Research article 09 May 2012
Research article | 09 May 2012
Continuous measurements of methane mixing ratios from ice cores
C. Stowasser et al.
Related subject area
Subject: Gases | Technique: In Situ Measurement | Topic: Instruments and Platforms
Understanding balloon-borne frost point hygrometer measurements after contamination by mixed-phase clouds
Development of a small unmanned aircraft system to derive CO2 emissions of anthropogenic point sources
An in situ gas chromatograph with automatic detector switching between PTR- and EI-TOF-MS: isomer-resolved measurements of indoor air
Facility level measurement of offshore oil and gas installations from a medium-sized airborne platform: method development for quantification and source identification of methane emissions
Evaluation and optimization of ICOS atmosphere station data as part of the labeling process
Ozone deposition to a coastal sea: comparison of eddy covariance observations with reactive air–sea exchange models
A cavity-enhanced ultraviolet absorption instrument for high-precision, fast-time-response ozone measurements
Mass spectrometric multiple soil-gas flux measurement system with a portable high-resolution mass spectrometer (MULTUM) coupled to an automatic chamber for continuous field observations
Simultaneous detection of atmospheric HONO and NO2 utilising an IBBCEAS system based on an iterative algorithm
Autonomous airborne mid-infrared spectrometer for high-precision measurements of ethane during the NASA ACT-America studies
A novel injection technique: using a field-based quantum cascade laser for the analysis of gas samples derived from static chambers
Measurement of NOx and NOy with a thermal dissociation cavity ring-down spectrometer (TD-CRDS): instrument characterisation and first deployment
Comparison of Ozone Measurement Methods in Biomass Burning Smoke: An evaluation under field and laboratory conditions
Characterization of a chemical modulation reactor (CMR) for the measurement of atmospheric concentrations of hydroxyl radicals with a laser-induced fluorescence instrument
An improved method for atmospheric 14CO measurements
A compact QCL spectrometer for mobile, high-precision methane sensing aboard drones
Airborne measurements of oxygen concentration from the surface to the lower stratosphere and pole to pole
A compact incoherent broadband cavity-enhanced absorption spectrometer for trace detection of nitrogen oxides, iodine oxide and glyoxal at levels below parts per billion for field applications
In situ observations of greenhouse gases over Europe during the CoMet 1.0 campaign aboard the HALO aircraft
Stationary and Portable Multipollutant Monitors for High Spatiotemporal Resolution Air Quality Studies including Online Calibration
A compact, high-purity source of HONO validated by Fourier transform infrared and thermal-dissociation cavity ring-down spectroscopy
Simultaneous leaf-level measurement of trace gas emissions and photosynthesis with a portable photosynthesis system
Capturing temporal heterogeneity in soil nitrous oxide fluxes with a robust and low-cost automated chamber apparatus
Evaluation of a field-deployable Nafion™-based air-drying system for collecting whole air samples and its application to stable isotope measurements of CO2
Use of an Unmanned Aircraft System to Quantify NOx Emissions from a Natural Gas Boiler
Introducing the Extended Volatility Range Proton-Transfer-Reaction Mass Spectrometer (EVR PTR-MS)
A vacuum ultraviolet ion source (VUV-IS) for iodide–chemical ionization mass spectrometry: a substitute for radioactive ion sources
Compact and Lightweight Mid-IR Laser Spectrometer for Balloon-borne Water Vapor Measurements in the UTLS
Implementation of a chemical background method for atmospheric OH measurements by laser-induced fluorescence: characterisation and observations from the UK and China
Long-term reliability of the Figaro TGS 2600 solid-state methane sensor under low-Arctic conditions at Toolik Lake, Alaska
Airborne measurement of peroxy radicals using chemical amplification coupled with cavity ring-down spectroscopy: the PeRCEAS instrument
A low-activity ion source for measurement of atmospheric gases by chemical ionization mass spectrometry
Single-photon laser-induced fluorescence detection of nitric oxide at sub-parts-per-trillion mixing ratios
Eddy covariance flux measurements of gaseous elemental mercury over a grassland
Studying boundary layer methane isotopy and vertical mixing processes at a rewetted peatland site using an unmanned aircraft system
Simultaneous detection of ozone and nitrogen dioxide by oxygen anion chemical ionization mass spectrometry: a fast-time-response sensor suitable for eddy covariance measurements
Testing the near-field Gaussian plume inversion flux quantification technique using unmanned aerial vehicle sampling
iDirac: a field-portable instrument for long-term autonomous measurements of isoprene and selected VOCs
Quantification of nitrous acid (HONO) and nitrogen dioxide (NO2) in ambient air by broadband cavity-enhanced absorption spectroscopy (IBBCEAS) between 361 and 388 nm
Multi-scheme chemical ionization inlet (MION) for fast switching of reagent ion chemistry in atmospheric pressure chemical ionization mass spectrometry (CIMS) applications
Continuous atmospheric CO2, CH4 and CO measurements at the Observatoire Pérenne de l'Environnement (OPE) station in France from 2011 to 2018
Optimization of a gas chromatographic unit for measuring biogenic volatile organic compounds in ambient air
Measurements and quality control of ammonia eddy covariance fluxes: a new strategy for high-frequency attenuation correction
Performance of a new coaxial ion–molecule reaction region for low-pressure chemical ionization mass spectrometry with reduced instrument wall interactions
Development of a balloon-borne instrument for CO2 vertical profile observations in the troposphere
Derivation of flow rate and calibration method for high-volume air samplers
Low-cost eddy covariance: a case study of evapotranspiration over agroforestry in Germany
CAFE: a new, improved nonresonant laser-induced fluorescence instrument for airborne in situ measurement of formaldehyde
Characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environments
UK greenhouse gas measurements at two new tall towers for aiding emissions verification
Teresa Jorge, Simone Brunamonti, Yann Poltera, Frank G. Wienhold, Bei P. Luo, Peter Oelsner, Sreeharsha Hanumanthu, Bhupendra B. Singh, Susanne Körner, Ruud Dirksen, Manish Naja, Suvarna Fadnavis, and Thomas Peter
Atmos. Meas. Tech., 14, 239–268, https://doi.org/10.5194/amt-14-239-2021, https://doi.org/10.5194/amt-14-239-2021, 2021
Short summary
Short summary
Balloon-borne frost point hygrometers are crucial for the monitoring of water vapour in the upper troposphere and lower stratosphere. We found that when traversing a mixed-phase cloud with big supercooled droplets, the intake tube of the instrument collects on its inner surface a high percentage of these droplets. The newly formed ice layer will sublimate at higher levels and contaminate the measurement. The balloon is also a source of contamination, but only at higher levels during the ascent.
Maximilian Reuter, Heinrich Bovensmann, Michael Buchwitz, Jakob Borchardt, Sven Krautwurst, Konstantin Gerilowski, Matthias Lindauer, Dagmar Kubistin, and John P. Burrows
Atmos. Meas. Tech., 14, 153–172, https://doi.org/10.5194/amt-14-153-2021, https://doi.org/10.5194/amt-14-153-2021, 2021
Short summary
Short summary
CO2 measurements from a small unmanned aircraft system (sUAS) can provide a cost-effective way to complement and validate satellite-based measurements of anthropogenic CO2 emissions. We introduce an sUAS which is capable of determining atmospheric CO2 mass fluxes from its own sensor data. We show results of validation flights at the ICOS atmospheric station in Steinkimmen and from demonstration flights downwind a CO2-emitting natural gas processing facility.
Megan S. Claflin, Demetrios Pagonis, Zachary Finewax, Anne V. Handschy, Douglas A. Day, Wyatt L. Brown, John T. Jayne, Douglas R. Worsnop, Jose L. Jimenez, Paul J. Ziemann, Joost de Gouw, and Brian M. Lerner
Atmos. Meas. Tech., 14, 133–152, https://doi.org/10.5194/amt-14-133-2021, https://doi.org/10.5194/amt-14-133-2021, 2021
Short summary
Short summary
We have developed a field-deployable gas chromatograph with thermal desorption preconcentration and detector switching between two high-resolution mass spectrometers for in situ measurements of volatile organic compounds (VOCs). This system combines chromatography with both proton transfer and electron ionization to offer fast time response and continuous molecular speciation. This technique was applied during the 2018 ATHLETIC campaign to characterize VOC emissions in an indoor environment.
James L. France, Prudence Bateson, Pamela Dominutti, Grant Allen, Stephen Andrews, Stephane Bauguitte, Max Coleman, Tom Lachlan-Cope, Rebecca E. Fisher, Langwen Huang, Anna E. Jones, James Lee, David Lowry, Joseph Pitt, Ruth Purvis, John Pyle, Jacob Shaw, Nicola Warwick, Alexandra Weiss, Shona Wilde, Jonathan Witherstone, and Stuart Young
Atmos. Meas. Tech., 14, 71–88, https://doi.org/10.5194/amt-14-71-2021, https://doi.org/10.5194/amt-14-71-2021, 2021
Short summary
Short summary
Measuring emission rates of methane from installations is tricky, and it is even more so when those installations are located offshore. Here, we show the aircraft set-up and demonstrate an effective methodology for surveying emissions from UK and Dutch offshore oil and gas installations. We present example data collected from two campaigns to demonstrate the challenges and solutions encountered during these surveys.
Camille Yver-Kwok, Carole Philippon, Peter Bergamaschi, Tobias Biermann, Francescopiero Calzolari, Huilin Chen, Sebastien Conil, Paolo Cristofanelli, Marc Delmotte, Juha Hatakka, Michal Heliasz, Ove Hermansen, Kateřina Komínková, Dagmar Kubistin, Nicolas Kumps, Olivier Laurent, Tuomas Laurila, Irene Lehner, Janne Levula, Matthias Lindauer, Morgan Lopez, Ivan Mammarella, Giovanni Manca, Per Marklund, Jean-Marc Metzger, Meelis Mölder, Stephen M. Platt, Michel Ramonet, Leonard Rivier, Bert Scheeren, Mahesh Kumar Sha, Paul Smith, Martin Steinbacher, Gabriela Vítková, and Simon Wyss
Atmos. Meas. Tech., 14, 89–116, https://doi.org/10.5194/amt-14-89-2021, https://doi.org/10.5194/amt-14-89-2021, 2021
Short summary
Short summary
The Integrated Carbon Observation System (ICOS) is a pan-European research infrastructure which provides harmonized and high-precision scientific data on the carbon cycle and the greenhouse gas (GHG) budget. All stations have to undergo a rigorous assessment before being labeled, i.e., receiving approval to join the network. In this paper, we present the labeling process for the ICOS atmospheric network through the 23 stations that were labeled between November 2017 and November 2019.
David C. Loades, Mingxi Yang, Thomas G. Bell, Adam R. Vaughan, Ryan J. Pound, Stefan Metzger, James D. Lee, and Lucy J. Carpenter
Atmos. Meas. Tech., 13, 6915–6931, https://doi.org/10.5194/amt-13-6915-2020, https://doi.org/10.5194/amt-13-6915-2020, 2020
Short summary
Short summary
The loss of ozone to the sea surface was measured from the south coast of the UK and was found to be more rapid than previous observations over the open ocean. This is likely a consequence of different chemistry and biology in coastal environments. Strong winds appeared to speed up the loss of ozone. A better understanding of what influences ozone loss over the sea will lead to better model estimates of total ozone in the troposphere.
Reem A. Hannun, Andrew K. Swanson, Steven A. Bailey, Thomas F. Hanisco, T. Paul Bui, Ilann Bourgeois, Jeff Peischl, and Thomas B. Ryerson
Atmos. Meas. Tech., 13, 6877–6887, https://doi.org/10.5194/amt-13-6877-2020, https://doi.org/10.5194/amt-13-6877-2020, 2020
Short summary
Short summary
We have developed a cavity-enhanced absorption instrument to measure ozone in the atmosphere. The detection technique enables highly sensitive measurements in fast averaging times. The compact, robust instrument is suitable for operation in varied field environments, including aboard research aircraft. We have successfully flown the instrument and demonstrated its performance capabilities with measurements of ozone deposition rates over the coastal Pacific Ocean.
Noriko Nakayama, Yo Toma, Yusuke Iwai, Hiroshi Furutani, Toshinobu Hondo, Ryusuke Hatano, and Michisato Toyoda
Atmos. Meas. Tech., 13, 6657–6673, https://doi.org/10.5194/amt-13-6657-2020, https://doi.org/10.5194/amt-13-6657-2020, 2020
Short summary
Short summary
We developed a field-deployable multiple soil-gas flux measurement system using a portable high-resolution mass spectrometer (MULTUM) combined with an automated flux chamber. The current system is capable of simultaneous quantification of O2, N2O, CH4, and CO2 concentrations every 2.5 min within a single sample, yielding hourly flux data. We applied the system to 5 d continuous soil–atmosphere field flux observations and interesting responses in N2O and CO2 upon rainfall events were observed.
Ke Tang, Min Qin, Wu Fang, Jun Duan, Fanhao Meng, Kaidi Ye, Helu Zhang, Pinhua Xie, Yabai He, Wenbin Xu, Jianguo Liu, and Wenqing Liu
Atmos. Meas. Tech., 13, 6487–6499, https://doi.org/10.5194/amt-13-6487-2020, https://doi.org/10.5194/amt-13-6487-2020, 2020
Short summary
Short summary
We present an improved instrument for the simultaneous detection of atmospheric nitrous acid (HONO) and nitrogen dioxide (NO2). The robustness of the system is verified by simulating the influence of the relative change in light intensity on the measurement results. The instrument's capability to make fast high-sensitivity measurements of HONO and NO2 is of great significance for understanding the source of HONO and studying its role in atmospheric chemistry.
Petter Weibring, Dirk Richter, James G. Walega, Alan Fried, Joshua DiGangi, Hannah Halliday, Yonghoon Choi, Bianca Baier, Colm Sweeney, Ben Miller, Kenneth J. Davis, Zachary Barkley, and Michael D. Obland
Atmos. Meas. Tech., 13, 6095–6112, https://doi.org/10.5194/amt-13-6095-2020, https://doi.org/10.5194/amt-13-6095-2020, 2020
Short summary
Short summary
The present study describes an autonomously operated instrument for high-precision (20–40 parts per trillion in 1 s) measurements of ethane during actual airborne operations on a small aircraft platform (NASA's King Air B200). This paper discusses the dynamic nature of airborne performance due to various aircraft-induced perturbations, methods devised to identify such events, and solutions we have enacted to circumvent these perturbations.
Anne R. Wecking, Vanessa M. Cave, Lìyĭn L. Liáng, Aaron M. Wall, Jiafa Luo, David I. Campbell, and Louis A. Schipper
Atmos. Meas. Tech., 13, 5763–5777, https://doi.org/10.5194/amt-13-5763-2020, https://doi.org/10.5194/amt-13-5763-2020, 2020
Short summary
Short summary
Nitrous oxide (N2O) is a relevant greenhouse gas emitted from soils to the atmosphere. Human activities, e.g. intensive farming, have contributed to the increase in atmospheric N2O concentrations with time. Therefore, measurements of N2O are crucial to understanding climate change. Our study developed a new technique that enables N2O measurement at small (point) and large (paddock) scales by using a single analyser. Using this new method will accelerate and advance N2O measurements in future.
Nils Friedrich, Ivan Tadic, Jan Schuladen, James Brooks, Eoghan Darbyshire, Frank Drewnick, Horst Fischer, Jos Lelieveld, and John N. Crowley
Atmos. Meas. Tech., 13, 5739–5761, https://doi.org/10.5194/amt-13-5739-2020, https://doi.org/10.5194/amt-13-5739-2020, 2020
Short summary
Short summary
We present a new instrument for the measurement of NOx and NOy based on a combination of the thermal dissociation of NOy to NOx and cavity ring-down spectroscopic detection of NO2. It features a denuder to separate the contributions of gas-phase and particulate nitrates to NOy. We provide a detailed characterization of the instrument and briefly outline results from first deployments.
Russell W. Long, Andrew Whitehill, Andrew Habel, Shawn Urbanski, Hannah Halliday, Maribel Colón, Surender Kaushik, and Matthew S. Landis
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-383, https://doi.org/10.5194/amt-2020-383, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
This manuscript details field and laboratory-based evaluations of ozone monitoring methods in smoke. UV photometry, the most widely used measurement method for ozone in ambient air, was shown to suffer from a severe positive interference when operated in the presence of smoke while chemiluminescence based methods were shown to be free of interferences. The results detailed in this paper will provide monitoring agencies with the tools need to address smoke related ozone measurement challenges.
Changmin Cho, Andreas Hofzumahaus, Hendrik Fuchs, Hans-Peter Dorn, Marvin Glowania, Frank Holland, Franz Rohrer, Vaishali Vardhan, Astrid Kiendler-Scharr, Andreas Wahner, and Anna Novelli
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-359, https://doi.org/10.5194/amt-2020-359, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
This study describes the implementation and characterization of the chemical modulation reactor (CMR) used in the laser-induced fluorescence instrument of the Forschungszentrum Jülich. The CMR allows for interference-free OH radical measurement in ambient air. During a field campaign in a rural environment, the observed interference was mostly below the detection limit of the instrument and fully explained by the known ozone interference.
Vasilii V. Petrenko, Andrew M. Smith, Edward M. Crosier, Roxana Kazemi, Philip Place, Aidan Colton, Bin Yang, Quan Hua, and Lee T. Murray
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-328, https://doi.org/10.5194/amt-2020-328, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
This paper presents an improved methodology for measurements of atmospheric concentration of carbon-14-containing carbon monoxide (14CO), as well as a 1-year data set that demonstrates the methodology. Atmospheric 14CO concentration measurements are useful for improving the understanding of spatial and temporal variability of hydroxyl radical concentrations. Key improvements over prior methods include a greatly reduced air sample size and accurate procedural blank characterization.
Béla Tuzson, Manuel Graf, Jonas Ravelid, Philipp Scheidegger, André Kupferschmid, Herbert Looser, Randulph Paulo Morales, and Lukas Emmenegger
Atmos. Meas. Tech., 13, 4715–4726, https://doi.org/10.5194/amt-13-4715-2020, https://doi.org/10.5194/amt-13-4715-2020, 2020
Short summary
Short summary
We describe a lightweight (2 kg) mid-IR laser spectrometer for airborne, in situ atmospheric methane (CH4) measurements. The instrument, based on an open-path circular multipass cell, provides fast response (1 Hz) and sub-parts-per-billion precision. It can easily be mounted on a drone, giving access to highly resolved 4D (spatial and temporal) data. The performance was assessed during field deployments involving artificial CH4 releases and vertical concentration gradients in the PBL.
Britton B. Stephens, Eric J. Morgan, Jonathan D. Bent, Ralph F. Keeling, Andrew S. Watt, Stephen R. Shertz, and Bruce C. Daube
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-294, https://doi.org/10.5194/amt-2020-294, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
We describe methods used to make high-precision global-scale airborne measurements of atmospheric oxygen concentrations over a period of 20 years, in order to study the global carbon cycle. Our techniques include an in situ vacuum ultraviolet absorption instrument and a pressure and flow-controlled, cryogenically-dried, glass flask sampler. We have deployed these instruments in 15 airborne research campaigns spanning from the Earth’s surface to the lower stratosphere and from pole to pole.
Albane Barbero, Camille Blouzon, Joël Savarino, Nicolas Caillon, Aurélien Dommergue, and Roberto Grilli
Atmos. Meas. Tech., 13, 4317–4331, https://doi.org/10.5194/amt-13-4317-2020, https://doi.org/10.5194/amt-13-4317-2020, 2020
Short summary
Short summary
In this paper, we present a compact, affordable and robust instrument for in situ measurements of different trace gases: NOx, IO, CHOCHO and O3 with very low detection limits. The device weighs 15 kg and has a total electrical power consumption of < 300 W. Its very low detection limits and its design make it suitable for field applications to address different questions such as how to better constrain the oxidative capacity of the atmosphere and study the chemistry of highly reactive species.
Michał Gałkowski, Armin Jordan, Michael Rothe, Julia Marshall, Frank-Thomas Koch, Jinxuan Chen, Anna Agusti-Panareda, Andreas Fix, and Christoph Gerbig
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-287, https://doi.org/10.5194/amt-2020-287, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
We present results of atmospheric measurements of greenhouse gases, performed over Europe in 2018 aboard German research aircraft HALO as part of the CoMet 1.0 (Carbon dioxide and Methane mission). In our analysis, we describe data quality, discuss observed mixing ratios and show an example of describing regional methane source using stable isotopic composition based on the collected air samples. We also quantitatively compare our results it to available atmospheric modelling systems.
Colby Buehler, Fulizi Xiong, Misti Levy Zamora, Kate M. Skog, Joseph Kohrman-Glaser, Stephan Colton, Michael McNamara, Kevin Ryan, Carrie Redlich, Matthew Bartos, Brandon Wong, Branko Kerkez, Kirsten Koehler, and Drew R. Gentner
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-217, https://doi.org/10.5194/amt-2020-217, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
In this paper we produce low cost air quality monitors to better understand air pollution in complex urban environments. We are able to monitor air pollutants that are important for human health and for climate purposes at a much finer scale than traditional methods. Thus we can deploy many of these monitors in a network to understand how urban environments vary both across space and time.
Nicholas J. Gingerysty and Hans D. Osthoff
Atmos. Meas. Tech., 13, 4159–4167, https://doi.org/10.5194/amt-13-4159-2020, https://doi.org/10.5194/amt-13-4159-2020, 2020
Short summary
Short summary
The generation of clean calibration gases is critical for accurate ambient air measurements. Here, we describe a source of HONO vapour dynamically generated from reaction of HCl and NaNO2. The output was characterized by Fourier transform infrared (FTIR) and thermal-dissociation cavity ring-down spectroscopy (TD-CRDS) and was stable, tuneable, and > 95 % pure. We show how generation of unwanted side products (NO, NO2, and ClNO) can be avoided.
Mj Riches, Daniel Lee, and Delphine K. Farmer
Atmos. Meas. Tech., 13, 4123–4139, https://doi.org/10.5194/amt-13-4123-2020, https://doi.org/10.5194/amt-13-4123-2020, 2020
Short summary
Short summary
This paper presents a thorough characterization of a leaf emission sampling technique coupling a portable photosynthesis system with different trace gas analyzers. We provide several case studies using both online and offline gas analyzers to measure different types of leaf emissions. We further highlight both the capabilities and pitfalls of this method.
Nathaniel C. Lawrence and Steven J. Hall
Atmos. Meas. Tech., 13, 4065–4078, https://doi.org/10.5194/amt-13-4065-2020, https://doi.org/10.5194/amt-13-4065-2020, 2020
Short summary
Short summary
Soil emissions of nitrous oxide (N2O), a potent greenhouse gas, are highly variable over space and time. Existing approaches for automated N2O emission measurements are costly and often incompatible with flooded soils. We describe and validate a robust and low-cost apparatus for replicated measurement of soil N2O emissions at subdaily resolution over large spatial gradients (> 100 m). High-frequency measurements are critical for constraining and mitigating the soil N2O source.
Dipayan Paul, Hubertus A. Scheeren, Henk G. Jansen, Bert A. M. Kers, John B. Miller, Andrew M. Crotwell, Sylvia E. Michel, Luciana V. Gatti, Lucas G. Domingues, Caio S. C. Correia, Raiane A. L. Neves, Harro A. J. Meijer, and Wouter Peters
Atmos. Meas. Tech., 13, 4051–4064, https://doi.org/10.5194/amt-13-4051-2020, https://doi.org/10.5194/amt-13-4051-2020, 2020
Short summary
Short summary
For reliable measurements of CO2 mole fractions and its stable isotope composition in air samples, one needs to carefully dry them during collection. Here we describe evaluation of a portable, consumable-free and power-free Nafion-based drying system that is currently being used for sample collection over the Amazon. Laboratory tests indicate that this Nafion-based system does not influence the mole fraction measurements of CH4, CO, N2O, SF6, and CO2 and the stable isotope composition of CO2.
Brian Gullett, Johanna Aurell, William Mitchell, and Jennifer Richardson
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-108, https://doi.org/10.5194/amt-2020-108, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
Aerial emission sampling of four natural gas boiler stack plumes was conducted using an unmanned aerial system (UAS) equipped with a light-weight sensor/sampling system for pollutant measurements. The results were compared with simultaneous measurements on the stack using conventional gas extraction methods. The emission values between the two methods varied by less than 6 %. This work demonstrated a method for estimating emissions while eliminating the worker risks of stack sampling.
Felix Piel, Markus Müller, Klaus Winkler, Jenny Skytte af Sätra, and Armin Wisthaler
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-241, https://doi.org/10.5194/amt-2020-241, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) instruments are widely used in the atmospheric community for measuring organic trace substances in the Earth's atmosphere. Some of these substances “stick” and slowly come off surfaces in the PTR-MS analyzer which makes it impossible to measure rapid changes in the atmosphere. Herein, we present a new type of PTR-MS instrument with a specially treated surface that greatly mitigates this problem.
Yi Ji, L. Gregory Huey, David J. Tanner, Young Ro Lee, Patrick R. Veres, J. Andrew Neuman, Yuhang Wang, and Xinming Wang
Atmos. Meas. Tech., 13, 3683–3696, https://doi.org/10.5194/amt-13-3683-2020, https://doi.org/10.5194/amt-13-3683-2020, 2020
Short summary
Short summary
A common way of measuring trace gases in the atmosphere is chemical ionization mass spectrometry. One large drawback of these instruments is that they require radioactive ion sources. In this work we demonstrate a simple ion source that uses a small krypton lamp that can be used to replace a radioactive source.
Manuel Graf, Philipp Scheidegger, André Kupferschmid, Herbert Looser, Thomas Peter, Ruud Dirksen, Lukas Emmenegger, and Béla Tuzson
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-243, https://doi.org/10.5194/amt-2020-243, 2020
Revised manuscript accepted for AMT
Short summary
Short summary
Water vapor is the most important natural greenhouse gas. However, the accurate and frequent measurement of its abundance, especially in the upper troposphere and lower stratosphere (UTLS), is technically challenging. We developed and characterized a mid-IR absorption spectrometer for highly accurate water vapor measurements in the UTLS. The instrument is sufficiently small and lightweight (3.9 kg) to be carried by meteorological balloons, which enables frequent and cost-effective soundings.
Robert Woodward-Massey, Eloise J. Slater, Jake Alen, Trevor Ingham, Danny R. Cryer, Leanne M. Stimpson, Chunxiang Ye, Paul W. Seakins, Lisa K. Whalley, and Dwayne E. Heard
Atmos. Meas. Tech., 13, 3119–3146, https://doi.org/10.5194/amt-13-3119-2020, https://doi.org/10.5194/amt-13-3119-2020, 2020
Short summary
Short summary
The OH radical is known as nature’s detergent, removing most trace gases from the atmosphere. Hence, an accurate measurement of its concentration is very important. We present measurements of OH in several field locations using a laser-based fluorescence method equipped with an OH scavenger. By determining the background signal in two different ways, we show that the instrument does not suffer any significant interferences that could result in an overestimation of OH concentrations.
Werner Eugster, James Laundre, Jon Eugster, and George W. Kling
Atmos. Meas. Tech., 13, 2681–2695, https://doi.org/10.5194/amt-13-2681-2020, https://doi.org/10.5194/amt-13-2681-2020, 2020
Short summary
Short summary
Measuring ambient methane concentrations requires expensive optical sensors. The first electrochemical analyzer that shows a response to ambient levels of methane is now available. We present the first long-term deployment of such sensors in an arctic environment (temperatures from −41 to 27 °C). We present a method based on these measurements to convert the signal to methane concentrations (corrected for the effects of air temperature and relative humidity) and ensure long-term stability.
Midhun George, Maria Dolores Andrés Hernández, Vladyslav Nenakhov, Yangzhuoran Liu, and John Philip Burrows
Atmos. Meas. Tech., 13, 2577–2600, https://doi.org/10.5194/amt-13-2577-2020, https://doi.org/10.5194/amt-13-2577-2020, 2020
Short summary
Short summary
The accurate measurement of peroxy radicals is essential for understanding the chemistry of air masses probed in the free troposphere. The PeRCEAS instrument has been designed, developed and thoroughly characterised for the measurement of the total sum of peroxy radicals (RO2*) aboard airborne platforms. Parameters expected to affect the precision and accuracy of the measurement have been investigated in detail.
Young Ro Lee, Yi Ji, David J. Tanner, and L. Gregory Huey
Atmos. Meas. Tech., 13, 2473–2480, https://doi.org/10.5194/amt-13-2473-2020, https://doi.org/10.5194/amt-13-2473-2020, 2020
Short summary
Short summary
In this work we show how to construct a radioactive ion source for a chemical ionization mass spectrometer (CIMS) from commercially available components. The source is low activity and can be shipped with a minimum of complications. This facilitates the deployment of CIMS to measure atmospheric pollutants at remote ground sites.
Andrew W. Rollins, Pamela S. Rickly, Ru-Shan Gao, Thomas B. Ryerson, Steven S. Brown, Jeff Peischl, and Ilann Bourgeois
Atmos. Meas. Tech., 13, 2425–2439, https://doi.org/10.5194/amt-13-2425-2020, https://doi.org/10.5194/amt-13-2425-2020, 2020
Short summary
Short summary
Nitric oxide (NO) is a key atmospheric constituent controlling atmospheric oxidation chemistry and tropospheric ozone formation. Existing instrumentation capable of quantifying NO at very low mixing ratios is uncommon and typically relies on chemiluminescence. We describe and demonstrate a new laser-based technique (LIF) with significant practical and technical advantages to CL. This technique is expected to allow for advances in understanding of atmospheric radical chemistry.
Stefan Osterwalder, Werner Eugster, Iris Feigenwinter, and Martin Jiskra
Atmos. Meas. Tech., 13, 2057–2074, https://doi.org/10.5194/amt-13-2057-2020, https://doi.org/10.5194/amt-13-2057-2020, 2020
Short summary
Short summary
Direct mercury (Hg) flux studies are crucial to improve our understanding of terrestrial Hg cycling and human Hg exposure. We tested a new system to measure Hg fluxes using the eddy covariance technique. Our Eddy Mercury system revealed a net Hg re-emission flux from a grassland. We concluded that the prevailing dry conditions resulted in low uptake of CO2 and Hg. Eddy Mercury has the potential to address some of the largest uncertainties in global Hg cycling through long-term flux measurements.
Astrid Lampert, Falk Pätzold, Magnus O. Asmussen, Lennart Lobitz, Thomas Krüger, Thomas Rausch, Torsten Sachs, Christian Wille, Denis Sotomayor Zakharov, Dominik Gaus, Stephan Bansmer, and Ellen Damm
Atmos. Meas. Tech., 13, 1937–1952, https://doi.org/10.5194/amt-13-1937-2020, https://doi.org/10.5194/amt-13-1937-2020, 2020
Short summary
Short summary
Methane has high climate warming potential. Sources of methane can be distinguished by the isotopic composition. To investigate the origin of methane, an airborne sampling system has been developed that can take air samples worldwide and at various altitudes. The article shows the performance of the overall system, from taking samples to laboratory analyses. As known methane source, a rewetted peatland site, was studied, and the vertical distribution of the isotopic composition is investigated.
Gordon A. Novak, Michael P. Vermeuel, and Timothy H. Bertram
Atmos. Meas. Tech., 13, 1887–1907, https://doi.org/10.5194/amt-13-1887-2020, https://doi.org/10.5194/amt-13-1887-2020, 2020
Short summary
Short summary
We present the development and successful field deployment of a new chemical ionization mass spectrometry method capable of fast and high-sensitivity measurements of ozone and nitrogen dioxide in the atmosphere. The sensitivity, precision, and time resolution of the instrument were demonstrated to be sufficient for making deposition flux measurements of ozone from a coastal ocean field site. We propose this instrument will also be well suited for sampling from mobile platforms.
Adil Shah, Joseph R. Pitt, Hugo Ricketts, J. Brian Leen, Paul I. Williams, Khristopher Kabbabe, Martin W. Gallagher, and Grant Allen
Atmos. Meas. Tech., 13, 1467–1484, https://doi.org/10.5194/amt-13-1467-2020, https://doi.org/10.5194/amt-13-1467-2020, 2020
Short summary
Short summary
Methane is a potent greenhouse gas, with large flux uncertainties from facility-scale sources, such as natural gas extraction infrastructure. A recently developed flux quantification method was successfully tested by flying an unmanned aerial vehicle (UAV) downwind of 22 controlled atmospheric methane releases. The UAVs were used to derive high-precision atmospheric methane measurements. The UAV methodology was successful in both detecting the release and providing a rough flux estimate.
Conor G. Bolas, Valerio Ferracci, Andrew D. Robinson, Mohammed I. Mead, Mohd Shahrul Mohd Nadzir, John A. Pyle, Roderic L. Jones, and Neil R. P. Harris
Atmos. Meas. Tech., 13, 821–838, https://doi.org/10.5194/amt-13-821-2020, https://doi.org/10.5194/amt-13-821-2020, 2020
Short summary
Short summary
Here we present the iDirac, a new instrument capable of making isoprene measurements in remote and challenging environments. The iDirac is a customisable and rugged field instrument for investigating emissions of volatile organic compounds from vegetation. It has been tested here in a series of experiments to ensure a high degree of technical precision, accuracy and repeatability. This new instrument allows us to ask and answer new questions about the influence of vegetation on the atmosphere.
Nick Jordan and Hans D. Osthoff
Atmos. Meas. Tech., 13, 273–285, https://doi.org/10.5194/amt-13-273-2020, https://doi.org/10.5194/amt-13-273-2020, 2020
Short summary
Short summary
We describe a new spectrometer for quantification of HONO and NO2 in ambient air, called HODOR. The instrument uses an LED and two highly reflective mirrors to increase the effective optical absorption path to ~6 km. The accuracy of concentration retrievals was validated using parallel measurements by a single wavelength cavity ring-down spectrometer of laboratory-generated gas mixtures. The instrument's precision suffices for quantification of HONO and NO2 in an urban environment.
Matti P. Rissanen, Jyri Mikkilä, Siddharth Iyer, and Jani Hakala
Atmos. Meas. Tech., 12, 6635–6646, https://doi.org/10.5194/amt-12-6635-2019, https://doi.org/10.5194/amt-12-6635-2019, 2019
Short summary
Short summary
A novel chemical ionization methodology for rapid gas–phase environmental monitoring is presented. The usefulness of the new inlet design is demonstrated by measuring various aerosol precursor compounds that are present at very low concentrations by using two consecutive ionization schemes. This new inlet enables the detection of a wide range of compounds of interest with a minimum of effort and at a fast repetition rate.
Sébastien Conil, Julie Helle, Laurent Langrene, Olivier Laurent, Marc Delmotte, and Michel Ramonet
Atmos. Meas. Tech., 12, 6361–6383, https://doi.org/10.5194/amt-12-6361-2019, https://doi.org/10.5194/amt-12-6361-2019, 2019
Short summary
Short summary
Continuous measurements of greenhouse gases using high-precision spectrometers started in 2011 on a tall tower with three sampling inlets at 10 m, 50 m and 120 m above the ground at the OPE station, in the eastern part of France. The measurement strategy for carbon dioxide (CO2), methane (CH4) and carbon monoxide (CO) follows the ICOS recommendations. Over the 2011–2018 period, the CO2 and CH4 data show trends with annual growth rates of 2.4 ppm yr−1 and 8.8 ppb yr−1 at the 120 m level.
Kenneth Mermet, Stéphane Sauvage, Sébastien Dusanter, Thérèse Salameh, Thierry Léonardis, Pierre-M. Flaud, Émilie Perraudin, Éric Villenave, and Nadine Locoge
Atmos. Meas. Tech., 12, 6153–6171, https://doi.org/10.5194/amt-12-6153-2019, https://doi.org/10.5194/amt-12-6153-2019, 2019
Short summary
Short summary
An automated system for the online ambient measurement of 20 biogenic volatile organic compounds (BVOCs) was successfully developed and optimized. The analytical performance was satisfying for ambient measurements. The first measurements were carried out during the LANDEX field campaign in summer 2017. The 3-week field measurements displayed the excellent performance of the method with respect to providing speciated BVOC concentration values to further investigate atmospheric BVOCs' reactivity.
Alexander Moravek, Saumya Singh, Elizabeth Pattey, Luc Pelletier, and Jennifer G. Murphy
Atmos. Meas. Tech., 12, 6059–6078, https://doi.org/10.5194/amt-12-6059-2019, https://doi.org/10.5194/amt-12-6059-2019, 2019
Short summary
Short summary
Determination of ecosystem exchange fluxes using the eddy covariance technique requires measurements with a fast time response. For ammonia, the time response is limited by adsorption and desorption processes on instrument surfaces, generally leading to a substantial underestimation of fluxes. Based on a 5-month flux dataset, we propose a new method to correct for the ammonia flux loss that is better suited to account for factors like surface aging and contamination than other approaches.
Brett B. Palm, Xiaoxi Liu, Jose L. Jimenez, and Joel A. Thornton
Atmos. Meas. Tech., 12, 5829–5844, https://doi.org/10.5194/amt-12-5829-2019, https://doi.org/10.5194/amt-12-5829-2019, 2019
Short summary
Short summary
We introduce a coaxial, low-pressure ion–molecule reaction (IMR) region for iodide-adduct chemical ionization mass spectrometry, designed to decrease the effects of IMR wall interactions with organic/inorganic gases. This IMR has 3–10 times shorter delay times than previous IMRs. We introduce a conceptual framework for understanding and subtracting the background signal due to analyte molecules interacting with IMR walls. This framework can be applied to other tubing and instrument systems.
Mai Ouchi, Yutaka Matsumi, Tomoki Nakayama, Kensaku Shimizu, Takehiko Sawada, Toshinobu Machida, Hidekazu Matsueda, Yousuke Sawa, Isamu Morino, Osamu Uchino, Tomoaki Tanaka, and Ryoichi Imasu
Atmos. Meas. Tech., 12, 5639–5653, https://doi.org/10.5194/amt-12-5639-2019, https://doi.org/10.5194/amt-12-5639-2019, 2019
Short summary
Short summary
A novel, practical observation system for measuring tropospheric carbon dioxide (CO2) concentrations carried by a small helium-filled balloon (CO2 sonde) has been developed for the first time. The low-cost CO2 sondes can potentially be used for frequent measurements of vertical profiles of CO2 in any parts of the world, providing useful information to understand the global and regional carbon budgets by replenishing the present sparse observation coverage.
Richard Hann and Mark Hermanson
Atmos. Meas. Tech., 12, 4725–4731, https://doi.org/10.5194/amt-12-4725-2019, https://doi.org/10.5194/amt-12-4725-2019, 2019
Short summary
Short summary
High-volume air sampling is a key measurement technique for investigating the concentration of atmospheric pollutants. Despite being a mature technique, a detailed description of how to derive flow rates and how to calibrate these samplers is missing in the literature. This paper uses basics in fluid mechanics to derive the equations in question. This allows for a deeper understanding of the measurement process and opens up for a more differentiated assessment of potential error sources.
Christian Markwitz and Lukas Siebicke
Atmos. Meas. Tech., 12, 4677–4696, https://doi.org/10.5194/amt-12-4677-2019, https://doi.org/10.5194/amt-12-4677-2019, 2019
Short summary
Short summary
Turbulent fluxes are usually measured by the eddy covariance method using a combination of a costly gas analyser and a sonic anemometer. In this paper we present an eddy covariance set-up of low cost to measure evapotranspiration over agricultural fields. The method is shown to be comparable to a conventional eddy covariance set-up and is a viable alternative when spatial replicates are required.
Jason M. St. Clair, Andrew K. Swanson, Steven A. Bailey, and Thomas F. Hanisco
Atmos. Meas. Tech., 12, 4581–4590, https://doi.org/10.5194/amt-12-4581-2019, https://doi.org/10.5194/amt-12-4581-2019, 2019
Short summary
Short summary
NASA Compact Airborne Formadehyde Experiment (CAFE) is a nonresonant laser-induced fluorescence instrument for airborne in situ measurement of formaldehyde (HCHO). The instrument is described here with highlighted improvements from the predecessor instrument, COmpact Formaldehyde FluorescencE Experiment (COFFEE).
Lia Chatzidiakou, Anika Krause, Olalekan A. M. Popoola, Andrea Di Antonio, Mike Kellaway, Yiqun Han, Freya A. Squires, Teng Wang, Hanbin Zhang, Qi Wang, Yunfei Fan, Shiyi Chen, Min Hu, Jennifer K. Quint, Benjamin Barratt, Frank J. Kelly, Tong Zhu, and Roderic L. Jones
Atmos. Meas. Tech., 12, 4643–4657, https://doi.org/10.5194/amt-12-4643-2019, https://doi.org/10.5194/amt-12-4643-2019, 2019
Short summary
Short summary
This study validates the performance of a personal air quality monitor that integrates miniaturised sensors that measure physical and chemical parameters. Overall, the air pollution sensors showed excellent agreement with standard instrumentation in outdoor, indoor and commuting environments across seasons and different geographical settings. Hence, novel sensing technologies like the ones demonstrated here can revolutionise health studies by providing highly resolved reliable exposure metrics.
Ann R. Stavert, Simon O'Doherty, Kieran Stanley, Dickon Young, Alistair J. Manning, Mark F. Lunt, Christopher Rennick, and Tim Arnold
Atmos. Meas. Tech., 12, 4495–4518, https://doi.org/10.5194/amt-12-4495-2019, https://doi.org/10.5194/amt-12-4495-2019, 2019
Short summary
Short summary
Under the UK GAUGE project, two new greenhouse gas observation sites were established in the 2013/2014 winter at two telecommunications towers. A combination of spectroscopic and chromatographic instrumentation was used to measure CO2, CH4, CO, N2O and SF6. The advantages and disadvantages of two CRDS sample drying strategies, Nafion(R) and empirical water correction, were also examined.
Cited articles
Allan, D.: Statistics of atomic frequency standards, Proc. IEEE, 54, 221–230, 1966.
Andersen, K., Azuma, N., Barnola, J., Bigler, M., Biscaye, P., Caillon, N., Chappellaz, J., Clausen, H., Dahl-Jensen, D., Fischer, H., Fl{ü}ckiger, J., Fritzsche, D., Fujii, Y., Goto-Azuma, K., Gronvold, K., Gundestrup, N., Hansson, M., Huber, C., Hvidberg, C., Johnsen, S., Jonsell, U., Jouzel, J., Kipfstuhl, S., Landais, A., Leuenberger, M., Lorrain, R., Masson-Delmotte, V., Miller, H., Motoyama, H., Narita, H., Popp, T., Rasmussen, S., Raynaud, D., R{ö}thlisberger, R., Ruth, U., Samyn, D., Schwander, J., Shoji, H., Siggard-Andersen, M., Steffensen, J., Stocker, T., Sveinbjornsdottir, A., Svensson, A., Takata, M., Tison, J., Thorsteinsson, T., Watanabe, O., Wilhelms, F., and White, J.: High-resolution record of Northern Hemisphere climate extending into the last interglacial period, Nature, 431, 147–151, 2004.
Battle, M., Bender, M., Sowers, T., Tans, P., Butler, J., Elkins, J., Ellis, J., Conway, T., Zhang, N., Lang, P., and Clarke, A.: Atmospheric gas concentrations over the past century measured in air from firn at the South Pole, Nature, 383, 231–235, https://doi.org/10.1038/383231a0, 1996.
Bigler, M., Svensson, A., Kettner, E., Vallelonga, P., Nielsen, M., and Steffensen, J.: Optimization of High-Resolution Continuous Flow Analysis for Transient Climate Signals in Ice Cores, Environ. Sci. Technol., 45, 4483–4489, https://doi.org/10.1021/es200118j, 2011.
Blunier, T. and Brook, E.: Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period, Science, 291, 109–112, https://doi.org/10.1126/science.291.5501.109, 2001.
Blunier, T., Spahni, R., Barnola, J.-M., Chappellaz, J., Loulergue, L., and Schwander, J.: Synchronization of ice core records via atmospheric gases, Clim. Past, 3, 325–330, https://doi.org/10.5194/cp-3-325-2007, 2007.
Buizert, C., Martinerie, P., Petrenko, V. V., Severinghaus, J. P., Trudinger, C. M., Witrant, E., Rosen, J. L., Orsi, A. J., Rubino, M., Etheridge, D. M., Steele, L. P., Hogan, C., Laube, J. C., Sturges, W. T., Levchenko, V. A., Smith, A. M., Levin, I., Conway, T. J., Dlugokencky, E. J., Lang, P. M., Kawamura, K., Jenk, T. M., White, J. W. C., Sowers, T., Schwander, J., and Blunier, T.: Gas transport in firn: multiple-tracer characterisation and model intercomparison for NEEM, Northern Greenland, Atmos. Chem. Phys. Discuss., 11, 15975–16021, https://doi.org/10.5194/acpd-11-15975-2011, 2011.
Capron, E., Landais, A., Chappellaz, J., Schilt, A., Buiron, D., Dahl-Jensen, D., Johnsen, S. J., Jouzel, J., Lemieux-Dudon, B., Loulergue, L., Leuenberger, M., Masson-Delmotte, V., Meyer, H., Oerter, H., and Stenni, B.: Millennial and sub-millennial scale climatic variations recorded in polar ice cores over the last glacial period, Clim. Past, 6, 345–365, https://doi.org/10.5194/cp-6-345-2010, 2010.
Chappellaz, J., Blunier, T., Raynaud, D., Barnola, J., Schwander, J., and Stauffer, B.: Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyr BP, Nature, 366, 443–445, https://doi.org/10.1038/366443a0, 1993.
Crosson, E.: A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor, Appl. Phys. B-Lasers O., 92, 403–408, https://doi.org/10.1007/s00340-008-3135-y, 2008.
Dällenbach, A., Blunier, T., Flückiger, J., Stauffer, B., Chappellaz, J., and Raynaud, D.: Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Last Glacial and the transition to the Holocene, Geophys. Res. Lett., 27, 1005–1008, https://doi.org/10.1029/1999GL010873, 2000.
Dahl-Jensen, D., Mosegaard, K., Gundestrup, N., Clow, G., Johnsen, S., Hansen, A., and Balling, N.: Past temperatures directly from the Greenland ice sheet, Science, 282, 268–271, https://doi.org/10.1126/science.282.5387.268, 1998.
Demtr{ö}der, W.: Laser Spectroscopy, Springer-Verlag, 2003.
Di Rocco, H.: The exact expression of the Voigt profile function, J. Quant. Spectrosc. Ra., 92, 231–237, https://doi.org/10.1016/j.jqsrt.2004.08.002, 2004.
Fabre, A., Barnola, J., Arnaud, L., and Chappellaz, J.: Determination of gas diffusivity in polar firn: comparison between experimental measurements and inverse modeling, Geophys. Res. Lett., 27, 557–560, https://doi.org/10.1029/1999GL010780, 2000.
Flückiger, J., Blunier, T., Stauffer, B., Chappellaz, J., Spahni, R., Kawamura, K., Schwander, J., Stocker, T., and Dahl-Jensen, D.: N2O and CH4 variations during the last glacial epoch: Insight into global processes, Global Biochem. Cy., 18, GB1020, https://doi.org/10.1029/2003gb002122, 2004.
Gkinis, V., Popp, T., Johnsen, S., and Blunier, T.: A continuous stream flash evaporator for the calibration of an IR cavity ring-down spectrometer for the isotopic analysis of water, Isot. Environ. Healt. S., 46, 463–475, https://doi.org/10.1080/10256016.2010.538052, 2010.
Goujon, C., Barnola, J., and Ritz, C.: Modeling the densification of polar firn including heat diffusion: Application to close-off characteristics and gas isotopic fractionation for Antarctica and Greenland sites, J. Geophys. Res., 108, 4792, https://doi.org/10.1029/2002JD003319, 2003.
Güllük, T., Wagner, H., and Slemr, F.: A high-frequency modulated tunable diode laser absorption spectrometer for measurements of CO2, CH4, N2O, and CO in air samples of a few cm, Rev. Sci. Instrum., 68, 230–239, 1997.
G{ü}ll{ü}k, T., Slemr, F., and Stauffer, B.: Simultaneous measurements of CO2, CH4, and N2O in air extracted by sublimation from Antarctica ice cores: confirmation of the data obtained using other extraction techniques, J. Geophys. Res., 103, 15971–15978, 1998.
Huber, C., Leuenberger, M., Spahni, R., Flü{}ckiger, J., Schwander, J., Stocker, T., and Johnsen, S.: Isotope calibrated Greenland temperature record over Marine Isotope Stage 3 and its relation to CH4, Earth Planet. Sc. Lett., 243, 504–519, https://doi.org/10.1016/j.epsl.2006.01.002, 2006.
Kaufmann, P., Federer, U., Hutterli, M., Bigler, M., Sch{ü}pbach, S., Ruth, U., Schmitt, J., and Stocker, T.: An improved continuous flow analysis system for high-resolution field measurements on ice cores, Environ. Sci. Technol., 42, 8044–8050, https://doi.org/10.1021/es8007722, 2008.
Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., Barnola, J., Raynaud, D., Stocker, T., and Chappellaz, J.: Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years, Nature, 453, 383–386, https://doi.org/10.1038/nature06950, 2008.
Mitchell, L., Brook, E., Sowers, T., McConnell, J., and Taylor, K.: Multidecadal variability of atmospheric methane, 1000–1800 CE, J. Geophys. Res.-Biogeo., 116, G02007, https://doi.org/10.1029/2010jg001441, 2011.
Press, W., Flannery, B., Teukolsky, S., and Vetterling, W.: Numerical recipes, vol. 3, Cambridge Univ. Press, 2007.
Rella, C.: Accurate Greenhouse Gas Measurements in Humid Gas Streams Using the Picarro G1301 Carbon Dioxide/Methane/Water Vapor Gas Analyzer, Tech. rep., Picarro Inc.,www.picarro.com/assets/docs/White_Paper_G1301_Water_Vapor_Correction.pdf (last access: 8 May 2012), 2010.
Rommelaere, V., Arnaud, L., and Barnola, J.: Reconstructing recent atmospheric trace gas concentrations from polar firn and bubbly ice data by inverse methods, J. Geophys. Res., 102, 30069–30083, https://doi.org/10.1029/97JD02653, 1997.
Schüpbach, S., Federer, U., Kaufmann, P., Hutterli, M., Buiron, D., Blunier, T., Fischer, H., and Stocker, T.: A new method for high-resolution methane measurements on polar ice cores using continuous flow analysis, Environ. Sci. Technol., 43, 5371, https://doi.org/10.1021/es9003137, 2009.
Schüpbach, S., Federer, U., Bigler, M., Fischer, H., and Stocker, T. F.: A refined TALDICE-1a age scale from 55 to 112 ka before present for the Talos Dome ice core based on high-resolution methane measurements, Clim. Past, 7, 1001–1009, https://doi.org/10.5194/cp-7-1001-2011, 2011.
Schwander, J., Stauffer, B., and Sigg, A.: Air mixing in firn and the age of the air at pore close-off, Ann. Glaciol., 10, 141–145, 1988.
Schwander, J., Sowers, T., Barnola, J., Blunier, T., Fuchs, A., and Malaiz{é}, B.: Age scale of the air in the summit ice: Implication for glacial-interglacial temperature change, J. Geophys. Res., 102, 19483–19493, https://doi.org/10.1029/97JD01309, 1997.
Sowers, T., Brook, E., Etheridge, D., Blunier, T., Fuchs, A., Leuenberger, M., Chappellaz, J., Barnola, J., Wahlen, M., Deck, B., and Weyhenmeyer, C.: An interlaboratory comparison of techniques for extracting and analyzing trapped gases in ice cores, J. Geophys. Res.-Oceans, 102, 26527–26538, https://doi.org/10.1029/97JC00633, 1997.
Stowasser, C., Buizert, C., Gkinis, V., Chappellaz, J., Schüpbach, S., Bigler, M., Faïn, X., Sperlich, P., Baumgartner, M., Schilt, A., and Blunier, T.: Continuous measurements of methane mixing ratios from ice cores, Atmos. Meas. Tech. Discuss., 5, 211–244, https://doi.org/10.5194/amtd-5-211-2012, 2012.
Trudinger, C., Enting, L., Etheridge, D., Francey, R., Levchenko, V., Steele, L., Raynaud, D., and Arnaud, L.: Modeling air movement and bubble trapping in firn, J. Geophys. Res., 102, 6747–6763, https://doi.org/10.1029/96JD03382, 1997.
Werle, P.: Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence, Appl. Phys. B, 10, 251–253, https://doi.org/10.1007/s00340-010-4165-9, 2011.
Werle, P., Mazzinghi, P., D'Amato, F., Rosa, M. D., Maurer, K., and Slemr, F.: Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy, Spectrochim. Acta A, 60, 1685–1705, https://doi.org/10.1016/j.saa.2003.10.013, 2004.