Articles | Volume 18, issue 8
https://doi.org/10.5194/amt-18-1909-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-1909-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tracking traveling ionospheric disturbances through Doppler-shifted AM radio transmissions
Claire C. Trop
CORRESPONDING AUTHOR
Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
Department of Physics and Astronomy, Dartmouth College, Hanover, NH, USA
James LaBelle
CORRESPONDING AUTHOR
Department of Physics and Astronomy, Dartmouth College, Hanover, NH, USA
Philip J. Erickson
Haystack Observatory, Massachusetts Institute of Technology, Westford, MA, USA
Shun-Rong Zhang
Haystack Observatory, Massachusetts Institute of Technology, Westford, MA, USA
David McGaw
Department of Physics and Astronomy, Dartmouth College, Hanover, NH, USA
Terrence Kovacs
Department of Physics and Astronomy, Dartmouth College, Hanover, NH, USA
Related authors
No articles found.
Sevag Derghazarian, Larisa Goncharenko, Mateo Cardona Serrano, Shun-Rong Zhang, Philip J. Erickson, Anthea J. Coster, Dupinder Singh, and William Rideout
EGUsphere, https://doi.org/10.5194/egusphere-2025-5389, https://doi.org/10.5194/egusphere-2025-5389, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
This paper presents large scale changes to the ionosphere that were observed over a large portion of the continental US from 200 – 450 km altitude during the April 2024 solar eclipse. We observed a decrease in electron density of 50 %, a drop in electron and ion temperatures of 40 % and 20 % respectively. Unique features included lower densities and temperatures north of the eclipse path as compared to the south, and ion temperature decrease along a narrow region parallel to the eclipse path.
Kristina Collins, Steve Cerwin, Philip Erickson, Dev Joshi, Nathaniel Frissell, and Joe Huba
EGUsphere, https://doi.org/10.5194/egusphere-2022-327, https://doi.org/10.5194/egusphere-2022-327, 2022
Preprint archived
Short summary
Short summary
Radio measurements of time standard stations can be used to measure changes in the ionosphere's height, but not the height itself. In this paper, we show that we can estimate ionospheric height using data from amateur radio stations along with other systems and simulations, that multiple signal paths can be found in this data, and that precisely controlling the receiver frequency is important for this approach to work. This work will help us analyze radio data collected by citizen scientists.
Ryan Volz, Jorge L. Chau, Philip J. Erickson, Juha P. Vierinen, J. Miguel Urco, and Matthias Clahsen
Atmos. Meas. Tech., 14, 7199–7219, https://doi.org/10.5194/amt-14-7199-2021, https://doi.org/10.5194/amt-14-7199-2021, 2021
Short summary
Short summary
We introduce a new way of estimating winds in the upper atmosphere (about 80 to 100 km in altitude) from the observed Doppler shift of meteor trails using a statistical method called Gaussian process regression. Wind estimates and, critically, the uncertainty of those estimates can be evaluated smoothly (i.e., not gridded) in space and time. The effective resolution is set by provided parameters, which are limited in practice by the number density of the observed meteors.
Cited articles
Beley, V. S., Galushko, V. G., and Yampolski, Y. M.: Traveling ionospheric disturbance diagnostics using HF signal trajectory parameter variations, Radio Sci., 30, 1739–1752, 1995.
Chan, K. L. and Villard, O. G.: Observation of large-scale traveling ionospheric disturbances by spaced-path high-frequency instantaneous-frequency measurements, J. Geophys. Res., 67, 973–988, 1962.
Chilcote, M., LaBelle, J., Lind, F. D., Coster, A. J., Miller, E. S., Galkin, I. A., and Weatherwax, A. T.: Detection of traveling ionospheric disturbances by medium-frequency Doppler sounding using AM radio transmissions, Radio Sci., 50, 249–263, 2015.
Chum, J., F. Bonomi, A. M., Fišer, J., Cabrera, M. A., Ezquer, R. G., Burešová, and D., Laštovička, J.: Propagation of gravity waves and spread F in the low-latitude ionosphere over Tucumán, Argentina, by continuous Doppler sounding: First results, J. Geophys. Res.-Space, 119, 6954–6965, 2014.
Chum, J. and Podolska, K.: 3D Analysis of GW Propagation in the Ionosphere, Geophys. Res. Lett., 45, 11562–11571, 2021.
Cooper, C., Mitchell, C. N., Wright, C. J., Jackson, D. R., and Witvliet, B. A.: Measurement of ionospheric total electron content using single-frequency geostationary satellite observations, Radio Sci., 54, 10–19, 2019.
Cosgrove, R. B.: Generation of mesoscale F layer structure and electric fields by the combined Perkins and Es layer instabilities, in simulations, Ann. Geophys., 25, 1579–1601, https://doi.org/10.5194/angeo-25-1579-2007, 2007.
Cosgrove, R. B. and Tsunoda, R. T.: A direction-dependent instability of sporadic-E layers in the nighttime midlatitudes ionosphere, Geophys. Res. Lett., 29, 1864, https://doi.org/10.1029/2002GL014669, 2002.
Cosgrove, R. B. and Tsunoda, R. T.: Instability of the E-F coupled nighttime midlatitude ionosphere, J. Geophys. Res.-Space, 109, A04305, https://doi.org/10.1029/2003JA010243, 2004
Davies, K.: A measurement of ionospheric drifts by means of a Doppler shift technique, J. Geophys. Res., 67, 4909–4913, 1962.
Davis, T. N. and Sugiura, M.: Auroral electrojet activity index AE and its universal time variations, J. Geophys. Res., 71, 785–801, 1966.
Ding, F., Wan, W., Liu, L., Afraimovich, E. L., Voeykov, S. V., and Perevalova, N. P.: A statistical study of large-scale traveling ionospheric disturbances observed by GPS TEC during major magnetic storms over the years 2003–2005, J. Geophys. Res.-Space, 113, A00A01, https://doi.org/10.1029/2008JA013037, 2008.
Ding, F., Wan, W., Li, Q., Zhang, R., Song, Q., Ning, B., Liu, L., Zhao, B., and Xiong, B.: Comparative climatological study of large-scale traveling ionospheric disturbances over North America and China in 2011–2012, J. Geophys. Res.-Space, 119, 519–529, 2014.
Duly, T. M., Chapagain, N. P., and Makela, J. J.: Climatology of nighttime medium-scale traveling ionospheric disturbances (MSTIDs) in the Central Pacific and South American sectors, Ann. Geophys., 31, 2229–2237, https://doi.org/10.5194/angeo-31-2229-2013, 2013.
Essen, L.: International frequency comparisons by means of standard radio frequency emissions, P. Roy. Soc. Lon. Ser. A, 149, 506–510, 1935.
Fenwick, R. C. and Villard, O. G.: Continuous recordings of the frequency variation of the WWV-20 signal after propagation over a 4000-km path, J. Geophys. Res., 65, 3249–3260, 1960.
Fišer, J., Chum, J., and Liu, J.-Y.: Medium-scale traveling ionospheric disturbances over Taiwan observed with HF Doppler sounding, Earth Planets Space, 69, 1–10, 2017.
Francis, S. H.: Global propagation of atmospheric gravity waves: A review, J. Atmos. Terr. Phys., 37, 1011–1054, 1975.
Frissell, N. A., Kaeppler, S. R., Sanchez, D. F., Perry, G. W., Engelke, W. D., Erickson, P. J., Coster, A. J., Ruohoniemi, J. M., Baker, J. B. H., and West, M. L.: First observations of large scale traveling ionospheric disturbances using automated amateur radio receiving networks, Geophys. Res. Lett., 49, e2022GL097879, https://doi.org/10.1029/2022GL097879, 2022.
Fritts, D. C.: Gravity Wave Forcing and Effects in the Mesosphere and Lower Thermosphere, in: The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, edited by: Johnson, R. M. and Killeen, T. L., American Geophysical Union, Washington, Geophysical Monograph 87, 89–100, 1995.
Galushko, V. G., V. S. Beley, V. S., Koloskov, A. V., Yampolski, Yu M., Paznukhov, V. V., Reinisch, B. W., Foster, J. C., and Erickson, P.: Frequency-and-angular HF sounding and ISR diagnostics of TIDs, Radio Sci., 38, 1102, https://doi.org/10.1029/2002RS002861, 2003.
Garcia, F. J., Kelley, M. C., Makela, J. J., and Huang, C.-S.: Airglow observations of mesoscale low-velocity traveling ionospheric disturbances at midlatitudes, J. Geophys. Res., 105, 18407–18415, 2000.
Hernández-Pajares, M., Juan, J. M., Sanz, J., and Aragón-Àngel, A.: Propagation of medium scale traveling ionospheric disturbances at different latitudes and solar cycle conditions, Radio Sci., 47, RS0K05, https://doi.org/10.1029/2011RS004951, 2012.
Hocke, K. and Schlegel, K.: A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995, Ann. Geophys., 14, 917–940, https://doi.org/10.1007/s00585-996-0917-6, 1996.
Hocking, W. K.: Performing Fourier transforms on extremely long data streams, Comput. Phys., 3, 59–65, 1989.
Houghton, J.: The Physics of Atmospheres, Cambridge University Press, Cambridge, United Kingdom, 116 pp., ISBN 0521804566, 2002.
Hunsucker, R. D.: Atmospheric gravity waves generated in the high-latitude ionosphere: A review, Rev. Geophys., 20, 293–315, 1982.
Joyner, E. H. and Butcher, E. C.: Gravity wave effects in the nighttime F-region, J. Atmos. Terr. Phys., 42, 455–459, 1980.
Kelley, M. C.: On the origin of mesoscale TIDs at midlatitudes, Ann. Geophys., 29, 361–366, https://doi.org/10.5194/angeo-29-361-2011, 2011.
Kotake, N., Otsuka, Y., Tsugawa, T., Ogawa, T., and Saito, A.: Climatological study of GPS total electron content variations caused by medium scale traveling ionospheric disturbances, J. Geophys. Res.-Space, 111, A04306, https://doi.org/10.1029/2005JA011418, 2006.
LaBelle, J.: Replication Data for: “Tracking Traveling Ionospheric Disturbances through Doppler-shifted AM radio transmissions”, Version V1, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/L3JXIH, 2024.
Lacross, R. T., Kelly, E. J., and Toksoz, M. N.: Estimation of seismic noise structure using arrays, Geophysics, 34, 21–38, 1969.
Makela, J. J. and Otsuka, Y.: Overview of Nighttime Ionospheric Instabilities at Low- and Mid-Latitudes: Coupling Aspects Resulting in Structuring at the Mesoscale, Space Sci. Rev., 168, 419–440, 2011.
Martinis, C., Baumgardner, J., Wroten, J., and Mendillo, M.: Seasonal dependence of MSTIDs obtained from 630.0 nm airglow imaging at Arecibo, Geophys. Res. Lett., 37, L11103, https://doi.org/10.1029/2010GL043569, 2010.
Narayanan, V. L., Shiokawa, K., Otsuka, Y., and Neudegg, D.: On the role of thermospheric winds and sporadic E layers in the formation and evolution of electrified MSTIDs in geomagnetic conjugate regions, J. Geophys. Res.-Space, 123, 6957–6980, 2018.
Otsuka, Y., Suzuki, K., Nakagawa, S., Nishioka, M., Shiokawa, K., and Tsugawa, T.: GPS observations of medium-scale traveling ionospheric disturbances over Europe, Ann. Geophys., 31, 163–172, https://doi.org/10.5194/angeo-31-163-2013, 2013.
Park, J., Luhr, H., Min, K., and Lee, J.: Plasma density undulations in the nighttime mid-latitude F-region as observed by CHAMP, KOMPSAT-1 M, and DMSP F15, J. Atmos. Sol.-Terr. Phy., 72, 183–192, https://doi.org/10.1016/j.jastp.2009.11.007, 2010.
Paznukhov, V. V., Galushko, V. G., and Reinisch, B. W.: Digisonde observations of TIDs with frequency and angular sounding technique, Adv. Space Res., 49, 700–710, 2012.
Perkins, F.: Spread F and ionospheric currents, J. Geophys. Res., 78, 218–226, 1973.
Ransom, S. M., Eikenberry, S. M., and Middleditch, J.: Fourier techniques for very long astrophysical time-series analysis, Astron. J., 124, 1788–1809, 2002.
Reznychenko, A. I., Koloskov, A. V., Sopin, A. O., and Yampolski, Y. O.: Statistic of Seasonal and Diurnal Variations of Doppler Frequency Shift of HF Signals at Mid-Latitude Radio Path, Radio Physics and Radio Astronomy, 25, 118–135, 2020.
Richmond, A. D.: Gravity wave generation, propagation, and dissipation in the thermosphere, J. Geophys. Res., 83, 4131–4145, 1978.
Sears, R. D.: Ionospheric HF Doppler dispersion during the eclipse of 7 March 1970 and TID analysis, J. Atmos. Terr. Phys., 34, 727–732, 1972.
She, C.-Y., Yan, Z.-A., Gardner, C. S., Krueger, D. A., and Hu, X.: Climatology and seasonal variations of temperatures and gravity wave activities in the mesopause region above Ft. Collins, CO (40.6° N, 105.1° W), J. Geophys. Res.-Atmos., 127, e2021JD036291, https://doi.org/10.1029/2021JD036291, 2022.
Shibata, T. and Okuzawa, T.: Horizontal velocity dispersion of medium-scale travelling ionospheric disturbances in the F-region, J. Atmos. Terr. Phys., 45, 149-159, 1983.
Shiokawa, K., Ihara, C., Otsuka, Y., and Ogawa, T.: Statistical study of nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images, J. Geophys. Res.-Space, 108, 1052, https://doi.org/10.1029/2002JA009491, 2003.
Tanaka, T., Ichinose, T., Okuzawa, T., Shibata, T., Sato, Y., Nagasawa, C., and Ogawa, T.: HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atmos. Terr. Phys., 46, 233–245, 1984.
Tedd, B. L., Strangeways, H. J., and Jones, T. B.: The influence of large-scale TIDs on the bearings of geographically spaced HF transmissions, J. Atmos. Terr. Phys., 46, 109–117, 1984.
Toman, K.: On wavelike perturbations in the F region, Radio Sci., 11, 107–119, 1975.
Tsuboi, T., Shiokawa, K., Otsuka, Y., Fujinami, H., and Nakamura, T.: Statistical Analysis of the Horizontal Phase Velocity Distribution of Atmospheric Gravity Waves and Medium-Scale Traveling Ionospheric Disturbances in Airglow Images Over Sata (31.0° N, 130.7° E), Japan, J. Geophys. Res.-Space, 128, e2023JA031600, https://doi.org/10.1029/2023JA031600, 2023.
Tsugawa, T., Saito, A., and Otsuka, Y.: A statistical study of large-scale traveling ionospheric disturbances using the GPS network in Japan, J. Geophys. Res.-Space, 109, A06302, https://doi.org/10.1029/2003JA010302, 2004.
Tsugawa, T., Otsuka, Y., Coster, A. J., and Saito, A.: Medium scale traveling ionospheric disturbances detected with dense and wide TEC maps over North America, Geophys. Res. Lett., 34, L22101, https://doi.org/10.1029/2007GL031663, 2007.
Tsutsui, M., Horikawa, T., and Ogawa, T.: Determination of velocity vectors of thermospheric wind from dispersion relations of TID's observed by an HF Doppler array, J. Atmos. Terr. Phys., 46, 447–462, 1984.
Yakovets, A. F., Vodyannikov, V. V., Andreev, A. B., Gordienko, G. I., and Litvinov, Y. G.: Features of statistical distributions of large-scale traveling ionospheric disturbances over Almaty, Geomagn. Aeronomy+, 51, 640–645, 2011.
Yeh, K. C. and Liu, C. H.: Acoustic-gravity waves in the upper atmosphere, Rev. Geophys., 12, 193–216, 1974.
Zhang, S.-R., Erickson, P. J., Goncharenko, L. P., Coster, A. J., Rideout, W., and Vierinen, J.: Ionospheric bow waves and perturbations induced by the 21 August 2017 solar eclipse, Geophys. Res. Lett., 44, 12067–12073, https://doi.org/10.1002/2017GL076054, 2017.
Zhang, S.-R., Coster, A. J., Erickson, P. J., Goncharenko, L. P., Rideout, W., and Vierinen, J.: Traveling ionospheric disturbances and ionospheric perturbations associated with solar flares in September 2017, J. Geophys. Res.-Space, 124, 5894–5917, 2019.
Zhang, S.-R., Nishimura, Y., Erickson, P. J., Ercha, A., Kil, H., Deng, Y., Thomas, E. G., Rideout, W., Coster, A. J., Kerr, R., and Vierinen, J.: Traveling Ionospheric Disturbances in the Vicinity of Storm-Enhanced Density at Midlatitudes, J. Geophys. Res.-Space, 127, e2022JA030429, https://doi.org/10.1029/2022JA030429, 2022.
Short summary
Traveling ionospheric disturbances (TIDs) are manifestations of atmospheric waves that are significant for the transfer of energy and momentum between atmospheric layers and regions. This work demonstrates that velocities and directions of TIDs can be measured by monitoring the tiny shift in frequency of AM radio signals when they reflect from a moving ionosphere and that this method can be scaled to use large numbers of radio receivers and transmitters to monitor TIDs on a continental scale.
Traveling ionospheric disturbances (TIDs) are manifestations of atmospheric waves that are...