Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, 2001. a
Cavaliere, A., Carotenuto, F., Di Gennaro, F., Gioli, B., Gualtieri, G., Martelli, F., Matese, A., Toscano, P., Vagnoli, C., and Zaldei, A.: Development of Low-Cost Air Quality Stations for Next Generation Monitoring Networks: Calibration and Validation of PM
2.5 and PM
10 Sensors, Sensors-Basel, 18, 2843,
https://doi.org/10.3390/s18092843, 2018.
a
Crilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R., Young, S., Lewis, A. C., and Pope, F. D.: Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring, Atmos. Meas. Tech., 11, 709–720,
https://doi.org/10.5194/amt-11-709-2018, 2018.
a,
b
Crilley, L. R., Singh, A., Kramer, L. J., Shaw, M. D., Alam, M. S., Apte, J. S., Bloss, W. J., Hildebrandt Ruiz, L., Fu, P., Fu, W., Gani, S., Gatari, M., Ilyinskaya, E., Lewis, A. C., Ng'ang'a, D., Sun, Y., Whitty, R. C. W., Yue, S., Young, S., and Pope, F. D.: Effect of aerosol composition on the performance of low-cost optical particle counter correction factors, Atmos. Meas. Tech., 13, 1181–1193,
https://doi.org/10.5194/amt-13-1181-2020, 2020.
a
Evans, J., van Donkelaar A., Martin, R. V., Burnett, R., Rainham, D. G., Birkett, N. J., and Krewski, D.: Estimates of globalmortality attributable to particulate air pollution using satellite imagery, Environ. Res., 120, 33–42, 2013. a
Feenstra, B., Papapostolou, V., Hasheminassab, S., Zhang, H., Boghossian, B. D., Cocker, D., and Polidori, A.: Performance evaluation of twelve low-cost PM
2.5 sensors at an ambient air monitoring site, Atmos. Environ., 216, 116946,
https://doi.org/10.1016/j.atmosenv.2019.116946, 2019.
a
Feinberg, S., Williams, R., Hagler, G. S. W., Rickard, J., Brown, R., Garver, D., Harshfield, G., Stauffer, P., Mattson, E., Judge, R., and Garvey, S.: Long-term evaluation of air sensor technology under ambient conditions in Denver, Colorado, Atmos. Meas. Tech., 11, 4605–4615,
https://doi.org/10.5194/amt-11-4605-2018, 2018.
a,
b
Gao, M., Cao, J., and Seto, E.: A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM
2.5 in Xi'an, China, Environ. Pollut., 199, 56–65, 2015.
a,
b
Hodan, W. H. and Barnard, W. R.: Evaluating the Contribution of PM
2.5 Precursor Gases and Re-entrained Road Emissions to Mobile Source PM
2.5 Particulate Matter Emissions, MACTEC Federal Programs,
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=29f2923b16b1e496233b6de6fe2b1bb13261ba39 (last access: 3 April 2024), 2004. a
Holstius, D. M., Pillarisetti, A., Smith, K. R., and Seto, E.: Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California, Atmos. Meas. Tech., 7, 1121–1131,
https://doi.org/10.5194/amt-7-1121-2014, 2014.
a,
b
Hua, J., Zhang, Y., Foy, B., Mei, X., Shang, J., Zhang, Y., Sulaymon, I. D., and Zhou, D.: Improved PM
2.5 concentration estimates from low-cost sensors using calibration models categorized by relative humidity, Aerosol Sci. Tech., 55, 600–613,
https://doi.org/10.1080/02786826.2021.1873911, 2021.
a,
b
Jayaratne, R., Liu, X., Thai, P., Dunbabin, M., and Morawska, L.: The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog, Atmos. Meas. Tech., 11, 4883–4890,
https://doi.org/10.5194/amt-11-4883-2018, 2018.
a
Jiao, W., Hagler, G., Williams, R., Sharpe, R., Brown, R., Garver, D., Judge, R., Caudill, M., Rickard, J., Davis, M., Weinstock, L., Zimmer-Dauphinee, S., and Buckley, K.: Community Air Sensor Network (CAIRSENSE) project: evaluation of low-cost sensor performance in a suburban environment in the southeastern United States, Atmos. Meas. Tech., 9, 5281–5292,
https://doi.org/10.5194/amt-9-5281-2016, 2016.
a
Johnson, K., Bergin, M., Russell, A., and Hagler, G.: Field Test of Several Low-Cost Particulate Matter Sensors in High and Low Concentration Urban Environments, Aerosol Air. Qual. Res., 18, 565–578, 2018. a
Kelly, K. E., Whitaker, J., Petty, A., Widmer, C., Dybwad, A., Sleeth, D., Martin, R., and Butterfield, A.: Ambient and laboratory evaluation of a low-cost particulate matter sensor, Environ. Pollut., 221, 491–500, 2017.
a,
b,
c
Liu, H.-Y, Bartonova, A., Schindler, M., Sharma, M., Behera, S. N., Katiyar, K., and Dikshit, O.: Respiratory Disease in Relation to Outdoor Air Pollution in Kanpur, India, Arch. Environ. Occup. H., 68, 204–217, 2013. a
Liu, H.-Y., Dunea, D., Iordache, S., and Pohoata, A.: A Review of Airborne Particulate Matter Effects on Young Children's Respiratory Symptoms and Diseases, Atmosphere, 9, 150,
https://doi.org/10.3390/atmos9040150, 2018.
a
Liu, H.-Y., Schneider, P., Haugen, R., and Vogt, M.: Performance Assessment of a Low-Cost PM
2.5 Sensor for a near Four-Month Period in Oslo, Norway, Atmosphere, 10, 41,
https://doi.org/10.3390/atmos10020041, 2019.
a
Magi, B. I., Cupini, C., Francis, J., Green, M., and Hauser, C.: Evaluation of PM
2.5 measured in an urban setting using a lowcost optical particle counter and a Federal Equivalent Method Beta Attenuation Monitor, Aerosol Sci. Tech., 54, 147–159, 2019. a
Malings, C., Tanzer, R., Hauryliuk, A., Saha, P. K., Robinson, A. L., Presto, A. A., and Subramanian, R.: Fine particle mass monitoring with low-cost sensors: Corrections and longterm performance evaluation, Aerosol Sci. Tech., 54, 160–174, 2020.
a,
b
Nilson, B., Jackson, P. L., Schiller, C. L., and Parsons, M. T.: Development and evaluation of correction models for a low-cost fine particulate matter monitor, Atmos. Meas. Tech., 15, 3315–3328,
https://doi.org/10.5194/amt-15-3315-2022, 2022.
a
Olivares, G. and Edwards, S.: The Outdoor Dust Information Node (ODIN) – development and performance assessment of a low cost ambient dust sensor, Atmos. Meas. Tech. Discuss., 8, 7511–7533,
https://doi.org/10.5194/amtd-8-7511-2015, 2015.
a
Pawar, H. and Sinha, B.: Humidity, density and inlet aspiration efficiency correction improve accuracy of a low-cost sensor during field calibration at a suburban site in the north-western Indo- Gangetic Plain (NW-IGP), Aerosol Sci. Tech., 54, 685–703,
https://doi.org/10.1080/02786826.2020.1719971, 2020.
a
PurpleAir: Map: Air quality Map,
https://map.purpleair.org (last access: 1 May 2020), 2018. a
Sayahi, T., Butterfield, A., and Kelly, K. E.: Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors, Environ. Pollut., 245, 932–940, 2019.
a,
b
Si, M., Xiong, Y., Du, S., and Du, K.: Evaluation and calibration of a low-cost particle sensor in ambient conditions using machine-learning methods, Atmos. Meas. Tech., 13, 1693–1707,
https://doi.org/10.5194/amt-13-1693-2020, 2020.
a
Sousan, S., Koehler, K., Thomas, G., Park, J. H., Hillman, M., Halterman, A., and Peters, T. M.: Inter-comparison of low-cost sensors for measuring the mass concentration of occupational aerosols, Aerosol Sci. Tech., 50, 462–473, 2016. a
U.S. EPA: Reference and Equivalent Method Applications: Guidelines for Applicants, U.S. EPA,
https://www.epa.gov/sites/default/files/2017-02/documents/frmfemguidelines.pdf (last access: 3 April 2024), 2011. a
Wallace, L., Bi, J., Ott, W. R., Sarnat, J., and Liu, Y.: Calibration of low-cost PurpleAir outdoor monitors using an improved method of calculating PM
2.5, Atmos. Environ., 256, 118432,
https://doi.org/10.1016/j.atmosenv.2021.118432, 2021.
a
Wang, Y., Li, J., Jing, H., Zhang, Q., Jiang, J., and Biswas, P.: Laboratory Evaluation and Calibration of Three Low-Cost Particle Sensors for Particulate Matter Measurement, Aerosol Sci. Tech., 49, 1063–1077, 2015. a
Zheng, T., Bergin, M. H., Johnson, K. K., Tripathi, S. N., Shirodkar, S., Landis, M. S., Sutaria, R., and Carlson, D. E.: Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments, Atmos. Meas. Tech., 11, 4823–4846,
https://doi.org/10.5194/amt-11-4823-2018, 2018.
a,
b
Zimmerman, N., Presto, A. A., Kumar, S. P. N., Gu, J., Hauryliuk, A., Robinson, E. S., Robinson, A. L., and R. Subramanian: A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring, Atmos. Meas. Tech., 11, 291–313,
https://doi.org/10.5194/amt-11-291-2018, 2018.
a,
b,
c