.5194/acp-14-6159-2014, 2014.
Crippa, M., Solazzo, E., Huang, G., Guizzardi, D., Koffi, E., Muntean, M.,
Schieberle, C., Friedrich, R., and Janssens-Maenhout, G.: High resolution
temporal profiles in the Emissions Database for Global Atmospheric Research,
Sci. Data, 7, 1–17, 2020.
Daellenbach, K. R., Uzu, G., Jiang, J., Cassagnes, L. E., Leni, Z., Vlachou,
A., Stefenelli, G. Canonaco, F., Weber, S., Segers, A., Kuenen, J. J.,
Schaap, M., Favez, O., Albinet, A., Aksoyoglu, S., Dommen, J.,
Baltensperger, U., Geiser, M., Haddad, I. E., Jaffrezo, J. L., and
Prévôt, A. S.: Sources of particulate-matter air pollution and its
oxidative potential in Europe, Nature, 587, 414–419,
https://doi.org/10.1038/s41586-020-2902-8, 2020.
Dai, Q., Liu, B., Bi, X., Wu, J., Liang, D., Zhang, Y., Feng, Y., and Hopke,
P. K.: Dispersion normalized PMF provides insights into the significant
changes in source contributions to PM2.5 after the CoviD-19 outbreak,
Environ. Sci. Technol., 54, 9917–9927,
https://doi.org/10.1021/acs.est.0c02776, 2020.
Dallmann, T. R., Onasch, T. B., Kirchstetter, T. W., Worton, D. R., Fortner, E. C., Herndon, S. C., Wood, E. C., Franklin, J. P., Worsnop, D. R., Goldstein, A. H., and Harley, R. A.: Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer, Atmos. Chem. Phys., 14, 7585–7599, https://doi.org/10.5194/acp-14-7585-2014, 2014.
Dall'Osto, M., Paglione, M., Decesari, S., Facchini, M. C., O'Dowd, C.,
Plass-Duellmer, C., and Harrison, R. M.: On the origin of AMS “cooking
organic aerosol” at a rural site, Environ. Sci. Technol., 49,
13964–13972, https://pubs.acs.org/doi/abs/10.1021/acs.est.5b02922,
2015.
Drinovec, L., Močnik, G., Zotter, P., Prévôt, A. S. H., Ruckstuhl, C., Coz, E., Rupakheti, M., Sciare, J., Müller, T., Wiedensohler, A., and Hansen, A. D. A.: The ”dual-spot” Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation, Atmos. Meas. Tech., 8, 1965–1979, https://doi.org/10.5194/amt-8-1965-2015, 2015.
Drosatou, A. D., Skyllakou, K., Theodoritsi, G. N., and Pandis, S. N.: Positive matrix factorization of organic aerosol: insights from a chemical transport model, Atmos. Chem. Phys., 19, 973–986, https://doi.org/10.5194/acp-19-973-2019, 2019.
Environmental Protection Agency: 40 CFR Part 51 Revisions to the guideline
on air quality models: enhancements to the AERMOD dispersion modeling system
and incorporation of approaches to address ozone and fine particulate
matter,
https://www.federalregister.gov/documents/2017/01/ (last access: 10 March 2022),
2017.
Fourtziou, L., Liakakou, E., Stavroulas, I., Theodosi, C., Zarmpas, P.,
Psiloglou, B., Sciare, J., Maggos, T., Bairachtari, K., Bougiatioti, A.,
Gerasopoulos, E., Sarda-Estève, R., Bonnaire, N., and Mihalopoulos, N.:
Multi-tracer approach to characterize domestic wood burning in Athens
(Greece) during wintertime, Atmos. Environ., 148, 89–101,
https://doi.org/10.1016/j.atmosenv.2016.10.011, 2017.
Fröhlich, R., Crenn, V., Setyan, A., Belis, C. A., Canonaco, F., Favez, O., Riffault, V., Slowik, J. G., Aas, W., Aijälä, M., Alastuey, A., Artiñano, B., Bonnaire, N., Bozzetti, C., Bressi, M., Carbone, C., Coz, E., Croteau, P. L., Cubison, M. J., Esser-Gietl, J. K., Green, D. C., Gros, V., Heikkinen, L., Herrmann, H., Jayne, J. T., Lunder, C. R., Minguillón, M. C., Močnik, G., O'Dowd, C. D., Ovadnevaite, J., Petralia, E., Poulain, L., Priestman, M., Ripoll, A., Sarda-Estève, R., Wiedensohler, A., Baltensperger, U., Sciare, J., and Prévôt, A. S. H.: ACTRIS ACSM intercomparison – Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers, Atmos. Meas. Tech., 8, 2555–2576, https://doi.org/10.5194/amt-8-2555-2015, 2015.
Gani, S., Bhandari, S., Seraj, S., Wang, D. S., Patel, K., Soni, P., Arub, Z., Habib, G., Hildebrandt Ruiz, L., and Apte, J. S.: Submicron aerosol composition in the world's most polluted megacity: the Delhi Aerosol Supersite study, Atmos. Chem. Phys., 19, 6843–6859, https://doi.org/10.5194/acp-19-6843-2019, 2019.
Gani, S., Bhandari, S., Patel, K., Seraj, S., Soni, P., Arub, Z., Habib, G., Hildebrandt Ruiz, L., and Apte, J. S.: Particle number concentrations and size distribution in a polluted megacity: the Delhi Aerosol Supersite study, Atmos. Chem. Phys., 20, 8533–8549, https://doi.org/10.5194/acp-20-8533-2020, 2020.
Goodkind, A. L., Tessum, C. W., Coggins, J. S., Hill, J. D., and Marshall,
J. D.: Fine-scale damage estimates of particulate matter air pollution
reveal opportunities for location-specific mitigation of emissions,
P. Natl. Acad. Sci. USA, 116, 8775–8780,
2019.
Grolemund, G. and Wickham, H.: Dates and times made easy with lubridate,
J. Stat. Softw., 40, 1–25, 2011.
Gunantara, N. and Ai, Q.: A review of multi-objective optimization: methods
and its applications, Cog. Eng., 5, 1502242, https://doi.org/10.1080/23311916.2018.1502242, 2018.
Guttikunda, S. K. and Calori, G.: A GIS based emissions inventory at 1 km
× 1 km spatial resolution for air pollution analysis in Delhi,
India, Atmos. Environ., 67, 101–111, https://doi.org/10.1016/j.atmosenv.2012.10.040, 2013.
Hajat, A., Hsia, C., and O'Neill, M. S.: Socioeconomic disparities and air
pollution exposure: a global review, Current Environ. health Rep.,
2, 440–450, https://doi.org/10.1007/s40572-015-0069-5, 2015.
Hayfield, T. and Racine, J. S.: Nonparametric econometrics: The np package,
J. Stat. Softw., 27, 1–32, https://doi.org/10.18637/jss.v027.i05,
2008.
He, L.-Y., Lin, Y., Huang, X.-F., Guo, S., Xue, L., Su, Q., Hu, M., Luan, S.-J., and Zhang, Y.-H.: Characterization of high-resolution aerosol mass spectra of primary organic aerosol emissions from Chinese cooking and biomass burning, Atmos. Chem. Phys., 10, 11535–11543, https://doi.org/10.5194/acp-10-11535-2010, 2010.
Health Effects Institute: State of global air 2020: special report,
https://www.stateofglobalair.org/ (last access: 10 March 2022), 2020.
Heikkinen, L., Äijälä, M., Riva, M., Luoma, K., Dällenbach, K., Aalto, J., Aalto, P., Aliaga, D., Aurela, M., Keskinen, H., Makkonen, U., Rantala, P., Kulmala, M., Petäjä, T., Worsnop, D., and Ehn, M.: Long-term sub-micrometer aerosol chemical composition in the boreal forest: inter- and intra-annual variability, Atmos. Chem. Phys., 20, 3151–3180, https://doi.org/10.5194/acp-20-3151-2020, 2020.
Hemann, J. G., Brinkman, G. L., Dutton, S. J., Hannigan, M. P., Milford, J. B., and Miller, S. L.: Assessing positive matrix factorization model fit: a new method to estimate uncertainty and bias in factor contributions at the measurement time scale, Atmos. Chem. Phys., 9, 497–513, https://doi.org/10.5194/acp-9-497-2009, 2009.
Hildebrandt Ruiz, L. and Bhandari, S.: Data published in
“Source apportionment resolved by time of day for improved
deconvolution of primary source contributions to air pollution”, Texas Data Repository [data set], https://doi.org/10.18738/T8/VIRK5O, 2022.
Hopke, P. K.: Review of receptor modeling methods for source apportionment,
J. Air Waste Manage. Assoc., 66, 237–259,
https://doi.org/10.1080/10962247.2016.1140693, 2016.
Hu, W., Hu, M., Hu, W., Jimenez, J. L., Yuan, B., Chen, W., Wang, M., Wu,
Y., Chen, C., Wang, Z., Peng, J., Zeng, L., and Shao, M.: Chemical
composition, sources, and aging process of submicron aerosols in Beijing:
contrast between summer and winter, J. Geophys. Res., 121,
1955–1977, https://doi.org/10.1002/2015JD024020, 2016.
Huang, X.-F., He, L.-Y., Hu, M., Canagaratna, M. R., Sun, Y., Zhang, Q., Zhu, T., Xue, L., Zeng, L.-W., Liu, X.-G., Zhang, Y.-H., Jayne, J. T., Ng, N. L., and Worsnop, D. R.: Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer, Atmos. Chem. Phys., 10, 8933–8945, https://doi.org/10.5194/acp-10-8933-2010, 2010.
Indian National Science Academy: Seasons of Delhi,
https://www.insaindia.res.in/climate.php (last access: 10 March 2022), 2018.
Intergovernmental Panel on Climate Change, 2019: Summary for Policymakers, in: Climate Change and Land: an IPCC special report on climate change,
desertification, land degradation, sustainable land management, food
security, and greenhouse gas fluxes in terrestrial ecosystems,
https://www.ipcc.ch/srccl/chapter/summary-for-policymakers/ (last access: 10 March 2022), 2019.
Intergovernmental Panel on Climate Change, 2021: Summary for Policymakers, in: Climate Change 2021: The Physical Science Basis. Contribution of Working
Group I to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change, https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf (last access: 10 March 2022), 2021.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A.
C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y.
L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P.
I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer,
S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A.,
Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina,
K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A.
M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E.,
Baltensperger, U., and Worsnop, D. R.: Evolution of organic aerosols in the
atmosphere, Science, 326, 1525–1529,
https://science.sciencemag.org/content/326/5959/1525, 2009.
Khare, P., Machesky, J., Soto, R., He, M., Presto, A. A., and Gentner, D.
R.: Asphalt-related emissions are a major missing nontraditional source of
secondary organic aerosol precursors, Sci. Adv., 6, eabb9785,
https://doi.org/10.1126/sciadv.abb9785, 2020.
Kumar, S., Aggarwal, S. G., Gupta, P. K., and Kawamura, K.: Investigation of
the tracers for plastic-enriched waste burning aerosols, Atmos.
Environ., 108, 49–58, https://doi.org/10.1016/j.atmosenv.2015.02.066, 2015.
Lei, R., Feng, S., and Lauvaux, T.: Country-scale trends in air pollution
and fossil fuel CO2 emissions during 2001–2018: confronting the roles of
national policies and economic growth, Environ. Res. Lett., 16,
014006, https://doi.org/10.1088/1748-9326/abc9e1, 2021.
Lelieveld, J. and Crutzen, P. J.: The role of clouds in tropospheric
photochemistry, J. Atmos. Chem., 12, 229–267,
https://link.springer.com/article/10.1007/BF00048075, 1991.
Li, J., Song, Y., Mao, Y., Mao, Z., Wu, Y., Li, M., Huang, X., He, Q., and
Hu, M.: Chemical characteristics and source apportionment of PM2.5 during
the harvest season in eastern China's agricultural regions, Atmos.
Environ., 92, 442–448,
https://doi.org/10.1016/j.atmosenv.2014.04.058, 2014a.
Li, J., Wang, G., Aggarwal, S. G., Huang, Y., Ren, Y., Zhou, B., Singh, K.,
Gupta, P. K., Cao, J., and Zhang, R.: Comparison of abundances, compositions
and sources of elements, inorganic ions and organic compounds in atmospheric
aerosols from Xi'an and New Delhi, two megacities in China and India,
Sci. Total Environ., 476–477, 485–495,
https://doi.org/10.1016/j.scitotenv.2014.01.011, 2014b.
Lin, C., Ceburnis, D., Hellebust, S., Buckley, P., Wenger, J., Canonaco, F.,
Prévôt, A. S. H., Huang, R. J., O'Dowd, C., and Ovadnevaite, J.:
Characterization of primary organic aerosol from domestic wood, peat, and
coal burning in Ireland, Environ. Sci. Technol., 51,
10624–10632, https://doi.org/10.1021/acs.est.7b01926, 2017.
Liu, Q., Sun, Y., Hu, B., Liu, Z. R., Akio, S., and Wang, Y. S.: In situ
measurement of PM1 organic aerosol in Beijing winter using a high-resolution
aerosol mass spectrometer, Chinese Sci. Bull., 57, 819–826,
https://doi.org/10.1007/s11434-011-4886-0, 2012.
Liu, T., Wang, Z., Wang, X., and Chan, C. K.: Primary and secondary organic aerosol from heated cooking oil emissions, Atmos. Chem. Phys., 18, 11363–11374, https://doi.org/10.5194/acp-18-11363-2018, 2018.
Lu, J. G.: Air pollution: a systematic review of its psychological,
economic, and social effects, Curr. Opinion Psychol., 32, 52–65,
https://doi.org/10.1016/j.copsyc.2019.06.024, 2020.
Mishra, R. K., Pandey, A., Pandey, G., and Kumar, A.: The effect of odd-even
driving scheme on PM2.5 and PM1.0 emission, Transport. Res. Part D:
Transport and Environment, 67, 541–552,
https://doi.org/10.1016/j.trd.2019.01.005, 2019.
Misra, P., Imasu, R., Hayashida, S., Arbain, A. A., Avtar, R., and Takeuchi,
W.: Mapping brick kilns to support environmental impact studies around Delhi
using Sentinel-2, ISPRS Int. J. Geo-Inform., 9, 544,
https://doi.org/10.3390/ijgi9090544, 2020.
Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J., Ulbrich, I. M., Kroll, J. H., Docherty, K. S., Chhabra, P. S., Bahreini, R., Murphy, S. M., Seinfeld, J. H., Hildebrandt, L., Donahue, N. M., DeCarlo, P. F., Lanz, V. A., Prévôt, A. S. H., Dinar, E., Rudich, Y., and Worsnop, D. R.: Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry, Atmos. Chem. Phys., 10, 4625–4641, https://doi.org/10.5194/acp-10-4625-2010, 2010.
Ng, N. L., Canagaratna, M. R., Jimenez, J. L., Zhang, Q., Ulbrich, I. M., and
Worsnop, D. R.: Realtime methods for estimating organic component mass
concentrations from aerosol mass spectrometer data, Environ. Sci.
Technol., 45, 910–916, https://doi.org/10.1021/es102951k, 2011a.
Ng, N. L., Herndon, S. C., Trimborn, A., Canagaratna, M. R., Croteau, P. L.,
Onasch, T. B., Sueper, D., Worsnop, D. R., Zhang, Q., Sun, Y. L., and Jayne,
J. T.: An Aerosol Chemical Speciation Monitor (ACSM) for routine monitoring
of the composition and mass concentrations of ambient aerosol, Aerosol
Scie. Technol., 45, 780–794, https://doi.org/10.1080/02786826.2011.560211, 2011b.
Norris, G., Duvall, R., Brown, S., and Bai, S.: EPA Positive Matrix
Factorization 5.0 fundamentals and user guide, https://www.epa.gov/air-research/epa-positive-matrix-factorization-50-fundamentals-and-user-guide (last access: 10 March 2022),
2014.
Olson, M. R., Garcia, M. V., Robinson, M. A., Rooy, P. V., Dietenberger, M.
A., Bergin, M., and Schauer, J. J.: Investigation of black and brown carbon
multiple-wavelength dependent light absorption from biomass and fossil fuel
combustion source emissions, J. Geophys. Res., 120,
6682–6697, https://doi.org/10.1002/2014JD022970, 2015.
Organization for Economic Co-operation and Development: The economic cost of
air pollution: evidence from Europe, https://www.oecd-ilibrary.org/economics/the-economic-cost-of-air-pollution-evidence-from-europe_56119490-en (last access: 10 March 2022), 2020.
Paatero, P.: Least squares formulation of robust non-negative factor
analysis, Chemomet. Intell. Labor. Syst., 37, 23–35,
https://doi.org/10.1016/S0169-7439(96)00044-5, 1997.
Paatero, P.: The Multilinear Engine – a table-driven, least squares program
for solving multilinear problems, including the n-way parallel factor
analysis model, J. Comput. Graph. Stat., 8,
854–888, https://doi.org/10.1080/10618600.1999.10474853, 1999.
Paatero, P. and Hopke, P. K.: Discarding or downweighting high-noise
variables in factor analytic models, Anal. Chim. Acta, 490, 277–289,
https://doi.org/10.1016/S0003-2670(02)01643-4, 2003.
Paatero, P. and Hopke, P. K.: Rotational tools for factor analytic models,
J. Chemomet., 23, 91–100, https://doi.org/10.1002/cem.1197, 2009.
Paatero, P. and Tapper, U.: Positive matrix factorization: a non-negative
factor model with optimal utilization of error estimates of data values,
Environmetrics, 5, 111–126, https://doi.org/10.1002/env.3170050203,
1994.
Paatero, P., Hopke, P. K., Song, X. H., and Ramadan, Z.: Understanding and
controlling rotations in factor analytic models, Chemomet.
Intell. Labor. Syst., 60, 253–264,
https://doi.org/10.1016/S0169-7439(01)00200-3, 2002.
Paatero, P., Eberly, S., Brown, S. G., and Norris, G. A.: Methods for estimating uncertainty in factor analytic solutions, Atmos. Meas. Tech., 7, 781–797, https://doi.org/10.5194/amt-7-781-2014, 2014.
Pandey, A., Brauer, M., Cropper, M. L., Balakrishnan, K., Mathur, P., Dey,
S., Turkgulu, B., Kumar, G. A., Khare, M., Beig, G., Gupta, T.,
Krishnankutty, R. P., Causey, K., Cohen, A. J., Bhargava, S., Aggarwal, A.
N., Agrawal, A., Awasthi, S., Bennitt, F., Bhagwat, S., Bhanumati, P.,
Burkart, K., Chakma, J. K., Chiles, T. C., Chowdhury, S., Christopher, D.
J., Dey, S., Fisher, S., Fraumeni, B., Fuller, R., Ghoshal, A. G., Golechha,
M. J., Gupta, P. C., Gupta, R., Gupta, R., Gupta, S., Guttikunda, S.,
Hanrahan, D., Harikrishnan, S., Jeemon, P., Joshi, T. K., Kant, R., Kant,
S., Kaur, T., Koul, P. A., Kumar, P., Kumar, R., Larson, S. L., Lodha, R.,
Madhipatla, K. K., Mahesh, P. A., Malhotra, R., Managi, S., Martin, K.,
Mathai, M., Mathew, J. L., Mehrotra, R., Mohan, B. V. M., Mohan, V.,
Mukhopadhyay, S., Mutreja, P., Naik, N., Nair, S., Pandian, J. D., Pant, P.,
Perianayagam, A., Prabhakaran, D., Prabhakaran, P., Rath, G. K., Ravi, S.,
Roy, A., Sabde, Y. D., Salvi, S., Sambandam, S., Sharma, B., Sharma, M.,
Sharma, S., Sharma, R. S., Shrivastava, A., Singh, S., Singh, V., Smith, R.,
Stanaway, J. D., Taghian, G., Tandon, N., Thakur, J. S., Thomas, N. J.,
Toteja, G. S., Varghese, C. M., Venkataraman, C., Venugopal, K. N., Walker,
K. D., Watson, A. Y., Wozniak, S., Xavier, D., Yadama, G. N., Yadav, G.,
Shukla, D. K., Bekedam, H. J., Reddy, K. S., Guleria, R., Vos, T., Lim, S.
S., Dandona, R., Kumar, S., Kumar, P., Landrigan, P. J., and Dandona, L.:
Health and economic impact of air pollution in the states of India: the
Global Burden of Disease Study 2019, The Lancet Planet. Health, 5, 25–38,
https://doi.org/10.1016/S2542-5196(20)30298-9, 2020.
Park, M. B., Lee, T. J., Lee, E. S., and Kim, D. S.: Enhancing source
identification of hourly PM2.5 data in Seoul based on a dataset segmentation
scheme by positive matrix factorization (PMF), Atmos. Pollut.
Res., 10, 1042–1059, https://doi.org/10.1016/j.apr.2019.01.013,
2019.
Patel, K., Bhandari, S., Gani, S., Campmier, M. J., Kumar, P., Habib, G.,
Apte, J., and Ruiz, L. H.: Sources and dynamics of submicron aerosol during
the Autumn onset of the air pollution season in Delhi, India, ACS Earth and
Space Chemistry, https://doi.org/10.1021/acsearthspacechem.0c00340, 2021a.
Patel, K., Campmier, M. J., Bhandari, S., Baig, N., Gani, S., Habib, G.,
Apte, J. S., and Hildebrandt Ruiz, L.: Persistence of Primary and
Secondary Pollutants in Delhi: Concentrations and Composition from 2017
through the COVID Pandemic, Environ. Sci. Technol. Lett.,
8, 492–497, https://doi.org/10.1021/acs.estlett.1c00211, 2021b.
Patel, S., Sankhyan, S., Boedicker, E. K., Decarlo, P. F., Farmer, D. K.,
Goldstein, A. H., Katz, E. F., Nazaroff, W. W., Tian, Y., Vanhanen, J., and
Vance, M. E.: Indoor particulate matter during HOMEChem: concentrations,
size distributions, and exposures, Environ. Sci. Technol., 54,
7107–7116, https://doi.org/10.1021/acs.est.0c00740, 2020.
Patton, A., Politis, D. N., and White, H.: Correction to automatic
block-length selection for the dependent bootstrap by D. Politis and H.
White, Econom. Rev., 28, 372–375,
https://doi.org/10.1080/07474930802459016, 2009.
Pauraite, J., Pivoras, A., Plauškaite, K., Bycenkiene, S., Mordas, G.,
Augustaitis, A., Marozas, V., Mozgeris, G., Baumgarten, M., Matyssek, R.,
and Ulevicius, V.: Characterization of aerosol mass spectra responses to
temperature over a forest site in Lithuania, J. Aerosol Sci.,
133, 56–65, https://doi.org/10.1016/j.jaerosci.2019.03.010, 2019.
Politis, D. N. and White, H.: Automatic block-length selection for the
dependent bootstrap, Econom. Rev., 23, 53–70, https://doi.org/10.1081/ETC-120028836, 2004.
Rai, P., Furger, M., Slowik, J. G., Canonaco, F., Fröhlich, R., Hüglin, C., Minguillón, M. C., Petterson, K., Baltensperger, U., and Prévôt, A. S. H.: Source apportionment of highly time-resolved elements during a firework episode from a rural freeway site in Switzerland, Atmos. Chem. Phys., 20, 1657–1674, https://doi.org/10.5194/acp-20-1657-2020, 2020.
R Core Team: R: a language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/ (last access: 10 March 2022), 2019.
Ramadan, Z., Eickhout, B., Song, X. H., Buydens, L. M., and Hopke, P. K.:
Comparison of Positive Matrix Factorization and Multilinear Engine for the
source apportionment of particulate pollutants, Chemomet. Intellig.
Labor. Syst., 66, 15–28,
https://doi.org/10.1016/S0169-7439(02)00160-0, 2003.
Reyes-Villegas, E., Green, D. C., Priestman, M., Canonaco, F., Coe, H., Prévôt, A. S. H., and Allan, J. D.: Organic aerosol source apportionment in London 2013 with ME-2: exploring the solution space with annual and seasonal analysis, Atmos. Chem. Phys., 16, 15545–15559, https://doi.org/10.5194/acp-16-15545-2016, 2016.
Reyes-Villegas, E., Priestley, M., Ting, Y.-C., Haslett, S., Bannan, T., Le Breton, M., Williams, P. I., Bacak, A., Flynn, M. J., Coe, H., Percival, C., and Allan, J. D.: Simultaneous aerosol mass spectrometry and chemical ionisation mass spectrometry measurements during a biomass burning event in the UK: insights into nitrate chemistry, Atmos. Chem. Phys., 18, 4093–4111, https://doi.org/10.5194/acp-18-4093-2018, 2018.
Robinson, E. S., Gu, P., Ye, Q., Li, H. Z., Shah, R. U., Apte, J. S.,
Robinson, A. L., and Presto, A. A.: Restaurant impacts on outdoor air
quality: elevated organic aerosol mass from restaurant cooking with
neighborhood-scale plume extents, Environ. Sci. Technol., 52,
9285–9294, https://pubs.acs.org/doi/abs/10.1021/acs.est.8b02654, 2018.
Sandradewi, J., Prévôt, A. S., Szidat, S., Perron, N., Alfarra, M.
R., Lanz, V. A., Weingartner, E., and Baltensperger, U. R.: Using aerosol
light abosrption measurements for the quantitative determination of wood
burning and traffic emission contribution to particulate matter,
Environ. Sci. Technol., 42, 3316–3323,
https://doi.org/10.1021/es702253m, 2008.
Schlag, P., Kiendler-Scharr, A., Blom, M. J., Canonaco, F., Henzing, J. S., Moerman, M., Prévôt, A. S. H., and Holzinger, R.: Aerosol source apportionment from 1-year measurements at the CESAR tower in Cabauw, the Netherlands, Atmos. Chem. Phys., 16, 8831–8847, https://doi.org/10.5194/acp-16-8831-2016, 2016.
Schneider, J., Weimer, S., Drewnick, F., Borrmann, S., Helas, G., Gwaze, P.,
Schmid, O., Andreae, M. O., and Kirchner, U.: Mass spectrometric analysis
and aerodynamic properties of various types of combustion-related aerosol
particles, Int. J. Mass Spectro., 258, 37–49,
https://doi.org/10.1016/j.ijms.2006.07.008, 2006.
Schraufnagel, D. E., Balmes, J. R., Cowl, C. T., Matteis, S. D., Jung, S.
H., Mortimer, K., Perez Padilla, R., Rice, M. B., Riojas-Rodriguez, H.,
Sood, A., Thurston, G. D., To, T., Vanker, A., and Wuebbles, D. J.: Air
pollution and noncommunicable diseases: a review by the Forum of
International Respiratory Societies' Environmental Committee, part 1: the
damaging effects of air pollution, Chest, 155, 409–416,
https://doi.org/10.1016/j.chest.2018.10.042, 2019.
Shaddick, G., Thomas, M. L., Mudu, P., Ruggeri, G., and Gumy, S.: Half the
world's population are exposed to increasing air pollution, npj Clim.
Atmos. Sci., 3, 1–5, https://doi.org/10.1038/s41612-020-0124-2,
2020.
Stavroulas, I., Bougiatioti, A., Grivas, G., Paraskevopoulou, D., Tsagkaraki, M., Zarmpas, P., Liakakou, E., Gerasopoulos, E., and Mihalopoulos, N.: Sources and processes that control the submicron organic aerosol composition in an urban Mediterranean environment (Athens): a high temporal-resolution chemical composition measurement study, Atmos. Chem. Phys., 19, 901–919, https://doi.org/10.5194/acp-19-901-2019, 2019.
Sun, Y.-L., Zhang, Q., Schwab, J. J., Demerjian, K. L., Chen, W.-N., Bae, M.-S., Hung, H.-M., Hogrefe, O., Frank, B., Rattigan, O. V., and Lin, Y.-C.: Characterization of the sources and processes of organic and inorganic aerosols in New York city with a high-resolution time-of-flight aerosol mass apectrometer, Atmos. Chem. Phys., 11, 1581–1602, https://doi.org/10.5194/acp-11-1581-2011, 2011.
Sun, Y. L., Wang, Z. F., Fu, P. Q., Yang, T., Jiang, Q., Dong, H. B., Li, J., and Jia, J. J.: Aerosol composition, sources and processes during wintertime in Beijing, China, Atmos. Chem. Phys., 13, 4577–4592, https://doi.org/10.5194/acp-13-4577-2013, 2013.
Tessum, C. W., Apte, J. S., Goodkind, A. L., Muller, N. Z., Mullins, K. A.,
Paolella, D. A., Polasky, S., Springer, N. P., Thakrar, S. K., Marshall, J.
D., and Hill, J. D.: Inequity in consumption of goods and services adds to
racial-ethnic disparities in air pollution exposure, P.
Natl. Acad. Sci. USA, 116,
6001–6006, https://doi.org/10.1073/pnas.1818859116, 2019.
Thakrar, S. K., Balasubramanian, S., Adams, P. J., Azevedo, I. M., Muller,
N. Z., Pandis, S. N., Polasky, S., Pope, C. A., Robinson, A. L., Apte, J.
S., Tessum, C. W., Marshall, J. D., and Hill, J. D.: Reducing mortality from
air pollution in the United States by targeting specific emission sources,
Environ. Sci. Technol. Lett., 7, 639–645,
https://doi.org/10.1021/acs.estlett.0c00424, 2020.
Thamban, N. M., Tripathi, S. N., Moosakutty, S. P., Kuntamukkala, P., and
Kanawade, V. P.: Internally mixed black carbon in the Indo-Gangetic Plain
and its effect on absorption enhancement, Atmos. Res., 197,
211–223, https://doi.org/10.1016/j.atmosres.2017.07.007, 2017.
Thind, M. P., Tessum, C. W., Azevedo, I. L., and Marshall, J. D.: Fine
particulate air pollution from electricity generation in the US: health
impacts by race, income, and geography, Environ. Sci.
Technol., 53, 14010–14019,
https://pubs.acs.org/doi/abs/10.1021/acs.est.9b02527, 2019.
Tian, J., Wang, Q., Ni, H., Wang, M., Zhou, Y., Han, Y., Shen, Z.,
Pongpiachan, S., Zhang, N., Zhao, Z., Zhang, Q., Zhang, Y., Long, X., and
Cao, J.: Emission characteristics of primary brown carbon absorption from
biomass and coal burning: development of an optical emission inventory for
China, J. Geophys. Res.-Atmos., 124, 1879–1893,
https://onlinelibrary.wiley.com/doi/abs/10.1029/2018JD029352, 2019.
Tian, Y., Xiao, Z., Wang, H., Peng, X., Guan, L., Huangfu, Y., Shi, G.,
Chen, K., Bi, X., and Feng, Y.: Influence of the sampling period and time
resolution on the PM source apportionment: study based on the high
time-resolution data and long-term daily data, Atmos. Environ., 165,
301–309, https://doi.org/10.1016/j.atmosenv.2017.07.003, 2017.
Tobler, A., Bhattu, D., Canonaco, F., Lalchandani, V., Shukla, A., Thamban,
N. M., Mishra, S., Srivastava, A. K., Bisht, D. S., Tiwari, S., Singh, S.,
Mocnik, G., Baltensperger, U., Tripathi, S. N., Slowik, J. G., and
Prévôt, A. S.: Chemical characterization of PM2.5 and source
apportionment of organic aerosol in New Delhi, India, Sci. Total
Environ., 745, 140924, https://doi.org/10.1016/j.scitotenv.2020.140924, 2020.
Tschofen, P., Azevedo, I. L., and Muller, N. Z.: Fine particulate matter
damages and value added in the US economy, P. Natl.
Acad. Sci. USA, 116, 19857–19862, https://doi.org/10.1073/pnas.1905030116, 2019.
Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L.: Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data, Atmos. Chem. Phys., 9, 2891–2918, https://doi.org/10.5194/acp-9-2891-2009, 2009.
Ulbrich, I. M., Handschy, A., Lechner, M., and Jimenez, J.: AMS Spectral
Database, http://cires.colorado.edu/jimenez-group/AMSsd/ (last access:
25 April 2019), 2017.
Ulbrich, I. M., Handschy, A., Lechner, M., and Jimenez, J.: High-Resolution
AMS Spectral Database, http://cires.colorado.edu/jimenez-group/HRAMSsd/
(last access: 25 April 2019), 2018.
Venables, W. N. and Ripley, B. D.: Modern applied statistics with S,
Springer, New York, fourth Edn., http://www.stats.ox.ac.uk/pub/MASS4 (last access: 10 March 2022),
2002.
Venturini, E., Vassura, I., Raffo, S., Ferroni, L., Bernardi, E., and
Passarini, F.: Source apportionment and location by selective wind sampling
and Positive Matrix Factorization, Environ. Sci. Pollut.
Res., 21, 11634–11648, https://doi.org/10.1007/s11356-014-2507-6, 2014.
Wang, Q., Qiao, L., Zhou, M., Zhu, S., Griffith, S., Li, L., and Yu, J. Z.:
Source apportionment of PM2.5 using hourly measurements of elemental tracers
and major constituents in an urban environment: investigation of
time-resolution influence, J. Geophys. Res.-Atmos.,
123, 5284–5300, https://doi.org/10.1029/2017JD027877, 2018.
Wang, Y., Hopke, P. K., Rattigan, O. V., Xia, X., Chalupa, D. C., and Utell,
M. J.: Characterization of residential wood combustion particles using the
two-wavelength aethalometer, Environ. Sci. Technol., 45,
7387–7393, https://doi.org/10.1021/es2013984, 2011.
Wayland, R. A.: EPA modeling guidance for demonstrating attainment of air
quality goals for ozone, PM2.5, and regional haze,
https://www.epa.gov/scram/state-implementation-plan-sip-attainment-demonstration-guidance (last access: 10 March 2022),
2018.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D.,
François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M.,
Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J.,
Robinson, D., Seidel, D. P., Spinu, V., Takahashi, K., Vaughan, D., Wilke,
C., Woo, K., and Yutani, H.: Welcome to the tidyverse, Journal of Open
Source Software, 4, 1686, https://doi.org/10.21105/joss.01686),
2019.
Williams, B. J., Goldstein, A. H., Kreisberg, N. M., Hering, S. V., Worsnop, D. R., Ulbrich, I. M., Docherty, K. S., and Jimenez, J. L.: Major components of atmospheric organic aerosol in southern California as determined by hourly measurements of source marker compounds, Atmos. Chem. Phys., 10, 11577–11603, https://doi.org/10.5194/acp-10-11577-2010, 2010.
World Health Organization: AAP air quality database, http://www.who.int/phe/health_topics/outdoorair/databases/cities/en/
(last access: 20 December 2020), 2018.
Xie, M., Barsanti, K. C., Hannigan, M. P., Dutton, S. J., and Vedal, S.: Positive matrix factorization of PM2.5 – eliminating the effects of gas/particle partitioning of semivolatile organic compounds, Atmos. Chem. Phys., 13, 7381–7393, https://doi.org/10.5194/acp-13-7381-2013, 2013a.
Xie, M., Piedrahita, R., Dutton, S. J., Milford, J. B., Hemann, J. G., Peel,
J. L., Miller, S. L., Kim, S. Y., Vedal, S., Sheppard, L., and Hannigan, M.
P.: Positive matrix factorization of a 32-month series of daily PM2.5
speciation data with incorporation of temperature stratification,
Atmos. Environ., 65, 11–20,
https://doi.org/10.1016/j.atmosenv.2012.09.034, 2013b.
Zhang, K. and Batterman, S.: Air pollution and health risks due to vehicle
traffic, Sci. Total Environ., 450–451, 307–316,
https://doi.org/10.1016/j.scitotenv.2013.01.074, 2013.
Zhang, Q., Alfarra, M. R., Worsnop, D. R., Allan, J. D., Coe, H.,
Canagaratna, M. R., and Jimenez, J. L.: Deconvolution and quantification of
hydrocarbon-like and oxygenated organic aerosols based on aerosol mass
spectrometry, Environ. Sci. Technol., 39, 4938–4952,
https://pubs.acs.org/doi/abs/10.1021/es048568l, 2005.
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Ulbrich, I. M., Ng, N. L.,
Worsnop, D. R., and Sun, Y.: Understanding atmospheric organic aerosols via
factor analysis of aerosol mass spectrometry: a review, Analyt.
Bioanalyt. Chem., 401, 3045–3067,
https://link.springer.com/article/10.1007/s00216-011-5355-y, 2011.
Zhang, Y., Favez, O., Petit, J.-E., Canonaco, F., Truong, F., Bonnaire, N., Crenn, V., Amodeo, T., Prévôt, A. S. H., Sciare, J., Gros, V., and Albinet, A.: Six-year source apportionment of submicron organic aerosols from near-continuous highly time-resolved measurements at SIRTA (Paris area, France), Atmos. Chem. Phys., 19, 14755–14776, https://doi.org/10.5194/acp-19-14755-2019, 2019.
Zhang, Z., Zhu, W., Hu, M., Wang, H., Chen, Z., Shen, R., Yu, Y., Tan, R.,
and Guo, S.: Secondary organic aerosol from typical Chinese domestic cooking
emissions, Environ. Sci. Technol. Lett., 8, 1, https://doi.org/10.1021/acs.estlett.0c00754, 2020.
Zheng, Y., Cheng, X., Liao, K., Li, Y., Li, Y. J., Huang, R.-J., Hu, W., Liu, Y., Zhu, T., Chen, S., Zeng, L., Worsnop, D. R., and Chen, Q.: Characterization of anthropogenic organic aerosols by TOF-ACSM with the new capture vaporizer, Atmos. Meas. Tech., 13, 2457–2472, https://doi.org/10.5194/amt-13-2457-2020, 2020.
Zhu, Q., Huang, X.-F., Cao, L.-M., Wei, L.-T., Zhang, B., He, L.-Y., Elser, M., Canonaco, F., Slowik, J. G., Bozzetti, C., El-Haddad, I., and Prévôt, A. S. H.: Improved source apportionment of organic aerosols in complex urban air pollution using the multilinear engine (ME-2), Atmos. Meas. Tech., 11, 1049–1060, https://doi.org/10.5194/amt-11-1049-2018, 2018.
Short summary
We present a new method to conduct source apportionment resolved by time of day using the underlying approach of positive matrix factorization. We report results for four example time periods in two seasons (winter and monsoon 2017) in Delhi, India. Compared to the traditional approach, we extract a larger number of factors that represent the expected sources of primary organic aerosol. This method can capture diurnal time series patterns of sources at low computational cost.
We present a new method to conduct source apportionment resolved by time of day using the...