Articles | Volume 17, issue 16
https://doi.org/10.5194/amt-17-4863-2024
https://doi.org/10.5194/amt-17-4863-2024
Research article
 | 
26 Aug 2024
Research article |  | 26 Aug 2024

High-altitude balloon-launched uncrewed aircraft system measurements of atmospheric turbulence and qualitative comparison with infrasound microphone response

Anisa N. Haghighi, Ryan D. Nolin, Gary D. Pundsack, Nick Craine, Aliaksei Stratsilatau, and Sean C. C. Bailey

Related authors

An approach to minimize aircraft motion bias in multi-hole probe wind measurements made by small unmanned aerial systems
Loiy Al-Ghussain and Sean C. C. Bailey
Atmos. Meas. Tech., 14, 173–184, https://doi.org/10.5194/amt-14-173-2021,https://doi.org/10.5194/amt-14-173-2021, 2021
Short summary
Data generated during the 2018 LAPSE-RATE campaign: an introduction and overview
Gijs de Boer, Adam Houston, Jamey Jacob, Phillip B. Chilson, Suzanne W. Smith, Brian Argrow, Dale Lawrence, Jack Elston, David Brus, Osku Kemppinen, Petra Klein, Julie K. Lundquist, Sean Waugh, Sean C. C. Bailey, Amy Frazier, Michael P. Sama, Christopher Crick, David Schmale III, James Pinto, Elizabeth A. Pillar-Little, Victoria Natalie, and Anders Jensen
Earth Syst. Sci. Data, 12, 3357–3366, https://doi.org/10.5194/essd-12-3357-2020,https://doi.org/10.5194/essd-12-3357-2020, 2020
Short summary
University of Kentucky measurements of wind, temperature, pressure and humidity in support of LAPSE-RATE using multisite fixed-wing and rotorcraft unmanned aerial systems
Sean C. C. Bailey, Michael P. Sama, Caleb A. Canter, L. Felipe Pampolini, Zachary S. Lippay, Travis J. Schuyler, Jonathan D. Hamilton, Sean B. MacPhee, Isaac S. Rowe, Christopher D. Sanders, Virginia G. Smith, Christina N. Vezzi, Harrison M. Wight, Jesse B. Hoagg, Marcelo I. Guzman, and Suzanne Weaver Smith
Earth Syst. Sci. Data, 12, 1759–1773, https://doi.org/10.5194/essd-12-1759-2020,https://doi.org/10.5194/essd-12-1759-2020, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Instruments and Platforms
High-resolution wind speed measurements with quadcopter uncrewed aerial systems: calibration and verification in a wind tunnel with an active grid
Johannes Kistner, Lars Neuhaus, and Norman Wildmann
Atmos. Meas. Tech., 17, 4941–4955, https://doi.org/10.5194/amt-17-4941-2024,https://doi.org/10.5194/amt-17-4941-2024, 2024
Short summary
Evaluation of the hyperspectral radiometer (HSR1) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site
Kelly A. Balmes, Laura D. Riihimaki, John Wood, Connor Flynn, Adam Theisen, Michael Ritsche, Lynn Ma, Gary B. Hodges, and Christian Herrera
Atmos. Meas. Tech., 17, 3783–3807, https://doi.org/10.5194/amt-17-3783-2024,https://doi.org/10.5194/amt-17-3783-2024, 2024
Short summary
Cost-effective off-grid automatic precipitation samplers for pollutant and biogeochemical atmospheric deposition
Alessia A. Colussi, Daniel Persaud, Melodie Lao, Bryan K. Place, Rachel F. Hems, Susan E. Ziegler, Kate A. Edwards, Cora J. Young, and Trevor C. VandenBoer
Atmos. Meas. Tech., 17, 3697–3718, https://doi.org/10.5194/amt-17-3697-2024,https://doi.org/10.5194/amt-17-3697-2024, 2024
Short summary
Modelling of cup anemometry and dynamic overspeeding in average wind speed measurements
Troels Friis Pedersen and Jan-Åke Dahlberg
Atmos. Meas. Tech., 17, 1441–1461, https://doi.org/10.5194/amt-17-1441-2024,https://doi.org/10.5194/amt-17-1441-2024, 2024
Short summary
Introducing the Video In Situ Snowfall Sensor (VISSS)
Maximilian Maahn, Dmitri Moisseev, Isabelle Steinke, Nina Maherndl, and Matthew D. Shupe
Atmos. Meas. Tech., 17, 899–919, https://doi.org/10.5194/amt-17-899-2024,https://doi.org/10.5194/amt-17-899-2024, 2024
Short summary

Cited articles

Abarbanel, H. D. I., Holm, D. D., Marsden, J. E., and Ratiu, T.: Richardson Number Criterion for the Nonlinear Stability of Three-Dimensional Stratified Flow, Phys. Rev. Lett., 52, 2352–2355, https://doi.org/10.1103/PhysRevLett.52.2352, 1984. a
Al-Ghussain, L. and Bailey, S. C. C.: An approach to minimize aircraft motion bias in multi-hole probe wind measurements made by small unmanned aerial systems, Atmos. Meas. Tech., 14, 173–184, https://doi.org/10.5194/amt-14-173-2021, 2021. a, b
Al-Ghussain, L. and Bailey, S. C. C.: Uncrewed Aircraft System Measurements of Atmospheric Surface-Layer Structure During Morning Transition, Bound.-Lay. Meteorol., 185, 229–258, https://doi.org/10.1007/s10546-022-00729-2, 2022. a, b
Alisse, J.-R., Haynes, P. H., Vanneste, J., and Sidi, C.: Quantification of stratospheric mixing from turbulence microstructure measurements, Geophys. Res. Lett., 27, 2621–2624, https://doi.org/10.1029/2000GL011386, 2000. a
Bailey, S. C. C., Canter, C. A., Sama, M. P., Houston, A. L., and Smith, S. W.: Unmanned aerial vehicles reveal the impact of a total solar eclipse on the atmospheric surface layer, P. Roy. Soc. A-Math. Phy., 475, 20190212, https://doi.org/10.1098/rspa.2019.0212, 2019. a, b
Download
Short summary
This work summarizes measurements conducted in June 2021 using a small, uncrewed, stratospheric glider that was launched from a weather balloon to altitudes up to 30 km above sea level. The aircraft conducted measurements of wind speed and direction, pressure, temperature, and humidity during its descent as well as measurements of infrasonic sound levels. These data were used to evaluate the atmospheric turbulence observed during the descent phase of the flight.