Articles | Volume 15, issue 1
https://doi.org/10.5194/amt-15-95-2022
https://doi.org/10.5194/amt-15-95-2022
Research article
 | 
05 Jan 2022
Research article |  | 05 Jan 2022

Air temperature equation derived from sonic temperature and water vapor mixing ratio for turbulent airflow sampled through closed-path eddy-covariance flux systems

Xinhua Zhou, Tian Gao, Eugene S. Takle, Xiaojie Zhen, Andrew E. Suyker, Tala Awada, Jane Okalebo, and Jiaojun Zhu

Related authors

Field assessments on impact of CO2 concentration fluctuations along with complex terrain flows on the estimation of the net ecosystem exchange of temperate forests
Dexiong Teng, Jiaojun Zhu, Tian Gao, Fengyuan Yu, Yuan Zhu, Xinhua Zhou, and Bai Yang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-6,https://doi.org/10.5194/amt-2024-6, 2024
Revised manuscript under review for AMT
Short summary
Accuracies of field CO2–H2O data from open-path eddy-covariance flux systems: assessment based on atmospheric physics and biological environment
Xinhua Zhou, Tian Gao, Ning Zheng, Bai Yang, Yanlei Li, Fengyuan Yu, Tala Awada, and Jiaojun Zhu
Geosci. Instrum. Method. Data Syst., 11, 335–357, https://doi.org/10.5194/gi-11-335-2022,https://doi.org/10.5194/gi-11-335-2022, 2022
Short summary
Recovery of the three-dimensional wind and sonic temperature data from a physically deformed sonic anemometer
Xinhua Zhou, Qinghua Yang, Xiaojie Zhen, Yubin Li, Guanghua Hao, Hui Shen, Tian Gao, Yirong Sun, and Ning Zheng
Atmos. Meas. Tech., 11, 5981–6002, https://doi.org/10.5194/amt-11-5981-2018,https://doi.org/10.5194/amt-11-5981-2018, 2018
Short summary
An eddy-covariance system with an innovative vortex intake for measuring carbon dioxide and water fluxes of ecosystems
Jingyong Ma, Tianshan Zha, Xin Jia, Steve Sargent, Rex Burgon, Charles P.-A. Bourque, Xinhua Zhou, Peng Liu, Yujie Bai, and Yajuan Wu
Atmos. Meas. Tech., 10, 1259–1267, https://doi.org/10.5194/amt-10-1259-2017,https://doi.org/10.5194/amt-10-1259-2017, 2017
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Hybrid instrument network optimization for air quality monitoring
Nishant Ajnoti, Hemant Gehlot, and Sachchida Nand Tripathi
Atmos. Meas. Tech., 17, 1651–1664, https://doi.org/10.5194/amt-17-1651-2024,https://doi.org/10.5194/amt-17-1651-2024, 2024
Short summary
Objective identification of pressure wave events from networks of 1 Hz, high-precision sensors
Luke R. Allen, Sandra E. Yuter, Matthew A. Miller, and Laura M. Tomkins
Atmos. Meas. Tech., 17, 113–134, https://doi.org/10.5194/amt-17-113-2024,https://doi.org/10.5194/amt-17-113-2024, 2024
Short summary
Adjustment of 1 min rain gauge time series using co-located drop size distribution and wind speed measurements
Arianna Cauteruccio, Mattia Stagnaro, Luca G. Lanza, and Pak-Wai Chan
Atmos. Meas. Tech., 16, 4155–4163, https://doi.org/10.5194/amt-16-4155-2023,https://doi.org/10.5194/amt-16-4155-2023, 2023
Short summary
Hailstorm Events in the Central Andes of Peru: Insights from Historical Data and Radar Microphysics
Jairo Michael Valdivia, David Alejandro Guizado, Elver Villalobos-Puma, José Luis Flores-Rojas, Stephany Magaly Callañaupa, and Yamina Fey Silva-Vidal
EGUsphere, https://doi.org/10.5194/egusphere-2023-997,https://doi.org/10.5194/egusphere-2023-997, 2023
Short summary
Estimating turbulent energy flux vertical profiles from uncrewed aircraft system measurements: exemplary results for the MOSAiC campaign
Ulrike Egerer, John J. Cassano, Matthew D. Shupe, Gijs de Boer, Dale Lawrence, Abhiram Doddi, Holger Siebert, Gina Jozef, Radiance Calmer, Jonathan Hamilton, Christian Pilz, and Michael Lonardi
Atmos. Meas. Tech., 16, 2297–2317, https://doi.org/10.5194/amt-16-2297-2023,https://doi.org/10.5194/amt-16-2297-2023, 2023
Short summary

Cited articles

AmeriFlux: Data Variables, Lawrence Berkeley National Laboratory, 1–12, available at: http://ameriflux.lbl.gov/data/aboutdata/data-variables/ (last access: 11 December 2021), 2018. 
Apogee Instruments Inc.: Owner's Manual: Aspirated Radiation Shield (model: TS-100), Logan, UT, USA, 19 pp., 2013. 
Aubinet, M., Vesala, T., and Papale, D. (Eds.): Eddy Covariance: A Practice Guide to Measurement and Data Analysis, Springer, NY, USA, 438 pp., https://doi.org/10.1007/978-94-007-2351-1, 2012. 
Barrett, E. W. and Suomi, V. E.: Preliminary report on temperature measurement by sonic means, J. Atmos. Sci., 6, 273–276, https://doi.org/10.1175/1520-0469(1949)006<0273:PROTMB>2.0.CO;2, 1949. 
Blonquist, J. M. and Bugbee, B.: Air temperature, in: Agroclimatology: Linking Agriculture to Climate, Agronomy Monographs, edited by: Hatfield, J., Sivakumar, M., and Prueger, J., American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc., Madison, WI, USA, https//doi.org/10.2134/agronmonogr60.2016.0012, 2018. 
Download
Short summary
Air temperature from sonic temperature and air moisture has been used without an exact equation. We present an exact equation of such air temperature for closed-path eddy-covariance flux measurements. Air temperature from this equation is equivalent to sonic temperature in its accuracy and frequency response. It is a choice for advanced flux topics because, with it, thermodynamic variables in the flux measurements can be temporally synchronized and spatially matched at measurement scales.