Articles | Volume 17, issue 2
https://doi.org/10.5194/amt-17-441-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-17-441-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Real-time pollen identification using holographic imaging and fluorescence measurements
Sophie Erb
CORRESPONDING AUTHOR
Federal Office of Meteorology and Climatology MeteoSwiss, 1530 Payerne, Switzerland
Environmental Remote Sensing Laboratory (LTE), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Elias Graf
Swisens AG, 6048 Horw, Switzerland
Yanick Zeder
Swisens AG, 6048 Horw, Switzerland
Simone Lionetti
Algorithmic Business Research Lab (ABIZ), Lucerne University of Applied Sciences and Arts, 6002 Lucerne, Switzerland
Alexis Berne
Environmental Remote Sensing Laboratory (LTE), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Bernard Clot
Federal Office of Meteorology and Climatology MeteoSwiss, 1530 Payerne, Switzerland
Gian Lieberherr
Federal Office of Meteorology and Climatology MeteoSwiss, 1530 Payerne, Switzerland
Fiona Tummon
Federal Office of Meteorology and Climatology MeteoSwiss, 1530 Payerne, Switzerland
Pascal Wullschleger
Algorithmic Business Research Lab (ABIZ), Lucerne University of Applied Sciences and Arts, 6002 Lucerne, Switzerland
Benoît Crouzy
Federal Office of Meteorology and Climatology MeteoSwiss, 1530 Payerne, Switzerland
Related authors
No articles found.
Alfonso Ferrone, Jérôme Kopp, Martin Lainer, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 17, 7143–7168, https://doi.org/10.5194/amt-17-7143-2024, https://doi.org/10.5194/amt-17-7143-2024, 2024
Short summary
Short summary
Estimates of hail size have been collected by a network of hail sensors, installed in three regions of Switzerland, since September 2018. In this study, we use a technique called “double-moment normalization” to model the distribution of diameter sizes. The parameters of the method have been defined over 70 % of the dataset and tested over the remaining 30 %. An independent distribution of hail sizes, collected by a drone, has also been used to evaluate the method.
Nicholas D. Beres, Julia Burkart, Elias Graf, Yanick Zeder, Lea Ann Dailey, and Bernadett Weinzierl
Atmos. Meas. Tech., 17, 6945–6964, https://doi.org/10.5194/amt-17-6945-2024, https://doi.org/10.5194/amt-17-6945-2024, 2024
Short summary
Short summary
We tested a method to identify airborne microplastics (MPs), merging imaging, fluorescence, and machine learning of single particles. We examined whether combining imaging and fluorescence data enhances classification accuracy compared to using each method separately and tested these methods with other particle types. The tested MPs have distinct fluorescence, and a combined imaging and fluorescence method improves their detection, making meaningful progress in monitoring MPs in the atmosphere.
Kunfeng Gao, Franziska Vogel, Romanos Foskinis, Stergios Vratolis, Maria I. Gini, Konstantinos Granakis, Anne-Claire Billault-Roux, Paraskevi Georgakaki, Olga Zografou, Prodromos Fetfatzis, Alexis Berne, Alexandros Papayannis, Konstantinos Eleftheridadis, Ottmar Möhler, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9939–9974, https://doi.org/10.5194/acp-24-9939-2024, https://doi.org/10.5194/acp-24-9939-2024, 2024
Short summary
Short summary
Ice nucleating particle (INP) concentrations are required for correct predictions of clouds and precipitation in a changing climate, but they are poorly constrained in climate models. We unravel source contributions to INPs in the eastern Mediterranean and find that biological particles are important, regardless of their origin. The parameterizations developed exhibit superior performance and enable models to consider biological-particle effects on INPs.
Valentin Wiener, Marie-Laure Roussel, Christophe Genthon, Étienne Vignon, Jacopo Grazioli, and Alexis Berne
Earth Syst. Sci. Data, 16, 821–836, https://doi.org/10.5194/essd-16-821-2024, https://doi.org/10.5194/essd-16-821-2024, 2024
Short summary
Short summary
This paper presents 7 years of data from a precipitation radar deployed at the Dumont d'Urville station in East Antarctica. The main characteristics of the dataset are outlined in a short statistical study. Interannual and seasonal variability are also investigated. Then, we extensively describe the processing method to retrieve snowfall profiles from the radar data. Lastly, a brief comparison is made with two climate models as an application example of the dataset.
Alfonso Ferrone, Étienne Vignon, Andrea Zonato, and Alexis Berne
The Cryosphere, 17, 4937–4956, https://doi.org/10.5194/tc-17-4937-2023, https://doi.org/10.5194/tc-17-4937-2023, 2023
Short summary
Short summary
In austral summer 2019/2020, three K-band Doppler profilers were deployed across the Sør Rondane Mountains, south of the Belgian base Princess Elisabeth Antarctica. Their measurements, along with atmospheric simulations and reanalyses, have been used to study the spatial variability in precipitation over the region, as well as investigate the interaction between the complex terrain and the typical flow associated with precipitating systems.
Anne-Claire Billault-Roux, Paraskevi Georgakaki, Josué Gehring, Louis Jaffeux, Alfons Schwarzenboeck, Pierre Coutris, Athanasios Nenes, and Alexis Berne
Atmos. Chem. Phys., 23, 10207–10234, https://doi.org/10.5194/acp-23-10207-2023, https://doi.org/10.5194/acp-23-10207-2023, 2023
Short summary
Short summary
Secondary ice production plays a key role in clouds and precipitation. In this study, we analyze radar measurements from a snowfall event in the Jura Mountains. Complex signatures are observed, which reveal that ice crystals were formed through various processes. An analysis of multi-sensor data suggests that distinct ice multiplication processes were taking place. Both the methods used and the insights gained through this case study contribute to a better understanding of snowfall microphysics.
Alfonso Ferrone and Alexis Berne
Earth Syst. Sci. Data, 15, 1115–1132, https://doi.org/10.5194/essd-15-1115-2023, https://doi.org/10.5194/essd-15-1115-2023, 2023
Short summary
Short summary
This article presents the datasets collected between November 2019 and February 2020 in the vicinity of the Belgian research base Princess Elisabeth Antarctica. Five meteorological radars, a multi-angle snowflake camera, three weather stations, and two radiometers have been deployed at five sites, up to a maximum distance of 30 km from the base. Their varied locations allow the study of spatial variability in snowfall and its interaction with the complex terrain in the region.
Anne-Claire Billault-Roux, Gionata Ghiggi, Louis Jaffeux, Audrey Martini, Nicolas Viltard, and Alexis Berne
Atmos. Meas. Tech., 16, 911–940, https://doi.org/10.5194/amt-16-911-2023, https://doi.org/10.5194/amt-16-911-2023, 2023
Short summary
Short summary
Better understanding and modeling snowfall properties and processes is relevant to many fields, ranging from weather forecasting to aircraft safety. Meteorological radars can be used to gain insights into the microphysics of snowfall. In this work, we propose a new method to retrieve snowfall properties from measurements of radars with different frequencies. It relies on an original deep-learning framework, which incorporates knowledge of the underlying physics, i.e., electromagnetic scattering.
Claudia Mignani, Lukas Zimmermann, Rigel Kivi, Alexis Berne, and Franz Conen
Atmos. Chem. Phys., 22, 13551–13568, https://doi.org/10.5194/acp-22-13551-2022, https://doi.org/10.5194/acp-22-13551-2022, 2022
Short summary
Short summary
We determined over the course of 8 winter months the phase of clouds associated with snowfall in Northern Finland using radiosondes and observations of ice particle habits at ground level. We found that precipitating clouds were extending from near ground to at least 2.7 km altitude and approximately three-quarters of them were likely glaciated. Possible moisture sources and ice formation processes are discussed.
Étienne Vignon, Lea Raillard, Christophe Genthon, Massimo Del Guasta, Andrew J. Heymsfield, Jean-Baptiste Madeleine, and Alexis Berne
Atmos. Chem. Phys., 22, 12857–12872, https://doi.org/10.5194/acp-22-12857-2022, https://doi.org/10.5194/acp-22-12857-2022, 2022
Short summary
Short summary
The near-surface atmosphere over the Antarctic Plateau is cold and pristine and resembles to a certain extent the high troposphere where cirrus clouds form. In this study, we use innovative humidity measurements at Concordia Station to study the formation of ice fogs at temperatures <−40°C. We provide observational evidence that ice fogs can form through the homogeneous freezing of solution aerosols, a common nucleation pathway for cirrus clouds.
Alfonso Ferrone, Anne-Claire Billault-Roux, and Alexis Berne
Atmos. Meas. Tech., 15, 3569–3592, https://doi.org/10.5194/amt-15-3569-2022, https://doi.org/10.5194/amt-15-3569-2022, 2022
Short summary
Short summary
The Micro Rain Radar PRO (MRR-PRO) is a meteorological radar, with a relevant set of features for deployment in remote locations. We developed an algorithm, named ERUO, for the processing of its measurements of snowfall. The algorithm addresses typical issues of the raw spectral data, such as interference lines, but also improves the quality and sensitivity of the radar variables. ERUO has been evaluated over four different datasets collected in Antarctica and in the Swiss Jura.
Jeong-Su Ko, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, Gregory Thompson, and Alexis Berne
Geosci. Model Dev., 15, 4529–4553, https://doi.org/10.5194/gmd-15-4529-2022, https://doi.org/10.5194/gmd-15-4529-2022, 2022
Short summary
Short summary
This study evaluates the performance of the four microphysics parameterizations, the WDM6, WDM7, Thompson, and Morrison schemes, in simulating snowfall events during the ICE-POP 2018 field campaign. Eight snowfall events are selected and classified into three categories (cold-low, warm-low, and air–sea interaction cases). The evaluation focuses on the simulated hydrometeors, microphysics budgets, wind fields, and precipitation using the measurement data.
Paraskevi Georgakaki, Georgia Sotiropoulou, Étienne Vignon, Anne-Claire Billault-Roux, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys., 22, 1965–1988, https://doi.org/10.5194/acp-22-1965-2022, https://doi.org/10.5194/acp-22-1965-2022, 2022
Short summary
Short summary
The modelling study focuses on the importance of ice multiplication processes in orographic mixed-phase clouds, which is one of the least understood cloud types in the climate system. We show that the consideration of ice seeding and secondary ice production through ice–ice collisional breakup is essential for correct predictions of precipitation in mountainous terrain, with important implications for radiation processes.
Monika Feldmann, Urs Germann, Marco Gabella, and Alexis Berne
Weather Clim. Dynam., 2, 1225–1244, https://doi.org/10.5194/wcd-2-1225-2021, https://doi.org/10.5194/wcd-2-1225-2021, 2021
Short summary
Short summary
Mesocyclones are the rotating updraught of supercell thunderstorms that present a particularly hazardous subset of thunderstorms. A first-time characterisation of the spatiotemporal occurrence of mesocyclones in the Alpine region is presented, using 5 years of Swiss operational radar data. We investigate parallels to hailstorms, particularly the influence of large-scale flow, daily cycles and terrain. Improving understanding of mesocyclones is valuable for risk assessment and warning purposes.
Gian Lieberherr, Kevin Auderset, Bertrand Calpini, Bernard Clot, Benoît Crouzy, Martin Gysel-Beer, Thomas Konzelmann, José Manzano, Andrea Mihajlovic, Alireza Moallemi, David O'Connor, Branko Sikoparija, Eric Sauvageat, Fiona Tummon, and Konstantina Vasilatou
Atmos. Meas. Tech., 14, 7693–7706, https://doi.org/10.5194/amt-14-7693-2021, https://doi.org/10.5194/amt-14-7693-2021, 2021
Short summary
Short summary
Today there is no standard procedure to validate bioaerosol and pollen monitors. Three instruments were tested, focusing on detecting particles of different sizes. Only one instrument was able to detect the smallest particles (0.5 µm Ø), whereas the others performed best at the largest tested particles (10 µm Ø). These results are the first step towards a standardised validation procedure. The need for a reference counting method for larger particles (pollen grains: 10–200 µm Ø) was emphasised.
Jussi Leinonen, Jacopo Grazioli, and Alexis Berne
Atmos. Meas. Tech., 14, 6851–6866, https://doi.org/10.5194/amt-14-6851-2021, https://doi.org/10.5194/amt-14-6851-2021, 2021
Short summary
Short summary
Measuring the shape, size and mass of a large number of snowflakes is a challenging task; it is hard to achieve in an automatic and instrumented manner. We present a method to retrieve these properties of individual snowflakes using as input a triplet of images/pictures automatically collected by a multi-angle snowflake camera (MASC) instrument. Our method, based on machine learning, is trained on artificially generated snowflakes and evaluated on 3D-printed snowflake replicas.
Marc Schwaerzel, Dominik Brunner, Fabian Jakub, Claudia Emde, Brigitte Buchmann, Alexis Berne, and Gerrit Kuhlmann
Atmos. Meas. Tech., 14, 6469–6482, https://doi.org/10.5194/amt-14-6469-2021, https://doi.org/10.5194/amt-14-6469-2021, 2021
Short summary
Short summary
NO2 maps from airborne imaging remote sensing often appear much smoother than one would expect from high-resolution model simulations of NO2 over cities, despite the small ground-pixel size of the sensors. Our case study over Zurich, using the newly implemented building module of the MYSTIC radiative transfer solver, shows that the 3D effect can explain part of the smearing and that building shadows cause a noticeable underestimation and noise in the measured NO2 columns.
Anna Špačková, Vojtěch Bareš, Martin Fencl, Marc Schleiss, Joël Jaffrain, Alexis Berne, and Jörg Rieckermann
Earth Syst. Sci. Data, 13, 4219–4240, https://doi.org/10.5194/essd-13-4219-2021, https://doi.org/10.5194/essd-13-4219-2021, 2021
Short summary
Short summary
An original dataset of microwave signal attenuation and rainfall variables was collected during 1-year-long field campaign. The monitored 38 GHz dual-polarized commercial microwave link with a short sampling resolution (4 s) was accompanied by five disdrometers and three rain gauges along its path. Antenna radomes were temporarily shielded for approximately half of the campaign period to investigate antenna wetting impacts.
Paraskevi Georgakaki, Aikaterini Bougiatioti, Jörg Wieder, Claudia Mignani, Fabiola Ramelli, Zamin A. Kanji, Jan Henneberger, Maxime Hervo, Alexis Berne, Ulrike Lohmann, and Athanasios Nenes
Atmos. Chem. Phys., 21, 10993–11012, https://doi.org/10.5194/acp-21-10993-2021, https://doi.org/10.5194/acp-21-10993-2021, 2021
Short summary
Short summary
Aerosol and cloud observations coupled with a droplet activation parameterization was used to investigate the aerosol–cloud droplet link in alpine mixed-phase clouds. Predicted droplet number, Nd, agrees with observations and never exceeds a characteristic “limiting droplet number”, Ndlim, which depends solely on σw. Nd becomes velocity limited when it is within 50 % of Ndlim. Identifying when dynamical changes control Nd variability is central for understanding aerosol–cloud interactions.
Noémie Planat, Josué Gehring, Étienne Vignon, and Alexis Berne
Atmos. Meas. Tech., 14, 4543–4564, https://doi.org/10.5194/amt-14-4543-2021, https://doi.org/10.5194/amt-14-4543-2021, 2021
Short summary
Short summary
We implement a new method to identify microphysical processes during cold precipitation events based on the sign of the vertical gradient of polarimetric radar variables. We analytically asses the meteorological conditions for this vertical analysis to hold, apply it on two study cases and successfully compare it with other methods informing about the microphysics. Finally, we are able to obtain the main vertical structure and characteristics of the different processes during these study cases.
Daniel Wolfensberger, Marco Gabella, Marco Boscacci, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 14, 3169–3193, https://doi.org/10.5194/amt-14-3169-2021, https://doi.org/10.5194/amt-14-3169-2021, 2021
Short summary
Short summary
In this work, we present a novel quantitative precipitation estimation method for Switzerland that uses random forests, an ensemble-based machine learning technique. The estimator has been trained with a database of 4 years of ground and radar observations. The results of an in-depth evaluation indicate that, compared with the more classical method in use at MeteoSwiss, this novel estimator is able to reduce both the average error and bias of the predictions.
Anne-Claire Billault-Roux and Alexis Berne
Atmos. Meas. Tech., 14, 2749–2769, https://doi.org/10.5194/amt-14-2749-2021, https://doi.org/10.5194/amt-14-2749-2021, 2021
Short summary
Short summary
In the context of climate studies, understanding the role of clouds on a global and local scale is of paramount importance. One aspect is the quantification of cloud liquid water, which impacts the Earth’s radiative balance. This is routinely achieved with radiometers operating at different frequencies. In this study, we propose an approach that uses a single-frequency radiometer and that can be applied at any location to retrieve vertically integrated quantities of liquid water and water vapor.
Josué Gehring, Alfonso Ferrone, Anne-Claire Billault-Roux, Nikola Besic, Kwang Deuk Ahn, GyuWon Lee, and Alexis Berne
Earth Syst. Sci. Data, 13, 417–433, https://doi.org/10.5194/essd-13-417-2021, https://doi.org/10.5194/essd-13-417-2021, 2021
Short summary
Short summary
This article describes a dataset of precipitation and cloud measurements collected from November 2017 to March 2018 in Pyeongchang, South Korea. The dataset includes weather radar data and images of snowflakes. It allows for studying the snowfall intensity; wind conditions; and shape, size and fall speed of snowflakes. Classifications of the types of snowflakes show that aggregates of ice crystals were dominant. This dataset represents a unique opportunity to study snowfall in this region.
Georgia Sotiropoulou, Étienne Vignon, Gillian Young, Hugh Morrison, Sebastian J. O'Shea, Thomas Lachlan-Cope, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys., 21, 755–771, https://doi.org/10.5194/acp-21-755-2021, https://doi.org/10.5194/acp-21-755-2021, 2021
Short summary
Short summary
Summer clouds have a significant impact on the radiation budget of the Antarctic surface and thus on ice-shelf melting. However, these are poorly represented in climate models due to errors in their microphysical structure, including the number of ice crystals that they contain. We show that breakup from ice particle collisions can substantially magnify the ice crystal number concentration with significant implications for surface radiation. This process is currently missing in climate models.
Marc Schwaerzel, Claudia Emde, Dominik Brunner, Randulph Morales, Thomas Wagner, Alexis Berne, Brigitte Buchmann, and Gerrit Kuhlmann
Atmos. Meas. Tech., 13, 4277–4293, https://doi.org/10.5194/amt-13-4277-2020, https://doi.org/10.5194/amt-13-4277-2020, 2020
Short summary
Short summary
Horizontal homogeneity is often assumed for trace gases remote sensing, although it is not valid where trace gas concentrations have high spatial variability, e.g., in cities. We show the importance of 3D effects for MAX-DOAS and airborne imaging spectrometers using 3D-box air mass factors implemented in the MYSTIC radiative transfer solver. In both cases, 3D information is invaluable for interpreting the measurements, as not considering 3D effects can lead to misinterpretation of measurements.
Eliane Maillard Barras, Alexander Haefele, Liliane Nguyen, Fiona Tummon, William T. Ball, Eugene V. Rozanov, Rolf Rüfenacht, Klemens Hocke, Leonie Bernet, Niklaus Kämpfer, Gerald Nedoluha, and Ian Boyd
Atmos. Chem. Phys., 20, 8453–8471, https://doi.org/10.5194/acp-20-8453-2020, https://doi.org/10.5194/acp-20-8453-2020, 2020
Short summary
Short summary
To determine the part of the variability of the long-term ozone profile trends coming from measurement timing, we estimate microwave radiometer trends for each hour of the day with a multiple linear regression model. The variation in the trend with local solar time is not significant at the 95 % confidence level either in the stratosphere or in the low mesosphere. We conclude that systematic sampling differences between instruments cannot explain significant differences in trend estimates.
Josué Gehring, Annika Oertel, Étienne Vignon, Nicolas Jullien, Nikola Besic, and Alexis Berne
Atmos. Chem. Phys., 20, 7373–7392, https://doi.org/10.5194/acp-20-7373-2020, https://doi.org/10.5194/acp-20-7373-2020, 2020
Short summary
Short summary
In this study, we analyse how large-scale meteorological conditions influenced the local enhancement of snowfall during an intense precipitation event in Korea. We used atmospheric models, weather radars and snowflake images. We found out that a rising airstream in the warm sector of the low pressure system associated to this event influenced the evolution of snowfall. This study highlights the importance of interactions between large and local scales in this intense precipitation event.
Jussi Leinonen and Alexis Berne
Atmos. Meas. Tech., 13, 2949–2964, https://doi.org/10.5194/amt-13-2949-2020, https://doi.org/10.5194/amt-13-2949-2020, 2020
Short summary
Short summary
The appearance of snowflakes provides a signature of the atmospheric processes that created them. To get this information from large numbers of snowflake images, automated analysis using computer image recognition is needed. In this work, we use a neural network that learns the structure of the snowflake images to divide a snowflake dataset into classes corresponding to different sizes and structures. Unlike with most comparable methods, only minimal input from a human expert is needed.
Nicolas Jullien, Étienne Vignon, Michael Sprenger, Franziska Aemisegger, and Alexis Berne
The Cryosphere, 14, 1685–1702, https://doi.org/10.5194/tc-14-1685-2020, https://doi.org/10.5194/tc-14-1685-2020, 2020
Short summary
Short summary
Although snowfall is the main input of water to the Antarctic ice sheet, snowflakes are often evaporated by dry and fierce winds near the surface of the continent. The amount of snow that actually reaches the ground is therefore considerably reduced. By analyzing the position of cyclones and fronts as well as by back-tracing the atmospheric moisture pathway towards Antarctica, this study explains in which meteorological conditions snowfall is either completely evaporated or reaches the ground.
Floor van den Heuvel, Loris Foresti, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 13, 2481–2500, https://doi.org/10.5194/amt-13-2481-2020, https://doi.org/10.5194/amt-13-2481-2020, 2020
Short summary
Short summary
In areas with reduced visibility at the ground level, radar precipitation measurements higher up in the atmosphere need to be extrapolated to the ground and be corrected for the vertical change (i.e. growth and transformation) of precipitation. This study proposes a method based on hydrometeor proportions and machine learning (ML) to apply these corrections at smaller spatiotemporal scales. In comparison with existing techniques, the ML methods can make predictions from higher altitudes.
Eric Sauvageat, Yanick Zeder, Kevin Auderset, Bertrand Calpini, Bernard Clot, Benoît Crouzy, Thomas Konzelmann, Gian Lieberherr, Fiona Tummon, and Konstantina Vasilatou
Atmos. Meas. Tech., 13, 1539–1550, https://doi.org/10.5194/amt-13-1539-2020, https://doi.org/10.5194/amt-13-1539-2020, 2020
Short summary
Short summary
We present the first validation of the only operational automatic pollen monitoring system based on holography, the Swisens Poleno. The device produces real-time images of coarse aerosols, and by applying a machine learning algorithm we identify a range of pollen taxa with accuracy >90 %. The device was further validated in controlled chamber experiments to verify the counting ability and the performance of additional fluorescence measurements, which can further be used in pollen identification.
Theo Baracchini, Philip Y. Chu, Jonas Šukys, Gian Lieberherr, Stefan Wunderle, Alfred Wüest, and Damien Bouffard
Geosci. Model Dev., 13, 1267–1284, https://doi.org/10.5194/gmd-13-1267-2020, https://doi.org/10.5194/gmd-13-1267-2020, 2020
Short summary
Short summary
Lake physical processes occur at a wide range of spatiotemporal scales. 3D hydrodynamic lake models are the only information source capable of solving those scales; however, they still need observations to be calibrated and to constrain their uncertainties. The optimal combination of a 3D hydrodynamic model, in situ measurements, and remote sensing observations is achieved through data assimilation. Here we present a complete data assimilation experiment for lakes using open-source tools.
Mathieu Schaer, Christophe Praz, and Alexis Berne
The Cryosphere, 14, 367–384, https://doi.org/10.5194/tc-14-367-2020, https://doi.org/10.5194/tc-14-367-2020, 2020
Short summary
Short summary
Wind and precipitation often occur together, making the distinction between particles coming from the atmosphere and those blown by the wind difficult. This is however a crucial task to accurately close the surface mass balance. We propose an algorithm based on Gaussian mixture models to separate blowing snow and precipitation in images collected by a Multi-Angle Snowflake Camera (MASC). The algorithm is trained and (positively) evaluated using data collected in the Swiss Alps and in Antarctica.
Ingrida Šaulienė, Laura Šukienė, Gintautas Daunys, Gediminas Valiulis, Lukas Vaitkevičius, Predrag Matavulj, Sanja Brdar, Marko Panic, Branko Sikoparija, Bernard Clot, Benoît Crouzy, and Mikhail Sofiev
Atmos. Meas. Tech., 12, 3435–3452, https://doi.org/10.5194/amt-12-3435-2019, https://doi.org/10.5194/amt-12-3435-2019, 2019
Short summary
Short summary
The goal is to evaluate the capabilities of the new Rapid-E monitor and to construct a first-level pollen recognition algorithm. The output data were treated with ANN aiming at classification of the injected pollen. Algorithms based on scattering and fluorescence data alone fall short of acceptable quality. The combinations of these exceeded 80 % accuracy for 5 out of 11 pollen species. Constructing multistep algorithms with sequential discrimination of pollen can be a possible way forward.
Étienne Vignon, Olivier Traullé, and Alexis Berne
Atmos. Chem. Phys., 19, 4659–4683, https://doi.org/10.5194/acp-19-4659-2019, https://doi.org/10.5194/acp-19-4659-2019, 2019
Short summary
Short summary
The future sea-level rise will depend on how much the Antarctic ice sheet gain – via precipitation – or loose mass. The simulation of precipitation by numerical models used for projections depends on the representation of the atmospheric circulation over and around Antarctica. Using daily measurements from balloon soundings at nine Antarctic stations, this study characterizes the structure of the atmosphere over the Antarctic coast and its representation in atmospheric simulations.
Florentin Lemonnier, Jean-Baptiste Madeleine, Chantal Claud, Christophe Genthon, Claudio Durán-Alarcón, Cyril Palerme, Alexis Berne, Niels Souverijns, Nicole van Lipzig, Irina V. Gorodetskaya, Tristan L'Ecuyer, and Norman Wood
The Cryosphere, 13, 943–954, https://doi.org/10.5194/tc-13-943-2019, https://doi.org/10.5194/tc-13-943-2019, 2019
Short summary
Short summary
Evaluation of the vertical precipitation rate profiles of CloudSat radar by comparison with two surface-based micro-rain radars (MRR) located at two antarctic stations gives a near-perfect correlation between both datasets, even though climatic and geographic conditions are different for the stations. A better understanding and reassessment of CloudSat uncertainties ranging from −13 % up to +22 % confirms the robustness of the CloudSat retrievals of snowfall over Antarctica.
Claudio Durán-Alarcón, Brice Boudevillain, Christophe Genthon, Jacopo Grazioli, Niels Souverijns, Nicole P. M. van Lipzig, Irina V. Gorodetskaya, and Alexis Berne
The Cryosphere, 13, 247–264, https://doi.org/10.5194/tc-13-247-2019, https://doi.org/10.5194/tc-13-247-2019, 2019
Short summary
Short summary
Precipitation is the main input in the surface mass balance of the Antarctic ice sheet, but it is still poorly understood due to a lack of observations in this region. We analyzed the vertical structure of the precipitation using multiyear observation of vertically pointing micro rain radars (MRRs) at two stations located in East Antarctica. The use of MRRs showed the potential to study the effect of climatology and hydrometeor microphysics on the vertical structure of Antarctic precipitation.
Niels Souverijns, Alexandra Gossart, Stef Lhermitte, Irina V. Gorodetskaya, Jacopo Grazioli, Alexis Berne, Claudio Duran-Alarcon, Brice Boudevillain, Christophe Genthon, Claudio Scarchilli, and Nicole P. M. van Lipzig
The Cryosphere, 12, 3775–3789, https://doi.org/10.5194/tc-12-3775-2018, https://doi.org/10.5194/tc-12-3775-2018, 2018
Short summary
Short summary
Snowfall observations over Antarctica are scarce and currently limited to information from the CloudSat satellite. Here, a first evaluation of the CloudSat snowfall record is performed using observations of ground-based precipitation radars. Results indicate an accurate representation of the snowfall climatology over Antarctica, despite the low overpass frequency of the satellite, outperforming state-of-the-art model estimates. Individual snowfall events are however not well represented.
Franziska Gerber, Nikola Besic, Varun Sharma, Rebecca Mott, Megan Daniels, Marco Gabella, Alexis Berne, Urs Germann, and Michael Lehning
The Cryosphere, 12, 3137–3160, https://doi.org/10.5194/tc-12-3137-2018, https://doi.org/10.5194/tc-12-3137-2018, 2018
Short summary
Short summary
A comparison of winter precipitation variability in operational radar measurements and high-resolution simulations reveals that large-scale variability is well captured by the model, depending on the event. Precipitation variability is driven by topography and wind. A good portion of small-scale variability is captured at the highest resolution. This is essential to address small-scale precipitation processes forming the alpine snow seasonal snow cover – an important source of water.
Floor van den Heuvel, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 11, 5181–5198, https://doi.org/10.5194/amt-11-5181-2018, https://doi.org/10.5194/amt-11-5181-2018, 2018
Short summary
Short summary
The paper aims at characterising and quantifying the spatio-temporal variability of the melting layer (ML; transition zone from solid to liquid precipitation). A method based on the Fourier transform is found to accurately describe different ML signatures. Hence, it is applied to characterise the ML variability in a relatively flat area and in an inner Alpine valley in Switzerland, where the variability at smaller spatial scales is found to be relatively more important.
Christophe Genthon, Alexis Berne, Jacopo Grazioli, Claudio Durán Alarcón, Christophe Praz, and Brice Boudevillain
Earth Syst. Sci. Data, 10, 1605–1612, https://doi.org/10.5194/essd-10-1605-2018, https://doi.org/10.5194/essd-10-1605-2018, 2018
Short summary
Short summary
Antarctica suffers from a severe shortage of in situ observations of precipitation. The APRES3 program contributes to improving observation from both the surface and from space. A field campaign with various instruments was deployed at the coast of Adélie Land, with an intensive observing period in austral summer 2015–16, then continuous radar monitoring through 2016 and beyond. This paper provides a compact presentation of the APRES3 dataset, which is now made open to the scientific community.
Nikola Besic, Josué Gehring, Christophe Praz, Jordi Figueras i Ventura, Jacopo Grazioli, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 11, 4847–4866, https://doi.org/10.5194/amt-11-4847-2018, https://doi.org/10.5194/amt-11-4847-2018, 2018
Short summary
Short summary
In this paper we propose an innovative approach for hydrometeor de-mixing, i.e., to identify and quantify the presence of mixtures of different hydrometeor types in a radar sampling volume. It is a bin-based approach, inspired by conventional decomposition methods and evaluated using C- and X-band radar measurements compared with synchronous ground observations. The paper also investigates the potential influence of incoherency in the backscattering from hydrometeor mixtures in a radar volume.
Fanny Jeanneret, Giovanni Martucci, Simon Pinnock, and Alexis Berne
Atmos. Meas. Tech., 11, 4153–4170, https://doi.org/10.5194/amt-11-4153-2018, https://doi.org/10.5194/amt-11-4153-2018, 2018
Short summary
Short summary
Above mountainous regions, satellites may have difficulty in discriminating snow from clouds: this study proposes a new method that combines different ground-based measurements to assess the sky cloudiness with high temporal resolution. The method's output is used as input to a model capable of identifying false satellite cloud detections. Results show that 62 ± 13 % of these false detections can be identified by the model when applied to the AVHRR-PM and MODIS Aqua data sets of the Cloud_cci.
Daniel Wolfensberger and Alexis Berne
Atmos. Meas. Tech., 11, 3883–3916, https://doi.org/10.5194/amt-11-3883-2018, https://doi.org/10.5194/amt-11-3883-2018, 2018
Short summary
Short summary
This work presents a polarimetric forward operator for the COSMO weather prediction model. This tool is able to simulate radar observables from the state of the atmosphere simulated by the model, taking into account most physical aspects of radar beam propagation and backscattering. This operator was validated with a large dataset of radar observations from several instruments and it was shown that is able to simulate a realistic radar signature in liquid precipitation.
Daniel Wolfensberger, Auguste Gires, Ioulia Tchiguirinskaia, Daniel Schertzer, and Alexis Berne
Atmos. Chem. Phys., 17, 14253–14273, https://doi.org/10.5194/acp-17-14253-2017, https://doi.org/10.5194/acp-17-14253-2017, 2017
Short summary
Short summary
Precipitation intensities simulated by the COSMO weather prediction model are compared to radar observations over a range of spatial and temporal scales using the universal multifractal framework. Our results highlight the strong influence of meteorological and topographical features on the multifractal characteristics of precipitation. Moreover, the influence of the subgrid parameterizations of COSMO is clearly visible by a break in the scaling properties that is absent from the radar data.
Jacopo Grazioli, Christophe Genthon, Brice Boudevillain, Claudio Duran-Alarcon, Massimo Del Guasta, Jean-Baptiste Madeleine, and Alexis Berne
The Cryosphere, 11, 1797–1811, https://doi.org/10.5194/tc-11-1797-2017, https://doi.org/10.5194/tc-11-1797-2017, 2017
Short summary
Short summary
We present medium and long-term measurements of precipitation in a coastal region of Antarctica. These measurements are among the first of their kind on the Antarctic continent and combine remote sensing with in situ observations. The benefits of this synergy are demonstrated and the lessons learned from this measurements, which are still ongoing, are very important for the creation of similar observatories elsewhere on the continent.
Timothy H. Raupach and Alexis Berne
Atmos. Meas. Tech., 10, 2573–2594, https://doi.org/10.5194/amt-10-2573-2017, https://doi.org/10.5194/amt-10-2573-2017, 2017
Short summary
Short summary
The raindrop size distribution (DSD) describes the microstructure of rain. It is required knowledge for weather radar applications and has broad applicability to studies of rainfall processes, including weather models and rain retrieval algorithms. We present a new technique for estimating the DSD from polarimetric radar data. The new method was tested in three different domains, and its performance was found to be similar to and often better than an an existing DSD retrieval method.
Christophe Praz, Yves-Alain Roulet, and Alexis Berne
Atmos. Meas. Tech., 10, 1335–1357, https://doi.org/10.5194/amt-10-1335-2017, https://doi.org/10.5194/amt-10-1335-2017, 2017
Short summary
Short summary
The Multi-Angle Snowflake Camera (MASC) provides high-resolution pictures of individual falling snowflakes and ice crystals. A method is proposed to automatically classify these pictures into six classes of snowflakes as well to estimate the degree of riming and to detect whether or not the particles are melting. Multinomial logistic regression is used with a manually classified
reference set. The evaluation demonstrates the good and reliable performance of the proposed technique.
Guillaume Nord, Brice Boudevillain, Alexis Berne, Flora Branger, Isabelle Braud, Guillaume Dramais, Simon Gérard, Jérôme Le Coz, Cédric Legoût, Gilles Molinié, Joel Van Baelen, Jean-Pierre Vandervaere, Julien Andrieu, Coralie Aubert, Martin Calianno, Guy Delrieu, Jacopo Grazioli, Sahar Hachani, Ivan Horner, Jessica Huza, Raphaël Le Boursicaud, Timothy H. Raupach, Adriaan J. Teuling, Magdalena Uber, Béatrice Vincendon, and Annette Wijbrans
Earth Syst. Sci. Data, 9, 221–249, https://doi.org/10.5194/essd-9-221-2017, https://doi.org/10.5194/essd-9-221-2017, 2017
Short summary
Short summary
A high space–time resolution dataset linking hydrometeorological forcing and hydro-sedimentary response in a mesoscale catchment (Auzon, 116 km2) of the Ardèche region (France) is presented. This region is subject to precipitating systems of Mediterranean origin, which can result in significant rainfall amount. The data presented cover a period of 4 years (2011–2014) and aim at improving the understanding of processes triggering flash floods.
Nikola Besic, Jordi Figueras i Ventura, Jacopo Grazioli, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 9, 4425–4445, https://doi.org/10.5194/amt-9-4425-2016, https://doi.org/10.5194/amt-9-4425-2016, 2016
Short summary
Short summary
In this paper we propose a novel semi-supervised method for hydrometeor classification, which takes into account both the specificities of acquired polarimetric radar measurements and the presumed electromagnetic behavior of different hydrometeor types. The method has been applied on three datasets, each acquired by different C-band radar from the Swiss network, and on two X-band research radar datasets. The obtained classification is found to be of high quality.
Luca Panziera, Marco Gabella, Stefano Zanini, Alessandro Hering, Urs Germann, and Alexis Berne
Hydrol. Earth Syst. Sci., 20, 2317–2332, https://doi.org/10.5194/hess-20-2317-2016, https://doi.org/10.5194/hess-20-2317-2016, 2016
Short summary
Short summary
This paper presents a novel system to issue heavy rainfall alerts for predefined geographical regions by evaluating the sum of precipitation fallen in the immediate past and expected in the near future. In order to objectively define the thresholds for the alerts, an extreme rainfall analysis for the 159 regions used for official warnings in Switzerland was developed. It is shown that the system has additional lead time with respect to thunderstorm tracking tools targeted for convective storms.
J. Grazioli, G. Lloyd, L. Panziera, C. R. Hoyle, P. J. Connolly, J. Henneberger, and A. Berne
Atmos. Chem. Phys., 15, 13787–13802, https://doi.org/10.5194/acp-15-13787-2015, https://doi.org/10.5194/acp-15-13787-2015, 2015
Short summary
Short summary
This study investigates the microphysics of winter alpine snowfall occurring in mixed-phase clouds in an inner-Alpine valley during CLACE2014. From polarimetric radar and in situ observations, riming is shown to be an important process leading to more intense snowfall. Riming is usually associated with more intense turbulence providing supercooled liquid water. Distinct features are identified in the vertical structure of polarimetric radar variables.
M. Stähli, M. Sättele, C. Huggel, B. W. McArdell, P. Lehmann, A. Van Herwijnen, A. Berne, M. Schleiss, A. Ferrari, A. Kos, D. Or, and S. M. Springman
Nat. Hazards Earth Syst. Sci., 15, 905–917, https://doi.org/10.5194/nhess-15-905-2015, https://doi.org/10.5194/nhess-15-905-2015, 2015
Short summary
Short summary
This review paper describes the state of the art in monitoring and predicting rapid mass movements for early warning. It further presents recent innovations in observation technologies and modelling to be used in future early warning systems (EWS). Finally, the paper proposes avenues towards successful implementation of next-generation EWS.
M. Riffler, G. Lieberherr, and S. Wunderle
Earth Syst. Sci. Data, 7, 1–17, https://doi.org/10.5194/essd-7-1-2015, https://doi.org/10.5194/essd-7-1-2015, 2015
Short summary
Short summary
We were able to demonstrate that data from polar orbiting satellites can be used not only to derive lake water temperature for large lakes (> 500km2) but also for the many lakes like in central Europe which are smaller than 100km2. The linear warming trend derived for one of the lakes shows good agreement between in situ and satellite observations. Thus, this data set will offer the possibility to investigate the impact of climate change on lake water temperatures in central Europe.
T. H. Raupach and A. Berne
Atmos. Meas. Tech., 8, 343–365, https://doi.org/10.5194/amt-8-343-2015, https://doi.org/10.5194/amt-8-343-2015, 2015
Short summary
Short summary
Using the 2-D video disdrometer (2DVD) as a reference, a technique to correct the spectra of drop size distribution (DSD) measured by Parsivel disdrometers (1st and 2nd generation) is proposed. The measured velocities and equivolume diameters are corrected to better match those from the 2DVD. The correction is evaluated using data from southern France and the Swiss Plateau. It appears to be similar for both climatologies, and to improve the consistency with colocated 2DVDs and rain gauges.
J. Grazioli, D. Tuia, and A. Berne
Atmos. Meas. Tech., 8, 149–170, https://doi.org/10.5194/amt-8-149-2015, https://doi.org/10.5194/amt-8-149-2015, 2015
Short summary
Short summary
A new approach for hydrometeor classification from polarimetric radar measurements is proposed. It takes adavantage of clustering techniques to objectively determine the number of hydrometeor classes that can be reliably identified. The proposed method is tested using observations from an X-band polarimetric radar in different regions and evaluated by comparison with existing algorithms and with measurements from a ground-based 2D video disdrometer (providing 2-D views of falling hydrometeors).
J. Grazioli, D. Tuia, S. Monhart, M. Schneebeli, T. Raupach, and A. Berne
Atmos. Meas. Tech., 7, 2869–2882, https://doi.org/10.5194/amt-7-2869-2014, https://doi.org/10.5194/amt-7-2869-2014, 2014
K. Zink, A. Pauling, M. W. Rotach, H. Vogel, P. Kaufmann, and B. Clot
Geosci. Model Dev., 6, 1961–1975, https://doi.org/10.5194/gmd-6-1961-2013, https://doi.org/10.5194/gmd-6-1961-2013, 2013
Related subject area
Subject: Aerosols | Technique: In Situ Measurement | Topic: Instruments and Platforms
Fast and sensitive measurements of sub-3 nm particles using Condensation Particle Counters For Atmospheric Rapid Measurements (CPC FARM)
Performance evaluation of an online monitor based on X-ray fluorescence for detecting elemental concentrations in ambient particulate matter
Deriving the hygroscopicity of ambient particles using low-cost optical particle counters
Simulations of the collection of mesospheric dust particles with a rocket instrument
Characterisation of particle single-scattering albedo with a modified airborne dual-wavelength CAPS monitor
Use of an uncrewed aerial system to investigate aerosol direct and indirect radiative forcing effects in the marine atmosphere
Characterization of the airborne aerosol inlet and transport system used during the A-LIFE aircraft field experiment
Large-scale automated emission measurement of individual vehicles with point sampling
Development of a cascade impactor optimized for size-fractionated analysis of aerosol metal content by total reflection X-ray fluorescence spectroscopy (TXRF)
Modular Multiplatform Compatible Air Measurement System (MoMuCAMS): a new modular platform for boundary layer aerosol and trace gas vertical measurements in extreme environments
Two new multirotor uncrewed aerial vehicles (UAVs) for glaciogenic cloud seeding and aerosol measurements within the CLOUDLAB project
Assessing potential indicators of aerosol wet scavenging during long-range transport
Next-generation ice-nucleating particle sampling on board aircraft: characterization of the High-volume flow aERosol particle filter sAmpler (HERA)
Development and characterization of the Portable Ice Nucleation Chamber 2 (PINCii)
The four-wavelength Photoacoustic Aerosol Absorption Spectrometer (PAAS-4λ)
Improved counting statistics of an ultrafine differential mobility particle size spectrometer system
Performance evaluation of the Alphasense OPC-N3 and Plantower PMS5003 sensor in measuring dust events in the Salt Lake Valley, Utah
Source apportionment of black carbon and combustion-related CO2 for the determination of source-specific emission factors
CAMP: an instrumented platform for balloon-borne aerosol particle studies in the lower atmosphere
New method to determine black carbon mass size distribution
The realization of autonomous, aircraft-based, real-time aerosol mass spectrometry in the upper troposphere and lower stratosphere
A study on the performance of low-cost sensors for source apportionment at an urban background site
A dual-wavelength photothermal aerosol absorption monitor: design, calibration and performance
A high-transmission axial ion mobility classifier for mass–mobility measurements of atmospheric ions
Design, characterization, and first field deployment of a novel aircraft-based aerosol mass spectrometer combining the laser ablation and flash vaporization techniques
An instrument for direct measurement of emissions: cooling tower example
The Aerosol Research Observation Station (AEROS)
Laser imaging nephelometer for aircraft deployment
A new method to quantify particulate sodium and potassium salts (nitrate, chloride, and sulfate) by thermal desorption aerosol mass spectrometry
Evaluating the PurpleAir monitor as an aerosol light scattering instrument
Undersizing of aged African biomass burning aerosol by an ultra-high-sensitivity aerosol spectrometer
Evaluation methods for low-cost particulate matter sensors
Simulation-aided characterization of a versatile water-based condensation particle counter for atmospheric airborne research
Development of an in situ dual-channel thermal desorption gas chromatography instrument for consistent quantification of volatile, intermediate-volatility and semivolatile organic compounds
Assessment of online water-soluble brown carbon measuring systems for aircraft sampling
Characterizing the performance of a POPS miniaturized optical particle counter when operated on a quadcopter drone
A low-cost monitor for simultaneous measurement of fine particulate matter and aerosol optical depth – Part 3: Automation and design improvements
Rapid measurement of RH-dependent aerosol hygroscopic growth using a humidity-controlled fast integrated mobility spectrometer (HFIMS)
Detection of ship plumes from residual fuel operation in emission control areas using single-particle mass spectrometry
Highly time-resolved characterization of carbonaceous aerosols using a two-wavelength Sunset thermal–optical carbon analyzer
Captive Aerosol Growth and Evolution (CAGE) chamber system to investigate particle growth due to secondary aerosol formation
Design and characterization of a new oxidation flow reactor for laboratory and long-term ambient studies
A reel-down instrument system for profile measurements of water vapor, temperature, clouds, and aerosol beneath constant-altitude scientific balloons
Airborne extractive electrospray mass spectrometry measurements of the chemical composition of organic aerosol
A semicontinuous study on the ecotoxicity of atmospheric particles using a versatile aerosol concentration enrichment system (VACES): development and field characterization
A novel rocket-borne ion mass spectrometer with large mass range: instrument description and first-flight results
Detailed characterization of the CAPS single-scattering albedo monitor (CAPS PMssa) as a field-deployable instrument for measuring aerosol light absorption with the extinction-minus-scattering method
New in situ aerosol hyperspectral optical measurements over 300–700 nm – Part 1: Spectral Aerosol Extinction (SpEx) instrument field validation during the KORUS-OC cruise
New in situ aerosol hyperspectral optical measurements over 300–700 nm – Part 2: Extinction, total absorption, water- and methanol-soluble absorption observed during the KORUS-OC cruise
Continuous online monitoring of ice-nucleating particles: development of the automated Horizontal Ice Nucleation Chamber (HINC-Auto)
Darren Cheng, Stavros Amanatidis, Gregory S. Lewis, and Coty N. Jen
Atmos. Meas. Tech., 18, 197–210, https://doi.org/10.5194/amt-18-197-2025, https://doi.org/10.5194/amt-18-197-2025, 2025
Short summary
Short summary
This study describes a new method, the Condensation Particle Counters For Atmospheric Rapid Measurements (CPC FARM), to measure sub-3 nm size distribution at high time resolution and sensitivity. The CPC FARM is compared to traditionally used particle mobility sizers during a new particle formation campaign to study rapidly changing sub-3 nm particles in Pittsburgh, PA.
Ivonne Trebs, Céline Lett, Andreas Krein, Erika Matsumoto Kawaguchi, and Jürgen Junk
Atmos. Meas. Tech., 17, 6791–6805, https://doi.org/10.5194/amt-17-6791-2024, https://doi.org/10.5194/amt-17-6791-2024, 2024
Short summary
Short summary
This study explores the effectiveness of the Horiba PX-375 monitor for analysing the elemental composition of airborne particulate matter (PM). Understanding this composition of PM is important for identifying its sources, assessing potential health risks, and developing strategies to reduce air pollution. The PX-375 monitor proved to be a valuable tool for ongoing air quality monitoring studies and could be particularly useful as pollution levels and sources change in the future.
Wei-Chieh Huang, Hui-Ming Hung, Ching-Wei Chu, Wei-Chun Hwang, and Shih-Chun Candice Lung
Atmos. Meas. Tech., 17, 6073–6084, https://doi.org/10.5194/amt-17-6073-2024, https://doi.org/10.5194/amt-17-6073-2024, 2024
Short summary
Short summary
This study investigates aerosol properties crucial for health, cloud formation, and climate impact. Employing a low-cost sensor system, we assess hygroscopicity of particulate matter (PM) and the ability to influence cloud formation to improve the reported PM concentrations from low-cost sensors. The study introduces an alternate methodology for assessing aerosol hygroscopicity, offering insights into atmospheric science, air quality, and cloud dynamics.
Adrien Pineau, Henriette Trollvik, Herman Greaker, Sveinung Olsen, Yngve Eilertsen, and Ingrid Mann
Atmos. Meas. Tech., 17, 3843–3861, https://doi.org/10.5194/amt-17-3843-2024, https://doi.org/10.5194/amt-17-3843-2024, 2024
Short summary
Short summary
The mesosphere, part of the upper atmosphere, contains small solid dust particles, mostly made up of material from interplanetary space. We are preparing an experiment to collect such particles during a rocket flight. A new instrument has been designed and numerical simulations have been performed to investigate the airflow nearby as well as its dust collection efficiency. The collected dust particles will be further analyzed in the laboratory in order to study their chemical composition.
Chenjie Yu, Edouard Pangui, Kevin Tu, Mathieu Cazaunau, Maxime Feingesicht, Landsheere Xavier, Thierry Bourrianne, Vincent Michoud, Christopher Cantrell, Timothy B. Onasch, Andrew Freedman, and Paola Formenti
Atmos. Meas. Tech., 17, 3419–3437, https://doi.org/10.5194/amt-17-3419-2024, https://doi.org/10.5194/amt-17-3419-2024, 2024
Short summary
Short summary
To meet the requirements for measuring aerosol optical properties on airborne platforms and conducting dual-wavelength measurements, we introduced A2S2, an airborne dual-wavelength cavity-attenuated phase-shift single monitor. This study reports the results in the laboratory and an aircraft campaign over Paris and its surrounding regions. The results demonstrate A2S2's reliability in measuring aerosol optical properties at both wavelengths and its suitability for future aircraft campaigns.
Patricia K. Quinn, Timothy S. Bates, Derek J. Coffman, James E. Johnson, and Lucia M. Upchurch
Atmos. Meas. Tech., 17, 3157–3170, https://doi.org/10.5194/amt-17-3157-2024, https://doi.org/10.5194/amt-17-3157-2024, 2024
Short summary
Short summary
An uncrewed aerial observing system has been developed for the measurement of vertical profiles of aerosol and cloud properties that affect Earth's radiation balance. The system was successfully deployed from a ship and from a coastal site and flown autonomously up to 3050 m and for 4.5 h. These results indicate the potential of the observing system to make routine, operational flights from ships and land to characterize aerosol interactions with radiation and clouds.
Manuel Schöberl, Maximilian Dollner, Josef Gasteiger, Petra Seibert, Anne Tipka, and Bernadett Weinzierl
Atmos. Meas. Tech., 17, 2761–2776, https://doi.org/10.5194/amt-17-2761-2024, https://doi.org/10.5194/amt-17-2761-2024, 2024
Short summary
Short summary
Transporting a representative aerosol sample to instrumentation inside a research aircraft remains a challenge due to losses or enhancements of particles in the aerosol sampling system. Here, we present sampling efficiencies and the cutoff diameter for the DLR Falcon aerosol sampling system as a function of true airspeed by comparing the in-cabin and the out-cabin particle number size distributions observed during the A-LIFE aircraft mission.
Markus Knoll, Martin Penz, Hannes Juchem, Christina Schmidt, Denis Pöhler, and Alexander Bergmann
Atmos. Meas. Tech., 17, 2481–2505, https://doi.org/10.5194/amt-17-2481-2024, https://doi.org/10.5194/amt-17-2481-2024, 2024
Short summary
Short summary
Exhaust emissions from combustion-based vehicles are negatively affecting human health and our environment. In particular, a small share (< 20 %) of poorly maintained or tampered vehicles are responsible for the majority (60 %–90 %) of traffic-related emissions. The emissions from vehicles are currently not properly monitored during their lifetime. We present a roadside measurement technique, called
point sampling, which can be used to monitor vehicle emissions throughout their life cycle.
Claudio Crazzolara and Andreas Held
Atmos. Meas. Tech., 17, 2183–2194, https://doi.org/10.5194/amt-17-2183-2024, https://doi.org/10.5194/amt-17-2183-2024, 2024
Short summary
Short summary
Our paper describes the development of a collection device that can be used to collect airborne dust particles classified according to their size. This collection device is optimized for a special analysis method based on X-ray fluorescence so that particles can be collected from the air and analyzed with high sensitivity. This enables the determination of the content of heavy metals in the airborne particle fraction, which are of health-relevant significance.
Roman Pohorsky, Andrea Baccarini, Julie Tolu, Lenny H. E. Winkel, and Julia Schmale
Atmos. Meas. Tech., 17, 731–754, https://doi.org/10.5194/amt-17-731-2024, https://doi.org/10.5194/amt-17-731-2024, 2024
Short summary
Short summary
This manuscript presents a new tethered-balloon-based platform for in situ vertical measurements of aerosols and trace gases in the lower atmosphere of polar and alpine regions. The system can host various instrumental setups to target different research questions and features new instruments, in particular a miniaturized scanning electrical mobility spectrometer, deployed for the first time in a tethered balloon.
Anna J. Miller, Fabiola Ramelli, Christopher Fuchs, Nadja Omanovic, Robert Spirig, Huiying Zhang, Ulrike Lohmann, Zamin A. Kanji, and Jan Henneberger
Atmos. Meas. Tech., 17, 601–625, https://doi.org/10.5194/amt-17-601-2024, https://doi.org/10.5194/amt-17-601-2024, 2024
Short summary
Short summary
We present a method for aerosol and cloud research using two uncrewed aerial vehicles (UAVs). The UAVs have a propeller heating mechanism that allows flights in icing conditions, which has so far been a limitation for cloud research with UAVs. One UAV burns seeding flares, producing a plume of particles that causes ice formation in supercooled clouds. The second UAV measures aerosol size distributions and is used for measuring the seeding plume or for characterizing the boundary layer.
Miguel Ricardo A. Hilario, Avelino F. Arellano, Ali Behrangi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Michael A. Shook, Luke D. Ziemba, and Armin Sorooshian
Atmos. Meas. Tech., 17, 37–55, https://doi.org/10.5194/amt-17-37-2024, https://doi.org/10.5194/amt-17-37-2024, 2024
Short summary
Short summary
Wet scavenging strongly influences aerosol lifetime and interactions but is a large uncertainty in global models. We present a method to identify meteorological variables relevant for estimating wet scavenging. During long-range transport over the tropical western Pacific, relative humidity and the frequency of humid conditions are better predictors of scavenging than precipitation. This method can be applied to other regions, and our findings can inform scavenging parameterizations in models.
Sarah Grawe, Conrad Jentzsch, Jonas Schaefer, Heike Wex, Stephan Mertes, and Frank Stratmann
Atmos. Meas. Tech., 16, 4551–4570, https://doi.org/10.5194/amt-16-4551-2023, https://doi.org/10.5194/amt-16-4551-2023, 2023
Short summary
Short summary
Measurements of ice-nucleating particle (INP) concentrations are valuable for the simulation of cloud properties. In recent years, filter sampling in combination with offline INP measurements has become increasingly popular. However, most sampling is ground-based, and the vertical transport of INPs is not well quantified. The High-volume flow aERosol particle filter sAmpler (HERA) for applications on board aircraft was developed to expand the sparse dataset of INP concentrations at cloud level.
Dimitri Castarède, Zoé Brasseur, Yusheng Wu, Zamin A. Kanji, Markus Hartmann, Lauri Ahonen, Merete Bilde, Markku Kulmala, Tuukka Petäjä, Jan B. C. Pettersson, Berko Sierau, Olaf Stetzer, Frank Stratmann, Birgitta Svenningsson, Erik Swietlicki, Quynh Thu Nguyen, Jonathan Duplissy, and Erik S. Thomson
Atmos. Meas. Tech., 16, 3881–3899, https://doi.org/10.5194/amt-16-3881-2023, https://doi.org/10.5194/amt-16-3881-2023, 2023
Short summary
Short summary
Clouds play a key role in Earth’s climate by influencing the surface energy budget. Certain types of atmospheric aerosols, called ice-nucleating particles (INPs), induce the formation of ice in clouds and, thus, often initiate precipitation formation. The Portable Ice Nucleation Chamber 2 (PINCii) is a new instrument developed to study ice formation and to conduct ambient measurements of INPs, allowing us to investigate the sources and properties of the atmospheric aerosols that can act as INPs.
Franz Martin Schnaiter, Claudia Linke, Eija Asmi, Henri Servomaa, Antti-Pekka Hyvärinen, Sho Ohata, Yutaka Kondo, and Emma Järvinen
Atmos. Meas. Tech., 16, 2753–2769, https://doi.org/10.5194/amt-16-2753-2023, https://doi.org/10.5194/amt-16-2753-2023, 2023
Short summary
Short summary
Light-absorbing particles from combustion processes are important contributors to climate warming. Their highly variable spectral light absorption properties need to be monitored in the field. Commonly used methods show measurement artefacts that are difficult to correct. We introduce a new instrument that is based on the photoacoustic effect. Long-term operation in the Finnish Arctic demonstrates the applicability of the new instrument for unattended light absorption monitoring.
Dominik Stolzenburg, Tiia Laurila, Pasi Aalto, Joonas Vanhanen, Tuukka Petäjä, and Juha Kangasluoma
Atmos. Meas. Tech., 16, 2471–2483, https://doi.org/10.5194/amt-16-2471-2023, https://doi.org/10.5194/amt-16-2471-2023, 2023
Short summary
Short summary
Size-distribution measurements of ultrafine particles are of special interest as they can be used to estimate the atmospheric significance of new particle formation, a process which is thought to influence the global climate. Here we show that improved counting statistics in size-distribution measurements through the usage of higher sampling flows can significantly reduce the uncertainties in such calculations.
Kamaljeet Kaur and Kerry E. Kelly
Atmos. Meas. Tech., 16, 2455–2470, https://doi.org/10.5194/amt-16-2455-2023, https://doi.org/10.5194/amt-16-2455-2023, 2023
Short summary
Short summary
We evaluated the AlphaSense OPC-N3 and PMS5003 compared to federal equivalent method (FEM) PM10 measurements in the Salt Lake Valley during five dust events. Before correction, the OPC-N3 agreed well, but the PMS PM10 measurements correlated poorly with the FEM. After correcting the PMS with a PM2.5 / PM10 ratio-based factor, the PMS PM10 correlations improved significantly. This suggests the possibility of better resolved spatial estimates of PM10 using PMS measurements and PM2.5 / PM10 ratios.
Balint Alfoldy, Asta Gregorič, Matic Ivančič, Irena Ježek, and Martin Rigler
Atmos. Meas. Tech., 16, 135–152, https://doi.org/10.5194/amt-16-135-2023, https://doi.org/10.5194/amt-16-135-2023, 2023
Short summary
Short summary
Atmospheric concentrations and source apportionment (SA) of black carbon (BC) and CO2 were determined in an urban environment during a heating season. BC particles were attributed to two major sources: traffic and heating. The BC SA was implemented by an Aethalometer model used for the SA of CO2 supposing that the source-specific CO2 components are correlated with the corresponding BC. Source-specific emission factors were determined as a ratio of corresponding BC and CO2 components.
Christian Pilz, Sebastian Düsing, Birgit Wehner, Thomas Müller, Holger Siebert, Jens Voigtländer, and Michael Lonardi
Atmos. Meas. Tech., 15, 6889–6905, https://doi.org/10.5194/amt-15-6889-2022, https://doi.org/10.5194/amt-15-6889-2022, 2022
Short summary
Short summary
Tethered balloon observations are highly valuable for aerosol studies in the lowest part of the atmosphere. This study presents a newly developed platform called CAMP with four aerosol instruments for balloon-borne measurements in the Arctic. Laboratory characterizations and evaluations of the instruments and results of a first field deployment are shown. A case study highlights CAMP's capabilities and the importance of airborne aerosol studies for interpretation of ground-based observations.
Weilun Zhao, Gang Zhao, Ying Li, Song Guo, Nan Ma, Lizi Tang, Zirui Zhang, and Chunsheng Zhao
Atmos. Meas. Tech., 15, 6807–6817, https://doi.org/10.5194/amt-15-6807-2022, https://doi.org/10.5194/amt-15-6807-2022, 2022
Short summary
Short summary
A new method to determine black carbon mass size distribution (BCMSD) was proposed using the size-resolved absorption coefficient measured by an aerodynamic aerosol classifier in tandem with an aethalometer. This new method fills the gap in the high-time-resolution measurement of BCMSD ranging from upper submicron particle sizes to larger than 1 µm. This method can be applied to field measurement of BCMSD extensively for better understanding BC aging and better estimating the BC climate effect.
Antonis Dragoneas, Sergej Molleker, Oliver Appel, Andreas Hünig, Thomas Böttger, Markus Hermann, Frank Drewnick, Johannes Schneider, Ralf Weigel, and Stephan Borrmann
Atmos. Meas. Tech., 15, 5719–5742, https://doi.org/10.5194/amt-15-5719-2022, https://doi.org/10.5194/amt-15-5719-2022, 2022
Short summary
Short summary
The ERICA is a specially designed aerosol particle mass spectrometer for in situ, real-time chemical composition analysis of aerosols. It can operate completely autonomously, in the absence of an instrument operator. Its design has enabled its operation under harsh conditions, like those experienced in the upper troposphere and lower stratosphere, aboard unpressurized high-altitude research aircraft. The instrument has successfully participated in several aircraft operations around the world.
Dimitrios Bousiotis, David C. S. Beddows, Ajit Singh, Molly Haugen, Sebastián Diez, Pete M. Edwards, Adam Boies, Roy M. Harrison, and Francis D. Pope
Atmos. Meas. Tech., 15, 4047–4061, https://doi.org/10.5194/amt-15-4047-2022, https://doi.org/10.5194/amt-15-4047-2022, 2022
Short summary
Short summary
In the last decade, low-cost sensors have revolutionised the field of air quality monitoring. This paper extends the ability of low-cost sensors to not only measure air pollution, but also to understand where the pollution comes from. This "source apportionment" is a critical step in air quality management to allow for the mitigation of air pollution. The techniques developed in this paper have the potential for great impact in both research and industrial applications.
Luka Drinovec, Uroš Jagodič, Luka Pirker, Miha Škarabot, Mario Kurtjak, Kristijan Vidović, Luca Ferrero, Bradley Visser, Jannis Röhrbein, Ernest Weingartner, Daniel M. Kalbermatter, Konstantina Vasilatou, Tobias Bühlmann, Celine Pascale, Thomas Müller, Alfred Wiedensohler, and Griša Močnik
Atmos. Meas. Tech., 15, 3805–3825, https://doi.org/10.5194/amt-15-3805-2022, https://doi.org/10.5194/amt-15-3805-2022, 2022
Short summary
Short summary
A new photothermal interferometer (PTAAM-2λ) for artefact-free determination of the aerosol absorption coefficient at two wavelengths is presented. The instrument is calibrated with NO2 and polydisperse nigrosin, resulting in very low uncertainties of the absorption coefficients: 4 % at 532 nm and 6 % at 1064 nm. The instrument’s performance makes the PTAAM-2λ a strong candidate for reference measurements of the aerosol absorption coefficient.
Markus Leiminger, Lukas Fischer, Sophia Brilke, Julian Resch, Paul Martin Winkler, Armin Hansel, and Gerhard Steiner
Atmos. Meas. Tech., 15, 3705–3720, https://doi.org/10.5194/amt-15-3705-2022, https://doi.org/10.5194/amt-15-3705-2022, 2022
Short summary
Short summary
We developed an axial ion mobility classifier coupled to an atmospheric-pressure interface time-of-flight (APi-TOF) mass spectrometer to measure size-segregated atmospheric ions. We characterize the performance of the novel instrument with bipolar-electrospray-generated ion mobility standards and compare the results with CFD simulations and a simplified numerical particle-tracking model. Ultimately, we report first mass–mobility measurements of atmospheric ions in Innsbruck, Austria.
Andreas Hünig, Oliver Appel, Antonis Dragoneas, Sergej Molleker, Hans-Christian Clemen, Frank Helleis, Thomas Klimach, Franziska Köllner, Thomas Böttger, Frank Drewnick, Johannes Schneider, and Stephan Borrmann
Atmos. Meas. Tech., 15, 2889–2921, https://doi.org/10.5194/amt-15-2889-2022, https://doi.org/10.5194/amt-15-2889-2022, 2022
Short summary
Short summary
We have serially combined the two well-established methods for in situ real-time measurement of fine particle chemical composition, the single-particle laser ablation method and the flash evaporation with electron impact ionization method, into a novel instrument. Here we present the design; instrument characteristics, as derived from laboratory and field measurements; and results from the first field deployment during the 2017 StratoClim aircraft campaign.
Christopher D. Wallis, Mason D. Leandro, Patrick Y. Chuang, and Anthony S. Wexler
Atmos. Meas. Tech., 15, 2547–2556, https://doi.org/10.5194/amt-15-2547-2022, https://doi.org/10.5194/amt-15-2547-2022, 2022
Short summary
Short summary
Measuring emissions from stacks requires techniques to address a broad range of conditions and measurement challenges. Here we describe an instrument package held by a crane above a stack to characterize both wet droplet and dried aerosol emissions from cooling tower spray drift in situ. The instrument package characterizes the velocity, size distribution, and concentration of the wet droplet emissions and the mass concentration and elemental composition of the dried PM2.5 and PM10 emissions.
Karin Ardon-Dryer, Mary C. Kelley, Xia Xueting, and Yuval Dryer
Atmos. Meas. Tech., 15, 2345–2360, https://doi.org/10.5194/amt-15-2345-2022, https://doi.org/10.5194/amt-15-2345-2022, 2022
Short summary
Short summary
The Aerosol Research Observation Station (AEROS) located in West Texas was designed to continuously measure atmospheric particles, including different particulate matter sizes, total particle number concentration, and size distribution. This article provides a description of AEROS as well as an intercomparison of the different instruments using laboratory and atmospheric particles, showing similar concentration as well to distinguish between various pollution events (natural vs. anthropogenic).
Adam T. Ahern, Frank Erdesz, Nicholas L. Wagner, Charles A. Brock, Ming Lyu, Kyra Slovacek, Richard H. Moore, Elizabeth B. Wiggins, and Daniel M. Murphy
Atmos. Meas. Tech., 15, 1093–1105, https://doi.org/10.5194/amt-15-1093-2022, https://doi.org/10.5194/amt-15-1093-2022, 2022
Short summary
Short summary
Particles in the atmosphere play a significant role in climate change by scattering light back into space, reducing the amount of energy available to be absorbed by greenhouse gases. We built a new instrument to measure what direction light is scattered by particles, e.g., wildfire smoke. This is important because, depending on the angle of the sun, some particles scatter light into space (cooling the planet), but some light is also scattered towards the Earth (not cooling the planet).
Yuya Kobayashi and Nobuyuki Takegawa
Atmos. Meas. Tech., 15, 833–844, https://doi.org/10.5194/amt-15-833-2022, https://doi.org/10.5194/amt-15-833-2022, 2022
Short summary
Short summary
We propose a new method to quantify particulate sodium and potassium salts (nitrate, chloride, and sulfate) by using a refractory aerosol thermal desorption mass spectrometer (rTDMS). The combination of a graphite particle collector and a carbon dioxide laser enables high desorption temperature. Laboratory experiments showed that major ion signals originating from sodium or potassium salts were clearly detected, associated with the increase in the desorption temperature by laser heating.
James R. Ouimette, William C. Malm, Bret A. Schichtel, Patrick J. Sheridan, Elisabeth Andrews, John A. Ogren, and W. Patrick Arnott
Atmos. Meas. Tech., 15, 655–676, https://doi.org/10.5194/amt-15-655-2022, https://doi.org/10.5194/amt-15-655-2022, 2022
Short summary
Short summary
We show that the low-cost PurpleAir sensor can be characterized as a cell-reciprocal nephelometer. At two very different locations (Mauna Loa Observatory in Hawaii and the Table Mountain rural site in Colorado), the PurpleAir measurements are highly correlated with the submicrometer aerosol scattering coefficient measured by a research-grade integrating nephelometer. These results imply that, with care, PurpleAir data may be used to evaluate climate and air quality models.
Steven G. Howell, Steffen Freitag, Amie Dobracki, Nikolai Smirnow, and Arthur J. Sedlacek III
Atmos. Meas. Tech., 14, 7381–7404, https://doi.org/10.5194/amt-14-7381-2021, https://doi.org/10.5194/amt-14-7381-2021, 2021
Short summary
Short summary
Small particles in the air have important effects on visibility, clouds, and human health. For the ORACLES project we got a new particle sizing instrument that is fast, works over the most important particle sizes, and avoids some of the issues that plague other optical particle sizers. Unfortunately it sees some particles much smaller than they really are, likely because they heat up and evaporate. We show a crude correction and speculate why these particles heat up much more than expected.
Jeffrey K. Bean
Atmos. Meas. Tech., 14, 7369–7379, https://doi.org/10.5194/amt-14-7369-2021, https://doi.org/10.5194/amt-14-7369-2021, 2021
Short summary
Short summary
Understanding and improving the quality of data generated from low-cost air quality sensors are crucial steps in using these sensors. This work investigates how averaging time, choice of reference instrument, and the observation of higher pollutant concentrations can impact the perceived performance of low-cost sensors in an evaluation. The influence of these factors should be considered when comparing one sensor to another or determining if a sensor can produce data that fit a specific need.
Fan Mei, Steven Spielman, Susanne Hering, Jian Wang, Mikhail S. Pekour, Gregory Lewis, Beat Schmid, Jason Tomlinson, and Maynard Havlicek
Atmos. Meas. Tech., 14, 7329–7340, https://doi.org/10.5194/amt-14-7329-2021, https://doi.org/10.5194/amt-14-7329-2021, 2021
Short summary
Short summary
This study focuses on understanding a versatile water-based condensation particle counter (vWCPC 3789) performance under various ambient pressure conditions (500–1000 hPa). A vWCPC has the advantage of avoiding health and safety concerns. However, its performance characterization under low pressure is rare but crucial for ensuring successful airborne deployment. This paper provides advanced knowledge of operating a vWCPC 3789 to capture the spatial variations of atmospheric aerosols.
Rebecca A. Wernis, Nathan M. Kreisberg, Robert J. Weber, Yutong Liang, John Jayne, Susanne Hering, and Allen H. Goldstein
Atmos. Meas. Tech., 14, 6533–6550, https://doi.org/10.5194/amt-14-6533-2021, https://doi.org/10.5194/amt-14-6533-2021, 2021
Short summary
Short summary
cTAG is a new scientific instrument that measures concentrations of organic chemicals in the atmosphere. cTAG is the first instrument capable of measuring small, light chemicals as well as heavier chemicals and everything in between on a single detector, every hour. In this work we explain how cTAG works and some of the tests we performed to verify that it works properly and reliably. We also present measurements of alkanes that suggest they have three dominant sources in a Bay Area suburb.
Linghan Zeng, Amy P. Sullivan, Rebecca A. Washenfelder, Jack Dibb, Eric Scheuer, Teresa L. Campos, Joseph M. Katich, Ezra Levin, Michael A. Robinson, and Rodney J. Weber
Atmos. Meas. Tech., 14, 6357–6378, https://doi.org/10.5194/amt-14-6357-2021, https://doi.org/10.5194/amt-14-6357-2021, 2021
Short summary
Short summary
Three online systems for measuring water-soluble brown carbon are compared. A mist chamber and two different particle-into-liquid samplers were deployed on separate research aircraft targeting wildfires and followed a similar detection method using a long-path liquid waveguide with a spectrometer to measure the light absorption from 300 to 700 nm. Detection limits, signal hysteresis and other sampling issues are compared, and further improvements of these liquid-based systems are provided.
Zixia Liu, Martin Osborne, Karen Anderson, Jamie D. Shutler, Andy Wilson, Justin Langridge, Steve H. L. Yim, Hugh Coe, Suresh Babu, Sreedharan K. Satheesh, Paquita Zuidema, Tao Huang, Jack C. H. Cheng, and James Haywood
Atmos. Meas. Tech., 14, 6101–6118, https://doi.org/10.5194/amt-14-6101-2021, https://doi.org/10.5194/amt-14-6101-2021, 2021
Short summary
Short summary
This paper first validates the performance of an advanced aerosol observation instrument POPS against a reference instrument and examines any biases introduced by operating it on a quadcopter drone. The results show the POPS performs relatively well on the ground. The impact of the UAV rotors on the POPS is small at low wind speeds, but when operating under higher wind speeds, larger discrepancies occur. It appears that the POPS measures sub-micron aerosol particles more accurately on the UAV.
Eric A. Wendt, Casey Quinn, Christian L'Orange, Daniel D. Miller-Lionberg, Bonne Ford, Jeffrey R. Pierce, John Mehaffy, Michael Cheeseman, Shantanu H. Jathar, David H. Hagan, Zoey Rosen, Marilee Long, and John Volckens
Atmos. Meas. Tech., 14, 6023–6038, https://doi.org/10.5194/amt-14-6023-2021, https://doi.org/10.5194/amt-14-6023-2021, 2021
Short summary
Short summary
Fine particulate matter air pollution is one of the leading contributors to adverse health outcomes on the planet. Here, we describe the design and validation of a low-cost, compact, and autonomous instrument capable of measuring particulate matter levels directly, via mass sampling, and optically, via mass and sunlight extinction measurements. We demonstrate the instrument's accuracy relative to reference measurements and its potential for community-level sampling.
Jiaoshi Zhang, Steven Spielman, Yang Wang, Guangjie Zheng, Xianda Gong, Susanne Hering, and Jian Wang
Atmos. Meas. Tech., 14, 5625–5635, https://doi.org/10.5194/amt-14-5625-2021, https://doi.org/10.5194/amt-14-5625-2021, 2021
Short summary
Short summary
In this study, we present a newly developed instrument, the humidity-controlled fast integrated mobility spectrometer (HFIMS), for fast measurements of aerosol hygroscopic growth. The HFIMS can measure the distributions of particle hygroscopic growth factors at six diameters from 35 to 265 nm under five RH levels from 20 to 85 % within 25 min. The HFIMS significantly advances our capability of characterizing the hygroscopic growth of atmospheric aerosols over a wide range of relative humidities.
Johannes Passig, Julian Schade, Robert Irsig, Lei Li, Xue Li, Zhen Zhou, Thomas Adam, and Ralf Zimmermann
Atmos. Meas. Tech., 14, 4171–4185, https://doi.org/10.5194/amt-14-4171-2021, https://doi.org/10.5194/amt-14-4171-2021, 2021
Short summary
Short summary
Ships are major sources of air pollution; however, monitoring of ship emissions outside harbours is a challenging task. We optimized single-particle mass spectrometry (SPMS) for the detection of bunker fuel emissions and demonstrate the detection of individual ship plumes from more than 10 km in distance. The approach works independently of background air pollution and also when ships use exhaust-cleaning scrubbers. We discuss the potential and limits of SPMS-based monitoring of ship plumes.
Mengying Bao, Yan-Lin Zhang, Fang Cao, Yu-Chi Lin, Yuhang Wang, Xiaoyan Liu, Wenqi Zhang, Meiyi Fan, Feng Xie, Robert Cary, Joshua Dixon, and Lihua Zhou
Atmos. Meas. Tech., 14, 4053–4068, https://doi.org/10.5194/amt-14-4053-2021, https://doi.org/10.5194/amt-14-4053-2021, 2021
Short summary
Short summary
We introduce a two-wavelength method for brown C measurements with a modified Sunset carbon analyzer. We defined the enhanced concentrations and gave the possibility of providing an indicator of brown C. Compared with the strong local sources of organic and elemental C, we found that differences in EC mainly originated from regional transport. Biomass burning emissions significantly contributed to high differences in EC concentrations during the heavy biomass burning periods.
Candice L. Sirmollo, Don R. Collins, Jordan M. McCormick, Cassandra F. Milan, Matthew H. Erickson, James H. Flynn, Rebecca J. Sheesley, Sascha Usenko, Henry W. Wallace, Alexander A. T. Bui, Robert J. Griffin, Matthew Tezak, Sean M. Kinahan, and Joshua L. Santarpia
Atmos. Meas. Tech., 14, 3351–3370, https://doi.org/10.5194/amt-14-3351-2021, https://doi.org/10.5194/amt-14-3351-2021, 2021
Short summary
Short summary
The newly developed portable 1 m3 CAGE chamber systems were characterized using data acquired during a 2-month field study in 2016 in a forested area north of Houston, TX, USA. Concentrations of several oxidant and organic compounds measured in the chamber were found to closely agree with those calculated with a zero-dimensional model. By tracking the modes of injected monodisperse particles, a pattern change was observed for hourly averaged growth rates between late summer and early fall.
Ningjin Xu and Don R. Collins
Atmos. Meas. Tech., 14, 2891–2906, https://doi.org/10.5194/amt-14-2891-2021, https://doi.org/10.5194/amt-14-2891-2021, 2021
Short summary
Short summary
Oxidation flow reactors (OFRs) are frequently used to study atmospheric chemistry and aerosol formation by accelerating by up to 10 000 times the reactions that can take hours, days, or even weeks in the atmosphere. Here we present the design and evaluation of a new all-Teflon OFR. The computational, laboratory, and field use data we present demonstrate that the PFA OFR is suitable for a range of applications, including the study of rapidly changing ambient concentrations.
Lars E. Kalnajs, Sean M. Davis, J. Douglas Goetz, Terry Deshler, Sergey Khaykin, Alex St. Clair, Albert Hertzog, Jerome Bordereau, and Alexey Lykov
Atmos. Meas. Tech., 14, 2635–2648, https://doi.org/10.5194/amt-14-2635-2021, https://doi.org/10.5194/amt-14-2635-2021, 2021
Short summary
Short summary
This work introduces a novel instrument system for high-resolution atmospheric profiling, which lowers and retracts a suspended instrument package beneath drifting long-duration balloons. During a 100 d circumtropical flight, the instrument collected over a hundred 2 km profiles of temperature, water vapor, clouds, and aerosol at 1 m resolution, yielding unprecedented geographic sampling and vertical resolution measurements of the tropical tropopause layer.
Demetrios Pagonis, Pedro Campuzano-Jost, Hongyu Guo, Douglas A. Day, Melinda K. Schueneman, Wyatt L. Brown, Benjamin A. Nault, Harald Stark, Kyla Siemens, Alex Laskin, Felix Piel, Laura Tomsche, Armin Wisthaler, Matthew M. Coggon, Georgios I. Gkatzelis, Hannah S. Halliday, Jordan E. Krechmer, Richard H. Moore, David S. Thomson, Carsten Warneke, Elizabeth B. Wiggins, and Jose L. Jimenez
Atmos. Meas. Tech., 14, 1545–1559, https://doi.org/10.5194/amt-14-1545-2021, https://doi.org/10.5194/amt-14-1545-2021, 2021
Short summary
Short summary
We describe the airborne deployment of an extractive electrospray time-of-flight mass spectrometer (EESI-MS). The instrument provides a quantitative 1 Hz measurement of the chemical composition of organic aerosol up to altitudes of
7 km, with single-compound detection limits as low as 50 ng per standard cubic meter.
Xiaona Shang, Ling Li, Xinlian Zhang, Huihui Kang, Guodong Sui, Gehui Wang, Xingnan Ye, Hang Xiao, and Jianmin Chen
Atmos. Meas. Tech., 14, 1037–1045, https://doi.org/10.5194/amt-14-1037-2021, https://doi.org/10.5194/amt-14-1037-2021, 2021
Short summary
Short summary
Oxidative stress can be used to evaluate not only adverse health effects but also adverse ecological effects. However, little research uses eco-toxicological assay to assess the risks posed by particle matter to non-human biomes. One important reason might be that the concentration of toxic components of atmospheric particles is far below the high detection limit of eco-toxic measurement. To solve the rapid detection problem, we extended a VACES for ecotoxicity aerosol measurement.
Joan Stude, Heinfried Aufmhoff, Hans Schlager, Markus Rapp, Frank Arnold, and Boris Strelnikov
Atmos. Meas. Tech., 14, 983–993, https://doi.org/10.5194/amt-14-983-2021, https://doi.org/10.5194/amt-14-983-2021, 2021
Short summary
Short summary
In this paper we describe the instrument ROMARA and show data from the first flight on a research rocket.
On the way through the atmosphere, the instrument detects positive and negative, natural occurring ions before returning back to ground.
ROMARA was successfully launched together with other instruments into a special radar echo.
We detected typical, light ions of positive and negative charge and heavy negative ions, but no heavy positive ions.
Rob L. Modini, Joel C. Corbin, Benjamin T. Brem, Martin Irwin, Michele Bertò, Rosaria E. Pileci, Prodromos Fetfatzis, Kostas Eleftheriadis, Bas Henzing, Marcel M. Moerman, Fengshan Liu, Thomas Müller, and Martin Gysel-Beer
Atmos. Meas. Tech., 14, 819–851, https://doi.org/10.5194/amt-14-819-2021, https://doi.org/10.5194/amt-14-819-2021, 2021
Short summary
Short summary
Extinction-minus-scattering is an important method for measuring aerosol light absorption, but its application in the field presents a number of challenges. A recently developed instrument based on this method – the CAPS PMssa – has the potential to overcome some of these challenges. We present a compilation of theory, lab measurements, and field examples to characterize this instrument and show the conditions under which it can deliver reliable absorption measurements for atmospheric aerosols.
Carolyn E. Jordan, Ryan M. Stauffer, Brian T. Lamb, Charles H. Hudgins, Kenneth L. Thornhill, Gregory L. Schuster, Richard H. Moore, Ewan C. Crosbie, Edward L. Winstead, Bruce E. Anderson, Robert F. Martin, Michael A. Shook, Luke D. Ziemba, Andreas J. Beyersdorf, Claire E. Robinson, Chelsea A. Corr, and Maria A. Tzortziou
Atmos. Meas. Tech., 14, 695–713, https://doi.org/10.5194/amt-14-695-2021, https://doi.org/10.5194/amt-14-695-2021, 2021
Short summary
Short summary
First field data from a custom-built in situ instrument measuring hyperspectral (300–700 nm, 0.8 nm resolution) ambient atmospheric aerosol extinction are presented. The advantage of this capability is that it can be directly linked to other in situ techniques that measure physical and chemical properties of atmospheric aerosols. Second-order polynomials provided a better fit to the data than traditional power law fits, yielding greater discrimination among distinct ambient aerosol populations.
Carolyn E. Jordan, Ryan M. Stauffer, Brian T. Lamb, Michael Novak, Antonio Mannino, Ewan C. Crosbie, Gregory L. Schuster, Richard H. Moore, Charles H. Hudgins, Kenneth L. Thornhill, Edward L. Winstead, Bruce E. Anderson, Robert F. Martin, Michael A. Shook, Luke D. Ziemba, Andreas J. Beyersdorf, Claire E. Robinson, Chelsea A. Corr, and Maria A. Tzortziou
Atmos. Meas. Tech., 14, 715–736, https://doi.org/10.5194/amt-14-715-2021, https://doi.org/10.5194/amt-14-715-2021, 2021
Short summary
Short summary
In situ measurements of ambient atmospheric aerosol hyperspectral (300–700 nm) optical properties (extinction, total absorption, water- and methanol-soluble absorption) were observed around the Korean peninsula. Such in situ observations provide a direct link between ambient aerosol optical properties and their physicochemical properties. The benefit of hyperspectral measurements is evident as simple mathematical functions could not fully capture the observed spectral detail of ambient aerosols.
Cyril Brunner and Zamin A. Kanji
Atmos. Meas. Tech., 14, 269–293, https://doi.org/10.5194/amt-14-269-2021, https://doi.org/10.5194/amt-14-269-2021, 2021
Short summary
Short summary
Subvisual microscopic particles in the atmosphere are needed to act as seeds for cloud droplets or ice crystals to form. The microscopic particles, called ice-nucleating particles (INPs), form ice crystals and are rare, and their properties are not well understood, in part because measuring them is challenging and time consuming, and to date has not been automated. Here, we present the first online instrument that can continuously and autonomously measure INP concentration at 243 K.
Cited articles
Adamov, S., Lemonis, N., Clot, B., Crouzy, B., Gehrig, R., Graber, M. J., Sallin, C., and Tummon, F.: On the measurement uncertainty of Hirst-type volumetric pollen and spore samplers, Aerobiologia, 1–15, https://doi.org/10.1007/s10453-021-09724-5, 2021.
Beggs, P. J.: Impacts of climate change on allergens and allergic diseases, Cambridge University Press, https://doi.org/10.1017/CBO9781107272859, 2016.
Buters, J., Clot, B., Galán, C., Gehrig, R., Gilge, S., Hentges, F., O'Connor, D., Sikoparija, B., Skjoth, C., Tummon, F., Adams-Groom, B., Antunes, C. M., Bruffaerts, N., Çelenk, S., Crouzy, B., Guillaud, G., Hajkova, L., Kofol Seliger, A., Oliver, G., Ribeiro, E., Rodinkova, V., Saarto, A., Sauliene, I., Sozinova, O., and Stjepanovic B.: Automatic detection of airborne pollen: an overview, Aerobiologia, 1–25, https://doi.org/10.1007/s10453-022-09750-x, 2022.
Chappuis, C., Tummon, F., Clot, B., Konzelmann, T., Calpini, B., and Crouzy, B.: Automatic pollen monitoring: first insights from hourly data, Aerobiologia, 36, 159–170, https://doi.org/10.1007/s10453-019-09619-6, 2020.
Chollet, F.: Keras, GitHub [code], https://github.com/fchollet/keras (last access: 22 April 2023), 2015.
Chicco, D. and Jurman, G.: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation, BMC Genomics, 21, 6, https://doi.org/10.1186/s12864-019-6413-7, 2020.
Clot, B.: Trends in airborne pollen: an overview of 21 years of data in Neuchâtel (Switzerland), Aerobiologia, 19, 227–234, https://doi.org/10.1023/B:AERO.0000006572.53105.17, 2003.
Crouzy, B., Stella, M., Konzelmann, T., Calpini, B., and Clot, B.: All-optical automatic pollen identification: towards an operational system, Atmos. Environ., 140, 202–212, https://doi.org/10.1016/j.atmosenv.2016.05.062, 2016.
Crouzy, B., Lieberherr, G., Tummon, F., and Clot, B.: False positives: handling them operationally for automatic pollen monitoring, Aerobiologia, 38, 429–432, https://doi.org/10.1007/s10453-022-09757-4, 2022.
D'Amato, G., Pawankar, R., Vitale, C., Lanza, M., Molino, A., Stanziola, A., Sanduzzi, A., Vatrella, A., and D'Amato, M.: Climate change and air pollution: effects on respiratory allergy, Allergy Asthma Immun., 8, 391–95, https://doi.org/10.4168/aair.2016.8.5.391, 2016.
Damialis, A., Traidl-Hoffmann, C., and Treudler, R.: Climate change and pollen allergies, in: Biodiversity and Health in the Face of Climate Change, 47–66, https://doi.org/10.1007/978-3-030-02318-8_3, 2019.
Gehrig, R., Maurer, F., and Schwierz, C.: Regionale Pollenkalender der Schweiz – MeteoSchweiz, Fachbericht Nr. 264, https://www.meteosuisse.admin.ch/services-et-publications/publications/rapports-et-bulletins/2017/regionale-pollenkalender-der-schweiz.html (last access: 22 April 2023), 2017.
Greiner, A. N., Hellings, P. W., Rotiroti, G., and Scadding, G. K.: Allergic Rhinitis, The Lancet, 378, 2112–2122, https://doi.org/10.1016/S0140-6736(11)60130-X, 2011.
Halbritter, H., Bouchal, J., and Heigl, H.: Fagus sylvatica, PalDat – A palynological database, https://www.paldat.org/pub/Fagus_sylvatica/304830;jsessionid=05C006636E5F5ED57525EEC2BFCC162F (last access: 22 April 2023), 2021.
Hirst, J. M.: An automatic volumetric spore trap, Ann. Appl. Biol., 39, 257–265, https://doi.org/10.1111/j.1744-7348.1952.tb00904.x, 1952.
Huffman, J. A., Perring, A. E., Savage, N. J., Clot, B., Crouzy, B., Tummon F., Shoshanim, O., Damit, B., Schneider, J., Sivaprakasam, V., Zawadowicz, M. A., Crawford, I., Gallagher, M., Topping, D., Doughty, D. C., Hill, S. C., and Pan, Y.: Real-time sensing of bioaerosols: review and current perspectives, Aerosol Sci. Tech., 54, 465–495, https://doi.org/10.1080/02786826.2019.1664724, 2020.
Lieberherr, G., Auderset, K., Calpini, B., Clot, B., Crouzy, B., Gysel-Beer, M., Konzelmann, T., Manzano, J., Mihajlovic, A., Moallemi, A., O'Connor, D., Sikoparija, B., Sauvageat, E., Tummon, F., and Vasilatou, K.: Assessment of real-time bioaerosol particle counters using reference chamber experiments, Atmos. Meas. Tech., 14, 7693–7706, https://doi.org/10.5194/amt-14-7693-2021, 2021.
Maya-Manzano, J. M., Tummon, F., Abt, R., Allan, N., Bunderson, L., Clot, B., Crouzy, B., Daunys, G., Erb, S., Gonzalez-Alonzo, M., Graf, E., Grewling, L., Haus, J., Kadantsev, E., Kawashima, S., Martinez-Bracero, M., Matavulj, P., Mills, S., Niederberger, E., Lieberherr, G., Lucas, R. W., O'Connor, D., Oteros, J., Palamarchuk, J., Pope, F. D., Rojo, J., Sauliene, I., Schäfer, S., Schmidt-Weber, C. B., Schnitzler, M., Sikoparija, B., Skjoth, C. A., Sofiev, M., Stemmler, T., Trivino, M., Zeder, Y., and Buters, J.: Towards European automatic bioaerosol monitoring: comparison of 9 automatic pollen observational instruments with classic Hirst-type traps, Sci. Total Environ., 866, 161–220, https://doi.org/10.1016/j.scitotenv.2022.161220, 2023.
McInnes, L., Healy, J., and Melville, J.: UMAP: Uniform Manifold Approximation and Projection for dimension reduction, arXiv [preprint], https://doi.org/10.48550/arXiv.1802.03426, 2018.
Oteros, J., Pusch, G., Weichenmeier, I., Heimann, U., Möller, R., Röseler, S., Traidl-Hoffmann, C., Schmidt-Weber, C., and Buters, J. T. M.: Automatic and online pollen monitoring, Int. Arch. Allergy Imm., 167, 158–166, https://doi.org/10.1159/000436968, 2015.
Oteros, J., Buters, J., Laven, G., Röseler, S., Wachter, R., Schmidt-Weber, C., and Hofmann, F.: Errors in determining the flow rate of Hirst-Type Pollen Traps, Aerobiologia, 33, 201–210, https://doi.org/10.1007/s10453-016-9467-x, 2017.
Pawankar, R., Canonica, G., Holgate, S., Lockey, R. F., and Blaiss, M.: World Allergy Organisation (WAO) white book on allergy, World Allergy Organisation, https://doi.org/10.3388/jspaci.25.341, 2011.
Pöhlker, C., Huffman, J. A., Förster, J.-D., and Pöschl, U.: Autofluorescence of atmospheric bioaerosols: spectral fingerprints and taxonomic trends of pollen, Atmos. Meas. Tech., 6, 3369–3392, https://doi.org/10.5194/amt-6-3369-2013, 2013.
Pollen.lu: Seuils critiques – Pollens, Ministère de la Santé, CHL, http://www.pollen.lu/?qsPage=allergysteps&qsLanguage=Fra (last access: 22 April 2023), 2003.
Puc, M. and Kasprzyk, I.: The patterns of Corylus and Alnus pollen seasons and pollination periods in two Polish cities located in different climatic regions, Aerobiologia, 29, 495–511, https://doi.org/10.1007/s10453-013-9299-x, 2013.
Rantio-Lehtimäki, A.: Short, medium, and long range transported airborne particles in viability and antigenicity analyses, Aerobiologia, 10, 175–181, https://doi.org/10.1007/BF02459233, 1994.
Raschka, S.: Model evaluation, model selection, and algorithm selection in machine learning, arXiv [preprint], https://doi.org/10.48550/arXiv.1811.12808, 2020.
Ring, J., Krämer, U., Schäfer, T., and Behrendt, H.: Why are allergies increasing?, Curr. Opin. Immunol., 13, 701–708, https://doi.org/10.1016/S0952-7915(01)00282-5, 2001.
Rojo, J., Salido, P., and Pérez-Badia, R.: Flower and pollen production in the “Cornicabra” olive (Olea europaea L.) cultivar and the influence of environmental factors, Trees, 29, 1235–1245, https://doi.org/10.1007/s00468-015-1203-6, 2015.
Sauvageat, E., Zeder, Y., Auderset, K., Calpini, B., Clot, B., Crouzy, B., Konzelmann, T., Lieberherr, G., Tummon, F., and Vasilatou, K.: Real-time pollen monitoring using digital holography, Atmos. Meas. Tech., 13, 1539–1550, https://doi.org/10.5194/amt-13-1539-2020, 2020.
Sofiev, M.: On possibilities of assimilation of near-real-time pollen data by atmospheric composition models, Aerobiologia, 35, 523–531, https://doi.org/10.1007/s10453-019-09583-1, 2019.
Spieksma, F. T. M.: Pollinosis in Europe: new observations and developments, Rev. Palaeobot. Palynolo., 64, 35–40, https://doi.org/10.1016/0034-6667(90)90114-X, 1990.
Tan, M. and Le, Q.: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, in: International conference on machine learning, PMLR, Long Beach, CA, USA, 10–15 June 2019, 97, 6105–6114, https://proceedings.mlr.press/v97/tan19a.html (last access: 22 April 2023), 2019.
Tummon, F., Adamov, S., Clot, B., Crouzy, B., Gysel-Beer, M., Kawashima, S., Lieberherr, G., Manzano, J., Markey, E., Moallemi A., and O'Connor, D.: A first evaluation of multiple automatic pollen monitors run in parallel, Aerobiologia, 1–16, https://doi.org/10.1007/s10453-021-09729-0, 2021.
Van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., and Yu, T.: Scikit-image: image processing in Python, PeerJ [code], 2, e453, https://doi.org/10.7717/peerj.453, 2014.
Woolcock, A. J., Bastiampillai, S. A., Marks, G. B., and Keena, V. A.: The burden of asthma in Australia, Med. J. Australia, 175, 141–145, https://doi.org/10.5694/j.1326-5377.2001.tb143062.x, 2001.
Woolcock, A. J. and Peat, J. K.: Evidence for the increase in asthma worldwide, Ciba Foundation Symposium, 206, 122–139, https://doi.org/10.1002/9780470515334.ch8, 2007.
Ziello, C., Sparks, T. H., Estrella, N., Belmonte, J., Bergmann, K. C., Bucher, E., Brighetti, M. A., Damialis, A., Detandt, M., Galán, C., Gehrig, R., Grewling, L., Guttiérrez Bustillo, A. M., Hallsdóttir, M., Kockhans-Bieda, M. C., De Linares, C., Myszkowska, D., Pàldy, A., Sánchez, A., Smith, M., Thibaudon, M., Travaglini, A., Uruska, A., Valencia-Barrera, R. M., Vokou, D., Wachter, R., de Weger, L. A., and Menzel, A.: Changes to airborne pollen counts across Europe, PloS One, 7, e34076, https://doi.org/10.1371/journal.pone.0034076, 2012.
Zuberbier, T., Lötvall, J., Simoens, S., Subramanian, S. V., and Church, M. K.: Economic burden of inadequate management of allergic diseases in the European Union: a GA2LEN review, Allergy, 69, 1275–1279, https://doi.org/10.1111/all.12470, 2014.
Short summary
In this study, we focus on an automatic bioaerosol measurement instrument and investigate the impact of using its fluorescence measurement for pollen identification. The fluorescence signal is used together with a pair of images from the same instrument to identify single pollen grains via neural networks. We test whether considering fluorescence as a supplementary input improves the pollen identification performance by comparing three different neural networks.
In this study, we focus on an automatic bioaerosol measurement instrument and investigate the...