Articles | Volume 17, issue 2
https://doi.org/10.5194/amt-17-441-2024
https://doi.org/10.5194/amt-17-441-2024
Research article
 | 
23 Jan 2024
Research article |  | 23 Jan 2024

Real-time pollen identification using holographic imaging and fluorescence measurements

Sophie Erb, Elias Graf, Yanick Zeder, Simone Lionetti, Alexis Berne, Bernard Clot, Gian Lieberherr, Fiona Tummon, Pascal Wullschleger, and Benoît Crouzy

Related authors

Impact of seeder-feeder cloud interaction on precipitation formation: a case study based on extensive remote-sensing, in-situ and model data
Kevin Ohneiser, Patric Seifert, Willi Schimmel, Fabian Senf, Tom Gaudek, Martin Radenz, Audrey Teisseire, Veronika Ettrichrätz, Teresa Vogl, Nina Maherndl, Nils Pfeifer, Jan Henneberger, Anna J. Miller, Nadja Omanovic, Christopher Fuchs, Huiying Zhang, Fabiola Ramelli, Robert Spirig, Anton Kötsche, Heike Kalesse-Los, Maximilian Maahn, Heather Corden, Alexis Berne, Majid Hajipour, Hannes Griesche, Julian Hofer, Ronny Engelmann, Annett Skupin, Albert Ansmann, and Holger Baars
EGUsphere, https://doi.org/10.5194/egusphere-2025-2482,https://doi.org/10.5194/egusphere-2025-2482, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
An extensive investigation of the ability of the ICOLMDZ model to simulate a katabatic wind event in Antarctica
Valentin Wiener, Étienne Vignon, Thomas Caton Harrison, Christophe Genthon, Felipe Toledo, Guylaine Canut-Rocafort, Yann Meurdesoif, and Alexis Berne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2046,https://doi.org/10.5194/egusphere-2025-2046, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Calibration of Weather Radars with a Target Simulator
Marc Schneebeli, Andreas Leuenberger, Philipp J. Schmid, Jacopo Grazioli, Heather Corden, Alexis Berne, Patrick Kennedy, Jim George, Francesc Junyent, and V. Chandrasekar
EGUsphere, https://doi.org/10.5194/egusphere-2025-1702,https://doi.org/10.5194/egusphere-2025-1702, 2025
Short summary
Flash-flood Alert System using Ensemble Radar Prediction and Rainfall-runoff Simulation
Frédéric G. Jordan, Clément Cosson, Marco Gabella, Ioannis V. Sideris, Adrien Liernur, Alexis Berne, and Urs Germann
Abstr. Int. Cartogr. Assoc., 9, 19, https://doi.org/10.5194/ica-abs-9-19-2025,https://doi.org/10.5194/ica-abs-9-19-2025, 2025
Double-moment normalization of hail size number distributions over Switzerland
Alfonso Ferrone, Jérôme Kopp, Martin Lainer, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 17, 7143–7168, https://doi.org/10.5194/amt-17-7143-2024,https://doi.org/10.5194/amt-17-7143-2024, 2024
Short summary

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Instruments and Platforms
In situ volcanic ash sampling and aerosol–gas analysis based on UAS technologies (AeroVolc)
Simon Thivet, Gholamhossein Bagheri, Przemyslaw M. Kornatowski, Allan Fries, Jonathan Lemus, Riccardo Simionato, Carolina Díaz-Vecino, Eduardo Rossi, Taishi Yamada, Simona Scollo, and Costanza Bonadonna
Atmos. Meas. Tech., 18, 2803–2824, https://doi.org/10.5194/amt-18-2803-2025,https://doi.org/10.5194/amt-18-2803-2025, 2025
Short summary
A solid-state infrared laser for two-step desorption–ionization processes in single-particle mass spectrometry
Marco Schmidt, Haseeb Hakkim, Lukas Anders, Aleksandrs Kalamašņikovs, Thomas Kröger-Badge, Robert Irsig, Norbert Graf, Reinhard Kelnberger, Johannes Passig, and Ralf Zimmermann
Atmos. Meas. Tech., 18, 2425–2437, https://doi.org/10.5194/amt-18-2425-2025,https://doi.org/10.5194/amt-18-2425-2025, 2025
Short summary
CIAO main upgrade: building up an ACTRIS-compliant aerosol in situ laboratory
Teresa Laurita, Alessandro Mauceri, Francesco Cardellicchio, Emilio Lapenna, Benedetto De Rosa, Serena Trippetta, Michail Mytilinaios, Davide Amodio, Aldo Giunta, Ermann Ripepi, Canio Colangelo, Nikolaos Papagiannopoulos, Francesca Morrongiello, Claudio Dema, Simone Gagliardi, Carmela Cornacchia, Rosa Maria Petracca Altieri, Aldo Amodeo, Marco Rosoldi, Donato Summa, Gelsomina Pappalardo, and Lucia Mona
Atmos. Meas. Tech., 18, 2373–2396, https://doi.org/10.5194/amt-18-2373-2025,https://doi.org/10.5194/amt-18-2373-2025, 2025
Short summary
STRAS: a new high-time-resolution aerosol sampler for particle-induced X-ray emission (PIXE) analysis
Silvia Nava, Roberta Vecchi, Paolo Prati, Vera Bernardoni, Laura Cadeo, Giulia Calzolai, Luca Carraresi, Carlo Cialdai, Massimo Chiari, Federica Crova, Alice Forello, Cosimo Fratticioli, Fabio Giardi, Marco Manetti, Dario Massabò, Federico Mazzei, Luca Repetto, Gianluigi Valli, Virginia Vernocchi, and Franco Lucarelli
Atmos. Meas. Tech., 18, 2137–2147, https://doi.org/10.5194/amt-18-2137-2025,https://doi.org/10.5194/amt-18-2137-2025, 2025
Short summary
The Flying Laboratory FLab: development and application of a UAS to measure aerosol particles and trace gases in the lower troposphere
Lasse Moormann, Thomas Böttger, Philipp Schuhmann, Luis Valero, Friederike Fachinger, and Frank Drewnick
Atmos. Meas. Tech., 18, 1441–1459, https://doi.org/10.5194/amt-18-1441-2025,https://doi.org/10.5194/amt-18-1441-2025, 2025
Short summary

Cited articles

Adamov, S., Lemonis, N., Clot, B., Crouzy, B., Gehrig, R., Graber, M. J., Sallin, C., and Tummon, F.: On the measurement uncertainty of Hirst-type volumetric pollen and spore samplers, Aerobiologia, 1–15, https://doi.org/10.1007/s10453-021-09724-5, 2021. 
Beggs, P. J.: Impacts of climate change on allergens and allergic diseases, Cambridge University Press, https://doi.org/10.1017/CBO9781107272859, 2016. 
Chappuis, C., Tummon, F., Clot, B., Konzelmann, T., Calpini, B., and Crouzy, B.: Automatic pollen monitoring: first insights from hourly data, Aerobiologia, 36, 159–170, https://doi.org/10.1007/s10453-019-09619-6, 2020. 
Chollet, F.: Keras, GitHub [code], https://github.com/fchollet/keras (last access: 22 April 2023), 2015. 
Download
Short summary
In this study, we focus on an automatic bioaerosol measurement instrument and investigate the impact of using its fluorescence measurement for pollen identification. The fluorescence signal is used together with a pair of images from the same instrument to identify single pollen grains via neural networks. We test whether considering fluorescence as a supplementary input improves the pollen identification performance by comparing three different neural networks.
Share