Articles | Volume 17, issue 2
https://doi.org/10.5194/amt-17-441-2024
https://doi.org/10.5194/amt-17-441-2024
Research article
 | 
23 Jan 2024
Research article |  | 23 Jan 2024

Real-time pollen identification using holographic imaging and fluorescence measurements

Sophie Erb, Elias Graf, Yanick Zeder, Simone Lionetti, Alexis Berne, Bernard Clot, Gian Lieberherr, Fiona Tummon, Pascal Wullschleger, and Benoît Crouzy

Related authors

Profiling pollen and biomass burning particles over Payerne, Switzerland using laser-induced fluorescence lidar and in situ techniques during the 2023 PERICLES campaign
Marilena Gidarakou, Alexandros Papayannis, Kunfeng Gao, Panagiotis Gidarakos, Benoit Crouzy, Romanos Foskinis, Sophie Erb, Cuiqi Zhang, Gian Lieberherr, Martine Collaud Coen, Branko Sikoparija, Zamin A. Kanji, Bernard Clot, Bertrand Calpini, Eugenia Giagka, and Athanasios Nenes
EGUsphere, https://doi.org/10.5194/egusphere-2025-2978,https://doi.org/10.5194/egusphere-2025-2978, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Impact of seeder-feeder cloud interaction on precipitation formation: a case study based on extensive remote-sensing, in-situ and model data
Kevin Ohneiser, Patric Seifert, Willi Schimmel, Fabian Senf, Tom Gaudek, Martin Radenz, Audrey Teisseire, Veronika Ettrichrätz, Teresa Vogl, Nina Maherndl, Nils Pfeifer, Jan Henneberger, Anna J. Miller, Nadja Omanovic, Christopher Fuchs, Huiying Zhang, Fabiola Ramelli, Robert Spirig, Anton Kötsche, Heike Kalesse-Los, Maximilian Maahn, Heather Corden, Alexis Berne, Majid Hajipour, Hannes Griesche, Julian Hofer, Ronny Engelmann, Annett Skupin, Albert Ansmann, and Holger Baars
EGUsphere, https://doi.org/10.5194/egusphere-2025-2482,https://doi.org/10.5194/egusphere-2025-2482, 2025
Short summary
An extensive investigation of the ability of the ICOLMDZ model to simulate a katabatic wind event in Antarctica
Valentin Wiener, Étienne Vignon, Thomas Caton Harrison, Christophe Genthon, Felipe Toledo, Guylaine Canut-Rocafort, Yann Meurdesoif, and Alexis Berne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2046,https://doi.org/10.5194/egusphere-2025-2046, 2025
Short summary
Calibration of Weather Radars with a Target Simulator
Marc Schneebeli, Andreas Leuenberger, Philipp J. Schmid, Jacopo Grazioli, Heather Corden, Alexis Berne, Patrick Kennedy, Jim George, Francesc Junyent, and V. Chandrasekar
EGUsphere, https://doi.org/10.5194/egusphere-2025-1702,https://doi.org/10.5194/egusphere-2025-1702, 2025
Short summary
Flash-flood Alert System using Ensemble Radar Prediction and Rainfall-runoff Simulation
Frédéric G. Jordan, Clément Cosson, Marco Gabella, Ioannis V. Sideris, Adrien Liernur, Alexis Berne, and Urs Germann
Abstr. Int. Cartogr. Assoc., 9, 19, https://doi.org/10.5194/ica-abs-9-19-2025,https://doi.org/10.5194/ica-abs-9-19-2025, 2025

Cited articles

Adamov, S., Lemonis, N., Clot, B., Crouzy, B., Gehrig, R., Graber, M. J., Sallin, C., and Tummon, F.: On the measurement uncertainty of Hirst-type volumetric pollen and spore samplers, Aerobiologia, 1–15, https://doi.org/10.1007/s10453-021-09724-5, 2021. 
Beggs, P. J.: Impacts of climate change on allergens and allergic diseases, Cambridge University Press, https://doi.org/10.1017/CBO9781107272859, 2016. 
Chappuis, C., Tummon, F., Clot, B., Konzelmann, T., Calpini, B., and Crouzy, B.: Automatic pollen monitoring: first insights from hourly data, Aerobiologia, 36, 159–170, https://doi.org/10.1007/s10453-019-09619-6, 2020. 
Chollet, F.: Keras, GitHub [code], https://github.com/fchollet/keras (last access: 22 April 2023), 2015. 
Download
Short summary
In this study, we focus on an automatic bioaerosol measurement instrument and investigate the impact of using its fluorescence measurement for pollen identification. The fluorescence signal is used together with a pair of images from the same instrument to identify single pollen grains via neural networks. We test whether considering fluorescence as a supplementary input improves the pollen identification performance by comparing three different neural networks.
Share