Articles | Volume 5, issue 4
https://doi.org/10.5194/amt-5-873-2012
https://doi.org/10.5194/amt-5-873-2012
Research article
 | 
27 Apr 2012
Research article |  | 27 Apr 2012

Validation of routine continuous airborne CO2 observations near the Bialystok Tall Tower

H. Chen, J. Winderlich, C. Gerbig, K. Katrynski, A. Jordan, and M. Heimann

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Real-time measurement of phase partitioning of organic compounds using a proton-transfer-reaction time-of-flight mass spectrometer coupled to a CHARON inlet
Yarong Peng, Hongli Wang, Yaqin Gao, Shengao Jing, Shuhui Zhu, Dandan Huang, Peizhi Hao, Shengrong Lou, Tiantao Cheng, Cheng Huang, and Xuan Zhang
Atmos. Meas. Tech., 16, 15–28, https://doi.org/10.5194/amt-16-15-2023,https://doi.org/10.5194/amt-16-15-2023, 2023
Short summary
A quantitative comparison of methods used to measure smaller methane emissions typically observed from superannuated oil and gas infrastructure
Stuart N. Riddick, Riley Ancona, Mercy Mbua, Clay S. Bell, Aidan Duggan, Timothy L. Vaughn, Kristine Bennett, and Daniel J. Zimmerle
Atmos. Meas. Tech., 15, 6285–6296, https://doi.org/10.5194/amt-15-6285-2022,https://doi.org/10.5194/amt-15-6285-2022, 2022
Short summary
Comparing airborne algorithms for greenhouse gas flux measurements over the Alberta oil sands
Broghan M. Erland, Cristen Adams, Andrea Darlington, Mackenzie L. Smith, Andrew K. Thorpe, Gregory R. Wentworth, Steve Conley, John Liggio, Shao-Meng Li, Charles E. Miller, and John A. Gamon
Atmos. Meas. Tech., 15, 5841–5859, https://doi.org/10.5194/amt-15-5841-2022,https://doi.org/10.5194/amt-15-5841-2022, 2022
Short summary
Intercomparison of commercial analyzers for atmospheric ethane and methane observations
Roisin Commane, Andrew Hallward-Driemeier, and Lee T. Murray
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-272,https://doi.org/10.5194/amt-2022-272, 2022
Revised manuscript accepted for AMT
Short summary
Characterization of inexpensive metal oxide sensor performance for trace methane detection
Daniel Furuta, Tofigh Sayahi, Jinsheng Li, Bruce Wilson, Albert A. Presto, and Jiayu Li
Atmos. Meas. Tech., 15, 5117–5128, https://doi.org/10.5194/amt-15-5117-2022,https://doi.org/10.5194/amt-15-5117-2022, 2022
Short summary

Cited articles

Anderson, B. E., Gregory, G. L., Collins, J. E., Sachse, G. W., Conway, T. J., and Whiting, G. P.: Airborne observations of spatial and temporal variability of tropospheric carbon dioxide, J. Geophys. Res.-Atmos., 101, 1985–1997, 1996.
Bakwin, P. S., Tans, P. P., Stephens, B. B., Wofsy, S. C., Gerbig, C., and Grainger, A.: Strategies for measurement of atmospheric column means of carbon dioxide from aircraft using discrete sampling, J. Geophys. Res.-Atmos., 108, 4514, https://doi.org/10.1029/2002jd003306, 2003.
Bowling, D. R., Sargent, S. D., Tanner, B. D., and Ehleringer, J. R.: Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem-atmosphere CO2 exchange, Agr. Forest Meteorol., 118, 1–19, 2003.
Chen, H., Winderlich, J., Gerbig, C., Hoefer, A., Rella, C. W., Crosson, E. R., Van Pelt, A. D., Steinbach, J., Kolle, O., Beck, V., Daube, B. C., Gottlieb, E. W., Chow, V. Y., Santoni, G. W., and Wofsy, S. C.: High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique, Atmos. Meas. Tech., 3, 375–386, https://doi.org/10.5194/amt-3-375-2010, 2010.
Crevoisier, C., Sweeney, C., Gloor, M., Sarmiento, J. L., and Tans, P. P.: Regional US carbon sinks from three-dimensional atmospheric CO2 sampling, P. Natl. Acad. Sci. USA, 107, 18348–18353, https://doi.org/10.1073/pnas.0900062107, 2010.