Articles | Volume 17, issue 1
https://doi.org/10.5194/amt-17-299-2024
https://doi.org/10.5194/amt-17-299-2024
Research article
 | 
16 Jan 2024
Research article |  | 16 Jan 2024

Machine learning approaches for automatic classification of single-particle mass spectrometry data

Guanzhong Wang, Heinrich Ruser, Julian Schade, Johannes Passig, Thomas Adam, Günther Dollinger, and Ralf Zimmermann

Related authors

A solid-state IR laser for two-step desorption/ionization processes in single-particle mass spectrometry
Marco Schmidt, Haseeb Hakkim, Lukas Anders, Aleksandrs Kalamašņikovs, Thomas Kröger-Badge, Robert Irsig, Norbert Graf, Reinhard Kelnberger, Johannes Passig, and Ralf Zimmermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2587,https://doi.org/10.5194/egusphere-2024-2587, 2024
Short summary
Contribution of brown carbon to light absorption in emissions of European residential biomass combustion appliances
Satish Basnet, Anni Hartikainen, Aki Virkkula, Pasi Yli-Pirilä, Miika Kortelainen, Heikki Suhonen, Laura Kilpeläinen, Mika Ihalainen, Sampsa Väätäinen, Juho Louhisalmi, Markus Somero, Jarkko Tissari, Gert Jakobi, Ralf Zimmermann, Antti Kilpeläinen, and Olli Sippula
Atmos. Chem. Phys., 24, 3197–3215, https://doi.org/10.5194/acp-24-3197-2024,https://doi.org/10.5194/acp-24-3197-2024, 2024
Short summary
Are reactive oxygen species (ROS) a suitable metric to predict toxicity of carbonaceous aerosol particles?
Zhi-Hui Zhang, Elena Hartner, Battist Utinger, Benjamin Gfeller, Andreas Paul, Martin Sklorz, Hendryk Czech, Bin Xia Yang, Xin Yi Su, Gert Jakobi, Jürgen Orasche, Jürgen Schnelle-Kreis, Seongho Jeong, Thomas Gröger, Michal Pardo, Thorsten Hohaus, Thomas Adam, Astrid Kiendler-Scharr, Yinon Rudich, Ralf Zimmermann, and Markus Kalberer
Atmos. Chem. Phys., 22, 1793–1809, https://doi.org/10.5194/acp-22-1793-2022,https://doi.org/10.5194/acp-22-1793-2022, 2022
Short summary
Single-particle characterization of polycyclic aromatic hydrocarbons in background air in northern Europe
Johannes Passig, Julian Schade, Robert Irsig, Thomas Kröger-Badge, Hendryk Czech, Thomas Adam, Henrik Fallgren, Jana Moldanova, Martin Sklorz, Thorsten Streibel, and Ralf Zimmermann
Atmos. Chem. Phys., 22, 1495–1514, https://doi.org/10.5194/acp-22-1495-2022,https://doi.org/10.5194/acp-22-1495-2022, 2022
Short summary
Analysis of mobile monitoring data from the microAeth® MA200 for measuring changes in black carbon on the roadside in Augsburg
Xiansheng Liu, Hadiatullah Hadiatullah, Xun Zhang, L. Drew Hill, Andrew H. A. White, Jürgen Schnelle-Kreis, Jan Bendl, Gert Jakobi, Brigitte Schloter-Hai, and Ralf Zimmermann
Atmos. Meas. Tech., 14, 5139–5151, https://doi.org/10.5194/amt-14-5139-2021,https://doi.org/10.5194/amt-14-5139-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Spatial analysis of PM2.5 using a concentration similarity index applied to air quality sensor networks
Rósín Byrne, John C. Wenger, and Stig Hellebust
Atmos. Meas. Tech., 17, 5129–5146, https://doi.org/10.5194/amt-17-5129-2024,https://doi.org/10.5194/amt-17-5129-2024, 2024
Short summary
A novel probabilistic source apportionment approach: Bayesian auto-correlated matrix factorization
Anton Rusanen, Anton Björklund, Manousos I. Manousakas, Jianhui Jiang, Markku T. Kulmala, Kai Puolamäki, and Kaspar R. Daellenbach
Atmos. Meas. Tech., 17, 1251–1277, https://doi.org/10.5194/amt-17-1251-2024,https://doi.org/10.5194/amt-17-1251-2024, 2024
Short summary
Towards a hygroscopic growth calibration for low-cost PM2.5 sensors
Milan Y. Patel, Pietro F. Vannucci, Jinsol Kim, William M. Berelson, and Ronald C. Cohen
Atmos. Meas. Tech., 17, 1051–1060, https://doi.org/10.5194/amt-17-1051-2024,https://doi.org/10.5194/amt-17-1051-2024, 2024
Short summary
Enhancing characterization of organic nitrogen components in aerosols and droplets using high-resolution aerosol mass spectrometry
Xinlei Ge, Yele Sun, Justin Trousdell, Mindong Chen, and Qi Zhang
Atmos. Meas. Tech., 17, 423–439, https://doi.org/10.5194/amt-17-423-2024,https://doi.org/10.5194/amt-17-423-2024, 2024
Short summary
A searchable database and mass spectral comparison tool for the Aerosol Mass Spectrometer (AMS) and the Aerosol Chemical Speciation Monitor (ACSM)
Sohyeon Jeon, Michael J. Walker, Donna T. Sueper, Douglas A. Day, Anne V. Handschy, Jose L. Jimenez, and Brent J. Williams
Atmos. Meas. Tech., 16, 6075–6095, https://doi.org/10.5194/amt-16-6075-2023,https://doi.org/10.5194/amt-16-6075-2023, 2023
Short summary

Cited articles

Anderson, B. J., Musicant, D. R., Ritz, A. M., Ault, A., Gross, D. S., Yuen, M., and Gälli, M.: User-friendly clustering for atmospheric data analysis, Carleton College, Northfield, MN, USA, 2005. 
Ankerst, M., Breunig, M. M., Kriegel, H.-P., and Sander, J.: OPTICS: Ordering points to identify the clustering structure, Sigmod Rec., 28, 49–60, https://doi.org/10.1145/304181.304187, 1999. 
Arndt, J., Healy, R. M., Setyan, A., Flament, P., Deboudt, K., Riffault, V., Alleman, L. Y., Mbengue, S., and Wenger, J. C.: Characterization and source apportionment of single particles from metalworking activities, Environ. Pollut., 270, 116078, https://doi.org/10.1016/j.envpol.2020.116078, 2021. 
Ault, A. P., Moore, M. J., Furutani, H., and Prather, K. A.: Impact of Emissions from the Los Angeles Port Region on San Diego Air Quality during Regional Transport Events, Environ. Sci. Technol., 43, 3500–3506, https://doi.org/10.1021/es8018918, 2009. 
Awad, M. and Khanna, R.: Efficient learning machines: theories, concepts, and applications for engineers and system designers, Berkeley, CA Apress Berkeley, CA, https://doi.org/10.1007/978-1-4302-5990-9, 2015. 
Download
Short summary
This research aims to develop a novel warning system for the real-time monitoring of pollutants in the atmosphere. The system is capable of sampling and investigating airborne aerosol particles on-site, utilizing artificial intelligence to learn their chemical signatures and to classify them in real time. We applied single-particle mass spectrometry for analyzing the chemical composition of aerosol particles and suggest several supervised algorithms for highly reliable automatic classification.