Articles | Volume 7, issue 7
https://doi.org/10.5194/amt-7-2361-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-7-2361-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Functional derivatives applied to error propagation of uncertainties in topography to large-aperture scintillometer-derived heat fluxes
M. A. Gruber
Department of Atmospheric Sciences, College of Natural Science and Mathematics, Geophysical Institute, University of Alaska Fairbanks, Fairbanks, USA
G. J. Fochesatto
Department of Atmospheric Sciences, College of Natural Science and Mathematics, Geophysical Institute, University of Alaska Fairbanks, Fairbanks, USA
O. K. Hartogensis
Meteorology and Air Quality Group, Wageningen University, Wageningen, the Netherlands
M. Lysy
Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Canada
Related authors
No articles found.
Mary Rose Mangan, Jordi Vilà-Guerau de Arellano, Bart J. H. van Stratum, Marie Lothon, Guylaine Canut-Rocafort, and Oscar K. Hartogensis
EGUsphere, https://doi.org/10.5194/egusphere-2024-3000, https://doi.org/10.5194/egusphere-2024-3000, 2024
Short summary
Short summary
Using observations and high-resolution turbulence modeling, we examine the influence of irrigation-driven surface heterogeneity on the atmospheric boundary layer (ABL). We employ different spatial scales of heterogeneity to explore how the influence of surface heterogeneity on the ABL within a single grid cell would change in higher resolution global models. We find that the height of the ABL is highly variable, and that the surface heterogeneity is felt least strongly in the middle of the ABL.
Raquel González-Armas, Jordi Vilà-Guerau de Arellano, Mary Rose Mangan, Oscar Hartogensis, and Hugo de Boer
Biogeosciences, 21, 2425–2445, https://doi.org/10.5194/bg-21-2425-2024, https://doi.org/10.5194/bg-21-2425-2024, 2024
Short summary
Short summary
This paper investigates the water and CO2 exchange for an alfalfa field with observations and a model with spatial scales ranging from the stomata to the atmospheric boundary layer. To relate the environmental factors to the leaf gas exchange, we developed three equations that quantify how many of the temporal changes of the leaf gas exchange occur due to changes in the environmental variables. The novelty of the research resides in the capacity to dissect the dynamics of the leaf gas exchange.
Robbert P. J. Moonen, Getachew A. Adnew, Oscar K. Hartogensis, Jordi Vilà-Guerau de Arellano, David J. Bonell Fontas, and Thomas Röckmann
Atmos. Meas. Tech., 16, 5787–5810, https://doi.org/10.5194/amt-16-5787-2023, https://doi.org/10.5194/amt-16-5787-2023, 2023
Short summary
Short summary
Isotope fluxes allow for net ecosystem gas exchange fluxes to be partitioned into sub-components like plant assimilation, respiration and transpiration, which can help us better understand the environmental drivers of each partial flux. We share the results of a field campaign isotope fluxes were derived using a combination of laser spectroscopy and eddy covariance. We found lag times and high frequency signal loss in the isotope fluxes we derived and present methods to correct for both.
Felipe Lobos-Roco, Oscar Hartogensis, Francisco Suárez, Ariadna Huerta-Viso, Imme Benedict, Alberto de la Fuente, and Jordi Vilà-Guerau de Arellano
Hydrol. Earth Syst. Sci., 26, 3709–3729, https://doi.org/10.5194/hess-26-3709-2022, https://doi.org/10.5194/hess-26-3709-2022, 2022
Short summary
Short summary
This research brings a multi-scale temporal analysis of evaporation in a saline lake of the Atacama Desert. Our findings reveal that evaporation is controlled differently depending on the timescale. Evaporation is controlled sub-diurnally by wind speed, regulated seasonally by radiation and modulated interannually by ENSO. Our research extends our understanding of evaporation, contributing to improving the climate change assessment and efficiency of water management in arid regions.
Carlos Román-Cascón, Marie Lothon, Fabienne Lohou, Oscar Hartogensis, Jordi Vila-Guerau de Arellano, David Pino, Carlos Yagüe, and Eric R. Pardyjak
Geosci. Model Dev., 14, 3939–3967, https://doi.org/10.5194/gmd-14-3939-2021, https://doi.org/10.5194/gmd-14-3939-2021, 2021
Short summary
Short summary
The type of vegetation (or land cover) and its status influence the heat and water transfers between the surface and the air, affecting the processes that develop in the atmosphere at different (but connected) spatiotemporal scales. In this work, we investigate how these transfers are affected by the way the surface is represented in a widely used weather model. The results encourage including realistic high-resolution and updated land cover databases in models to improve their predictions.
Robin Stoffer, Caspar M. van Leeuwen, Damian Podareanu, Valeriu Codreanu, Menno A. Veerman, Martin Janssens, Oscar K. Hartogensis, and Chiel C. van Heerwaarden
Geosci. Model Dev., 14, 3769–3788, https://doi.org/10.5194/gmd-14-3769-2021, https://doi.org/10.5194/gmd-14-3769-2021, 2021
Short summary
Short summary
Turbulent flows are often simulated with the large-eddy simulation (LES) technique, which requires subgrid models to account for the smallest scales. Current subgrid models often require strong simplifying assumptions. We therefore developed a subgrid model based on artificial neural networks, which requires fewer assumptions. Our data-driven SGS model showed high potential in accurately representing the smallest scales but still introduced instability when incorporated into an actual LES.
Felipe Lobos-Roco, Oscar Hartogensis, Jordi Vilà-Guerau de Arellano, Alberto de la Fuente, Ricardo Muñoz, José Rutllant, and Francisco Suárez
Atmos. Chem. Phys., 21, 9125–9150, https://doi.org/10.5194/acp-21-9125-2021, https://doi.org/10.5194/acp-21-9125-2021, 2021
Short summary
Short summary
We investigate the influence of regional atmospheric circulation on the evaporation of a saline lake in the Altiplano region of the Atacama Desert through a field experiment and regional modeling. Our results show that evaporation is controlled by two regimes: (1) in the morning by local conditions with low evaporation rates and low wind speed and (2) in the afternoon with high evaporation rates and high wind speed. Afternoon winds are connected to the regional Pacific Ocean–Andes flow.
Jordi Vilà-Guerau de Arellano, Patrizia Ney, Oscar Hartogensis, Hugo de Boer, Kevin van Diepen, Dzhaner Emin, Geiske de Groot, Anne Klosterhalfen, Matthias Langensiepen, Maria Matveeva, Gabriela Miranda-García, Arnold F. Moene, Uwe Rascher, Thomas Röckmann, Getachew Adnew, Nicolas Brüggemann, Youri Rothfuss, and Alexander Graf
Biogeosciences, 17, 4375–4404, https://doi.org/10.5194/bg-17-4375-2020, https://doi.org/10.5194/bg-17-4375-2020, 2020
Short summary
Short summary
The CloudRoots field experiment has obtained an open comprehensive observational data set that includes soil, plant, and atmospheric variables to investigate the interactions between a heterogeneous land surface and its overlying atmospheric boundary layer, including the rapid perturbations of clouds in evapotranspiration. Our findings demonstrate that in order to understand and represent diurnal variability, we need to measure and model processes from the leaf to the landscape scales.
Hannah Meusel, Uwe Kuhn, Andreas Reiffs, Chinmay Mallik, Hartwig Harder, Monica Martinez, Jan Schuladen, Birger Bohn, Uwe Parchatka, John N. Crowley, Horst Fischer, Laura Tomsche, Anna Novelli, Thorsten Hoffmann, Ruud H. H. Janssen, Oscar Hartogensis, Michael Pikridas, Mihalis Vrekoussis, Efstratios Bourtsoukidis, Bettina Weber, Jos Lelieveld, Jonathan Williams, Ulrich Pöschl, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 16, 14475–14493, https://doi.org/10.5194/acp-16-14475-2016, https://doi.org/10.5194/acp-16-14475-2016, 2016
Short summary
Short summary
There are many studies which show discrepancies between modeled and measured nitrous acid (HONO, precursor of OH radical) in the troposphere but with no satisfactory explanation. Ideal conditions to study the unknown sources of HONO were found on Cyprus, a remote Mediterranean island. Budget analysis of trace gas measurements indicates a common source of NO and HONO, which is not related to anthropogenic activity and is most likely derived from biologic activity in soils and subsequent emission.
Joan Cuxart, Burkhard Wrenger, Daniel Martínez-Villagrasa, Joachim Reuder, Marius O. Jonassen, Maria A. Jiménez, Marie Lothon, Fabienne Lohou, Oscar Hartogensis, Jens Dünnermann, Laura Conangla, and Anirban Garai
Atmos. Chem. Phys., 16, 9489–9504, https://doi.org/10.5194/acp-16-9489-2016, https://doi.org/10.5194/acp-16-9489-2016, 2016
Short summary
Short summary
Estimations of the effect of thermal advection in the surface energy budget are provided. Data from the experimental campaign BLLAST, held in Southern France in summer 2011, are used, including airborne data by drones and surface-based instrumentation. Model data outputs and satellite information are also inspected. Surface heterogeneities of the order of the kilometer or larger seem to have little effect on the budget, whereas hectometer-scale structures may contribute significantly to it.
Erik Nilsson, Marie Lothon, Fabienne Lohou, Eric Pardyjak, Oscar Hartogensis, and Clara Darbieu
Atmos. Chem. Phys., 16, 8873–8898, https://doi.org/10.5194/acp-16-8873-2016, https://doi.org/10.5194/acp-16-8873-2016, 2016
Short summary
Short summary
A new simple model for turbulence kinetic energy (TKE) and its budget is presented for the sheared convective atmospheric boundary layer. It is used to study effects of buoyancy and shear on TKE evolution during the afternoon transition, especially near the surface. We also find a region of weak turbulence during unstable afternoon conditions below the inversion top, which we refer to as a "pre-residual layer".
C. Román-Cascón, C. Yagüe, L. Mahrt, M. Sastre, G.-J. Steeneveld, E. Pardyjak, A. van de Boer, and O. Hartogensis
Atmos. Chem. Phys., 15, 9031–9047, https://doi.org/10.5194/acp-15-9031-2015, https://doi.org/10.5194/acp-15-9031-2015, 2015
Short summary
Short summary
Stable-boundary-layer processes have been analysed using BLLAST data. Shallow drainage flows were formed at some locations after the near calm stage of the late afternoon. This stage ended with the arrival of a deeper wind associated with the mountain-plain circulation. At the same time, gravity waves were detected with an array of microbarometers. The interaction of these processes with turbulence was studied through multi-resolution flux decomposition at different sites and heights.
G. J. Fochesatto
Atmos. Meas. Tech., 8, 2051–2060, https://doi.org/10.5194/amt-8-2051-2015, https://doi.org/10.5194/amt-8-2051-2015, 2015
Short summary
Short summary
Temperature inversion layers originate based on the combined forcing of local- and large-scale synoptic meteorology. A numerical procedure based on a linear interpolation function of variable length that minimizes an error function set a priori is proposed to extract thermodynamic information of the multilayered thermal structure. The method is demonstrated to detect surface-based inversion and multilayered elevated inversions present often in high-latitude atmospheres.
D. van Dinther, C. R. Wood, O. K. Hartogensis, A. Nordbo, and E. J. O'Connor
Atmos. Meas. Tech., 8, 1901–1911, https://doi.org/10.5194/amt-8-1901-2015, https://doi.org/10.5194/amt-8-1901-2015, 2015
H. P. Pietersen, J. Vilà-Guerau de Arellano, P. Augustin, A. van de Boer, O. de Coster, H. Delbarre, P. Durand, M. Fourmentin, B. Gioli, O. Hartogensis, F. Lohou, M. Lothon, H. G. Ouwersloot, D. Pino, and J. Reuder
Atmos. Chem. Phys., 15, 4241–4257, https://doi.org/10.5194/acp-15-4241-2015, https://doi.org/10.5194/acp-15-4241-2015, 2015
M. Lothon, F. Lohou, D. Pino, F. Couvreux, E. R. Pardyjak, J. Reuder, J. Vilà-Guerau de Arellano, P Durand, O. Hartogensis, D. Legain, P. Augustin, B. Gioli, D. H. Lenschow, I. Faloona, C. Yagüe, D. C. Alexander, W. M. Angevine, E Bargain, J. Barrié, E. Bazile, Y. Bezombes, E. Blay-Carreras, A. van de Boer, J. L. Boichard, A. Bourdon, A. Butet, B. Campistron, O. de Coster, J. Cuxart, A. Dabas, C. Darbieu, K. Deboudt, H. Delbarre, S. Derrien, P. Flament, M. Fourmentin, A. Garai, F. Gibert, A. Graf, J. Groebner, F. Guichard, M. A. Jiménez, M. Jonassen, A. van den Kroonenberg, V. Magliulo, S. Martin, D. Martinez, L. Mastrorillo, A. F. Moene, F. Molinos, E. Moulin, H. P. Pietersen, B. Piguet, E. Pique, C. Román-Cascón, C. Rufin-Soler, F. Saïd, M. Sastre-Marugán, Y. Seity, G. J. Steeneveld, P. Toscano, O. Traullé, D. Tzanos, S. Wacker, N. Wildmann, and A. Zaldei
Atmos. Chem. Phys., 14, 10931–10960, https://doi.org/10.5194/acp-14-10931-2014, https://doi.org/10.5194/acp-14-10931-2014, 2014
E. Blay-Carreras, D. Pino, J. Vilà-Guerau de Arellano, A. van de Boer, O. De Coster, C. Darbieu, O. Hartogensis, F. Lohou, M. Lothon, and H. Pietersen
Atmos. Chem. Phys., 14, 4515–4530, https://doi.org/10.5194/acp-14-4515-2014, https://doi.org/10.5194/acp-14-4515-2014, 2014
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
The role of time averaging of eddy covariance fluxes on water use efficiency dynamics of maize
Number- and size-controlled rainfall regimes in the Netherlands: physical reality or statistical mirage?
The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) – Part 2: First measurements of the emissivity of water in the far-infrared
Bias Correction and Application of Labeled Smartphone Pressure Data for Evaluating the Best Track of Landfalling Tropical Cyclones
Hailstorm events in the Central Andes of Peru: insights from historical data and radar microphysics
Hybrid instrument network optimization for air quality monitoring
Double moment normalization of hail size number distributions over Switzerland
Objective identification of pressure wave events from networks of 1 Hz, high-precision sensors
Adjustment of 1 min rain gauge time series using co-located drop size distribution and wind speed measurements
Estimating turbulent energy flux vertical profiles from uncrewed aircraft system measurements: exemplary results for the MOSAiC campaign
Gap filling of turbulent heat fluxes over rice–wheat rotation croplands using the random forest model
Estimation of raindrop size distribution and rain rate with infrared surveillance camera in dark conditions
Estimates of the spatially complete, observational-data-driven planetary boundary layer height over the contiguous United States
Detection of turbulence occurrences from temperature, pressure, and position measurements under superpressure balloons
Inferring surface energy fluxes using drone data assimilation in large eddy simulations
Raindrop size distribution (DSD) during the passage of tropical cyclone Nivar: effect of measuring principle and wind on DSDs and retrieved rain integral and polarimetric parameters from impact and laser disdrometers
Automatic quality control of telemetric rain gauge data providing quantitative quality information (RainGaugeQC)
Testing the efficacy of atmospheric boundary layer height detection algorithms using uncrewed aircraft system data from MOSAiC
Considerations for improving data quality of thermo-hygrometer sensors on board unmanned aerial systems for planetary boundary layer research
Characteristics of the derived energy dissipation rate using the 1 Hz commercial aircraft quick access recorder (QAR) data
Low-level buoyancy as a tool to understand boundary layer transitions
Estimating vertical wind power density using tower observation and empirical models over varied desert steppe terrain in northern China
Air temperature equation derived from sonic temperature and water vapor mixing ratio for turbulent airflow sampled through closed-path eddy-covariance flux systems
Wind speed and direction estimation from wave spectra using deep learning
Options to correct local turbulent flux measurements for large-scale fluxes using an approach based on large-eddy simulation
Global ensemble of temperatures over 1850–2018: quantification of uncertainties in observations, coverage, and spatial modeling (GETQUOCS)
Reconstruction of the mass and geometry of snowfall particles from multi-angle snowflake camera (MASC) images
A new zenith hydrostatic delay model for real-time retrievals of GNSS-PWV
Sampling error in aircraft flux measurements based on a high-resolution large eddy simulation of the marine boundary layer
Separation of convective and stratiform precipitation using polarimetric radar data with a support vector machine method
An approach to minimize aircraft motion bias in multi-hole probe wind measurements made by small unmanned aerial systems
Interpolation uncertainty of atmospheric temperature profiles
Unsupervised classification of snowflake images using a generative adversarial network and K-medoids classification
An improved post-processing technique for automatic precipitation gauge time series
Retrieval of eddy dissipation rate from derived equivalent vertical gust included in Aircraft Meteorological Data Relay (AMDAR)
Atmospheric condition identification in multivariate data through a metric for total variation
Identifying persistent temperature inversion events in a subalpine basin using radon-222
Evaluation of wake influence on high-resolution balloon-sonde measurements
Improving the mean and uncertainty of ultraviolet multi-filter rotating shadowband radiometer in situ calibration factors: utilizing Gaussian process regression with a new method to estimate dynamic input uncertainty
Empirical high-resolution wind field and gust model in mountainous and hilly terrain based on the dense WegenerNet station networks
Performance of the FMI cosine error correction method for the Brewer spectral UV measurements
Computational efficiency for the surface renewal method
Raindrop fall velocities from an optical array probe and 2-D video disdrometer
Novel approaches to estimating the turbulent kinetic energy dissipation rate from low- and moderate-resolution velocity fluctuation time series
Smoothing data series by means of cubic splines: quality of approximation and introduction of a repeating spline approach
Data-driven clustering of rain events: microphysics information derived from macro-scale observations
Solid hydrometeor classification and riming degree estimation from pictures collected with a Multi-Angle Snowflake Camera
Dust opacities inside the dust devil column in the Taklimakan Desert
Comparison of GPS tropospheric delays derived from two consecutive EPN reprocessing campaigns from the point of view of climate monitoring
Ensemble mean density and its connection to other microphysical properties of falling snow as observed in Southern Finland
Arun Rao Karimindla, Shweta Kumari, Saipriya S R, Syam Chintala, and BVN P. Kambhammettu
Atmos. Meas. Tech., 17, 5477–5490, https://doi.org/10.5194/amt-17-5477-2024, https://doi.org/10.5194/amt-17-5477-2024, 2024
Short summary
Short summary
This study investigates the role of the averaging period of eddy covariance fluxes on the energy balance ratio and further propagation into water use efficiency dynamics. Application was demonstrated on a maize field considering EC flux data. We found that the time averages of EC fluxes that yield the most effective EBR are at 45 and 60 min. The 30 min averaging period was insufficient to capture low-frequency fluxes. Time averaging of EC fluxes needs to be performed based on crop growth stage.
Marc Schleiss
Atmos. Meas. Tech., 17, 4789–4802, https://doi.org/10.5194/amt-17-4789-2024, https://doi.org/10.5194/amt-17-4789-2024, 2024
Short summary
Short summary
Research is conducted to identify special rainfall patterns in the Netherlands using multiple types of rainfall sensors. A total of eight potentially unique events are analyzed, considering both the number and size of raindrops. However, no clear evidence supporting the existence of a special rainfall regime could be found. The results highlight the challenges in experimentally confirming well-established theoretical ideas in the field of precipitation sciences.
Laura Warwick, Jonathan E. Murray, and Helen Brindley
Atmos. Meas. Tech., 17, 4777–4787, https://doi.org/10.5194/amt-17-4777-2024, https://doi.org/10.5194/amt-17-4777-2024, 2024
Short summary
Short summary
We describe a method for measuring the emissivity of natural surfaces using data from the new Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) instrument. We demonstrate our method by making measurements of the emissivity of water. We then compare our results to the emissivity predicted using a model and find good agreement. The observations from FINESSE are novel because they allow us to determine surface emissivity at longer wavelengths than have been routinely measured before.
Ge Qiao, Yuyao Cao, Qinghong Zhang, and Juanzhen Sun
EGUsphere, https://doi.org/10.5194/egusphere-2024-1505, https://doi.org/10.5194/egusphere-2024-1505, 2024
Short summary
Short summary
Smartphones equipped with multiple sensors have great potential to form high-resolution meteorological observation fields. In this study, we focused on smartphone pressure observation in tropical cyclone environment. We developed a machine learning-based quality control program that greatly reduced errors and found that smartphone data led to significant improvements in analysis fields. Some traditional best tracks were found to consistently underestimate the minimum sea level pressure.
Jairo M. Valdivia, José Luis Flores-Rojas, Josep J. Prado, David Guizado, Elver Villalobos-Puma, Stephany Callañaupa, and Yamina Silva-Vidal
Atmos. Meas. Tech., 17, 2295–2316, https://doi.org/10.5194/amt-17-2295-2024, https://doi.org/10.5194/amt-17-2295-2024, 2024
Short summary
Short summary
In this study, we explored hailstorms in the Central Andes of Peru. We used historical records and radar measurements to understand the frequency, timing, and characteristics of these hail events. Our research found a trend of decreasing hail frequency, probably due to anthropogenic climate change. Understanding these weather patterns is critical for local communities, as it can help improve weather forecasts and manage risks related to these potentially destructive events.
Nishant Ajnoti, Hemant Gehlot, and Sachchida Nand Tripathi
Atmos. Meas. Tech., 17, 1651–1664, https://doi.org/10.5194/amt-17-1651-2024, https://doi.org/10.5194/amt-17-1651-2024, 2024
Short summary
Short summary
This research focuses on the optimal placement of hybrid instruments (sensors and monitors) to maximize satisfaction function considering population, PM2.5 concentration, budget, and other factors. Two algorithms are developed in this study: a genetic algorithm and a greedy algorithm. We tested these algorithms on various regions. The insights of this work aid in quantitative placement of air quality monitoring instruments in large cities, moving away from ad hoc approaches.
Alfonso Ferrone, Jérôme Kopp, Martin Lainer, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-2, https://doi.org/10.5194/amt-2024-2, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Estimates of hail size have been collected by a network of hail sensors, installed in three regions of Switzerland, since September 2018. In this study, we use a technique called “double moment normalization” to model the distribution of diameter sizes. The parameters of the method have been defined over 70 % of the dataset, and testes over the remaining 30 %. An independent distribution of hail sizes, collected by a drone, has also been used to evaluate the method.
Luke R. Allen, Sandra E. Yuter, Matthew A. Miller, and Laura M. Tomkins
Atmos. Meas. Tech., 17, 113–134, https://doi.org/10.5194/amt-17-113-2024, https://doi.org/10.5194/amt-17-113-2024, 2024
Short summary
Short summary
We present a data set of high-precision surface air pressure observations and a method for detecting wave signals from the time series of pressure. A wavelet-based method is used to find wave signals at specific times and wave periods. From networks of pressure sensors spaced tens of kilometers apart, the wave phase speed and direction are estimated. Examples of wave events and their meteorological context are shown using radar data, weather balloon data, and other surface weather observations.
Arianna Cauteruccio, Mattia Stagnaro, Luca G. Lanza, and Pak-Wai Chan
Atmos. Meas. Tech., 16, 4155–4163, https://doi.org/10.5194/amt-16-4155-2023, https://doi.org/10.5194/amt-16-4155-2023, 2023
Short summary
Short summary
Adjustments for the wind-induced bias of traditional rainfall gauges are applied to data from the Hong Kong Observatory using numerical simulation results. An optical disdrometer allows us to infer the collection efficiency of the rainfall gauge. Due to the local climatology, adjustments are limited but result in a significant amount of available freshwater resources that would be missing from the calculated hydrological budget of the region should the adjustments be neglected.
Ulrike Egerer, John J. Cassano, Matthew D. Shupe, Gijs de Boer, Dale Lawrence, Abhiram Doddi, Holger Siebert, Gina Jozef, Radiance Calmer, Jonathan Hamilton, Christian Pilz, and Michael Lonardi
Atmos. Meas. Tech., 16, 2297–2317, https://doi.org/10.5194/amt-16-2297-2023, https://doi.org/10.5194/amt-16-2297-2023, 2023
Short summary
Short summary
This paper describes how measurements from a small uncrewed aircraft system can be used to estimate the vertical turbulent heat energy exchange between different layers in the atmosphere. This is particularly important for the atmosphere in the Arctic, as turbulent exchange in this region is often suppressed but is still important to understand how the atmosphere interacts with sea ice. We present three case studies from the MOSAiC field campaign in Arctic sea ice in 2020.
Jianbin Zhang, Zexia Duan, Shaohui Zhou, Yubin Li, and Zhiqiu Gao
Atmos. Meas. Tech., 16, 2197–2207, https://doi.org/10.5194/amt-16-2197-2023, https://doi.org/10.5194/amt-16-2197-2023, 2023
Short summary
Short summary
In this paper, we used a random forest model to fill the observation gaps of the fluxes measured during 2015–2019. We found that the net radiation was the most important input variable. And we justified the reliability of the model. Further, it was revealed that the model performed better after relative humidity was removed from the input. Lastly, we compared the results of the model with those of three other machine learning models, and we found that the model outperformed all of them.
Jinwook Lee, Jongyun Byun, Jongjin Baik, Changhyun Jun, and Hyeon-Joon Kim
Atmos. Meas. Tech., 16, 707–725, https://doi.org/10.5194/amt-16-707-2023, https://doi.org/10.5194/amt-16-707-2023, 2023
Short summary
Short summary
Our study addresses raindrop size distribution and rain rate by extracting rain streaks using a k-nearest-neighbor-based algorithm, estimating rainfall intensity using raindrop size distribution based on physical optics analysis, and verifying the estimated raindrop size distribution using a disdrometer. Experimentation demonstrated the possibility of estimating an image-based raindrop size distribution and rain rate obtained based on such low-cost equipment in dark conditions.
Zolal Ayazpour, Shiqi Tao, Dan Li, Amy Jo Scarino, Ralph E. Kuehn, and Kang Sun
Atmos. Meas. Tech., 16, 563–580, https://doi.org/10.5194/amt-16-563-2023, https://doi.org/10.5194/amt-16-563-2023, 2023
Short summary
Short summary
Accurate knowledge of the planetary boundary layer height (PBLH) is essential to study air pollution. However, PBLH observations are sparse in space and time, and PBLHs used in atmospheric models are often inaccurate. Using PBLH observations from the Aircraft Meteorological DAta Relay (AMDAR), we present a machine learning framework to produce a spatially complete PBLH product over the contiguous US that shows a better agreement with reference PBLH observations than commonly used PBLH products.
Richard Wilson, Clara Pitois, Aurélien Podglajen, Albert Hertzog, Milena Corcos, and Riwal Plougonven
Atmos. Meas. Tech., 16, 311–330, https://doi.org/10.5194/amt-16-311-2023, https://doi.org/10.5194/amt-16-311-2023, 2023
Short summary
Short summary
Strateole-2 is an French–US initiative designed to study atmospheric events in the tropical upper troposphere–lower stratosphere. In this work, data from several superpressure balloons, capable of staying aloft at an altitude of 18–20 km for over 3 months, were used. The present article describes methods to detect the occurrence of atmospheric turbulence – one efficient process impacting the properties of the atmosphere composition via stirring and mixing.
Norbert Pirk, Kristoffer Aalstad, Sebastian Westermann, Astrid Vatne, Alouette van Hove, Lena Merete Tallaksen, Massimo Cassiani, and Gabriel Katul
Atmos. Meas. Tech., 15, 7293–7314, https://doi.org/10.5194/amt-15-7293-2022, https://doi.org/10.5194/amt-15-7293-2022, 2022
Short summary
Short summary
In this study, we show how sparse and noisy drone measurements can be combined with an ensemble of turbulence-resolving wind simulations to estimate uncertainty-aware surface energy exchange. We demonstrate the feasibility of this drone data assimilation framework in a series of synthetic and real-world experiments. This new framework can, in future, be applied to estimate energy and gas exchange in heterogeneous landscapes more representatively than conventional methods.
Basivi Radhakrishna
Atmos. Meas. Tech., 15, 6705–6722, https://doi.org/10.5194/amt-15-6705-2022, https://doi.org/10.5194/amt-15-6705-2022, 2022
Short summary
Short summary
Raindrop size distributions (DSDs) measured by various types of disdrometers are different in the same environmental conditions. The mass-weighted mean diameter (Dm) measured from JWD is larger, and ZDR is smaller than LPM and PARSIVEL due to the resonance effect at X-band frequency. The effect of wind on DSD measured by various disdrometers is not uniform in different regions of a tropical cyclone.
Katarzyna Ośródka, Irena Otop, and Jan Szturc
Atmos. Meas. Tech., 15, 5581–5597, https://doi.org/10.5194/amt-15-5581-2022, https://doi.org/10.5194/amt-15-5581-2022, 2022
Short summary
Short summary
The quality control of sub-hourly rain gauge data is a challenging task due to the high variability and low spatial consistency of the data. We developed an innovative approach to the quality control of telemetric rain gauge data focused on assessing the reliability of individual observations. Our scheme employs weather radar data to detect erroneous rain gauge measurements and to assess the data reliability. The scheme is used operationally by the Polish meteorological and hydrological service.
Gina Jozef, John Cassano, Sandro Dahlke, and Gijs de Boer
Atmos. Meas. Tech., 15, 4001–4022, https://doi.org/10.5194/amt-15-4001-2022, https://doi.org/10.5194/amt-15-4001-2022, 2022
Short summary
Short summary
During the MOSAiC expedition, meteorological conditions over the lowest 1 km of the atmosphere were sampled with the DataHawk2 uncrewed aircraft system. These data were used to identify the best method for atmospheric boundary layer height detection by comparing visually identified subjective boundary layer height to that identified by several objective automated detection methods. The results show a bulk Richardson number-based approach gives the best estimate of boundary layer height.
Antonio R. Segales, Phillip B. Chilson, and Jorge L. Salazar-Cerreño
Atmos. Meas. Tech., 15, 2607–2621, https://doi.org/10.5194/amt-15-2607-2022, https://doi.org/10.5194/amt-15-2607-2022, 2022
Short summary
Short summary
The mitigation of undesired contamination, sensor characterization, and signal conditioning and restoration is crucial to improve the reliability of the weather unmanned aerial system (UAS) deliverables. This study presents an overview of the general considerations and procedures to compensate for slow sensor response and other sources of error for temperature and humidity measurements collected using a UAS.
Soo-Hyun Kim, Jeonghoe Kim, Jung-Hoon Kim, and Hye-Yeong Chun
Atmos. Meas. Tech., 15, 2277–2298, https://doi.org/10.5194/amt-15-2277-2022, https://doi.org/10.5194/amt-15-2277-2022, 2022
Short summary
Short summary
The cube root of the energy dissipation rate (EDR), as a standard reporting metric of atmospheric turbulence, is estimated using 1 Hz commercial quick access recorder data from Korean-based national air carriers with two different types of aircraft. Various EDRs are estimated using zonal, meridional, and derived vertical wind components and the derived equivalent vertical gust. Characteristics of the observed EDR estimates using 1 Hz flight data are examined to observe strong turbulence cases.
Francesca M. Lappin, Tyler M. Bell, Elizabeth A. Pillar-Little, and Phillip B. Chilson
Atmos. Meas. Tech., 15, 1185–1200, https://doi.org/10.5194/amt-15-1185-2022, https://doi.org/10.5194/amt-15-1185-2022, 2022
Short summary
Short summary
This study evaluates how a classically defined variable, air parcel buoyancy, can be used to interpret transitions in the atmospheric boundary layer (ABL). To capture the high-resolution variations, remotely piloted aircraft systems are used to collect data in two field campaigns. This paper finds that buoyancy has distinct evolutions prior to low-level jet and convective initiation cases. Additionally, buoyancy mixes well to act as an ABL height indicator comparable to other methods.
Shaohui Zhou, Yuanjian Yang, Zhiqiu Gao, Xingya Xi, Zexia Duan, and Yubin Li
Atmos. Meas. Tech., 15, 757–773, https://doi.org/10.5194/amt-15-757-2022, https://doi.org/10.5194/amt-15-757-2022, 2022
Short summary
Short summary
Our research has determined the possible relationship between Weibull natural wind mesoscale parameter c and shape factor k with height under the conditions of a desert steppe terrain in northern China, which has great potential in wind power generation. We have gained an enhanced understanding of the seasonal changes in the surface roughness of the desert grassland and the changes in the incoming wind direction.
Xinhua Zhou, Tian Gao, Eugene S. Takle, Xiaojie Zhen, Andrew E. Suyker, Tala Awada, Jane Okalebo, and Jiaojun Zhu
Atmos. Meas. Tech., 15, 95–115, https://doi.org/10.5194/amt-15-95-2022, https://doi.org/10.5194/amt-15-95-2022, 2022
Short summary
Short summary
Air temperature from sonic temperature and air moisture has been used without an exact equation. We present an exact equation of such air temperature for closed-path eddy-covariance flux measurements. Air temperature from this equation is equivalent to sonic temperature in its accuracy and frequency response. It is a choice for advanced flux topics because, with it, thermodynamic variables in the flux measurements can be temporally synchronized and spatially matched at measurement scales.
Haoyu Jiang
Atmos. Meas. Tech., 15, 1–9, https://doi.org/10.5194/amt-15-1-2022, https://doi.org/10.5194/amt-15-1-2022, 2022
Short summary
Short summary
Sea surface wind and waves are important ocean parameters that can be continuously observed by meteorological buoys. Meteorological buoys are sparse in the ocean due to their high cost of deployment and maintenance. In contrast, low-cost compact wave buoys are suited for deployment in large numbers. Although wave buoys are not designed for wind measurement, we found that deep learning can estimate wind from wave measurements accurately, making wave buoys a good-quality data source for sea wind.
Matthias Mauder, Andreas Ibrom, Luise Wanner, Frederik De Roo, Peter Brugger, Ralf Kiese, and Kim Pilegaard
Atmos. Meas. Tech., 14, 7835–7850, https://doi.org/10.5194/amt-14-7835-2021, https://doi.org/10.5194/amt-14-7835-2021, 2021
Short summary
Short summary
Turbulent flux measurements suffer from a general systematic underestimation. One reason for this bias is non-local transport by large-scale circulations. A recently developed model for this additional transport of sensible and latent energy is evaluated for three different test sites. Different options on how to apply this correction are presented, and the results are evaluated against independent measurements.
Maryam Ilyas, Douglas Nychka, Chris Brierley, and Serge Guillas
Atmos. Meas. Tech., 14, 7103–7121, https://doi.org/10.5194/amt-14-7103-2021, https://doi.org/10.5194/amt-14-7103-2021, 2021
Short summary
Short summary
Instrumental temperature records are fundamental to climate science. There are spatial gaps in the distribution of these measurements across the globe. This lack of spatial coverage introduces coverage error. In this research, a methodology is developed and used to quantify the coverage errors. It results in a data product that, for the first time, provides a full description of both the spatial coverage uncertainties along with the uncertainties in the modeling of these spatial gaps.
Jussi Leinonen, Jacopo Grazioli, and Alexis Berne
Atmos. Meas. Tech., 14, 6851–6866, https://doi.org/10.5194/amt-14-6851-2021, https://doi.org/10.5194/amt-14-6851-2021, 2021
Short summary
Short summary
Measuring the shape, size and mass of a large number of snowflakes is a challenging task; it is hard to achieve in an automatic and instrumented manner. We present a method to retrieve these properties of individual snowflakes using as input a triplet of images/pictures automatically collected by a multi-angle snowflake camera (MASC) instrument. Our method, based on machine learning, is trained on artificially generated snowflakes and evaluated on 3D-printed snowflake replicas.
Longjiang Li, Suqin Wu, Kefei Zhang, Xiaoming Wang, Wang Li, Zhen Shen, Dantong Zhu, Qimin He, and Moufeng Wan
Atmos. Meas. Tech., 14, 6379–6394, https://doi.org/10.5194/amt-14-6379-2021, https://doi.org/10.5194/amt-14-6379-2021, 2021
Short summary
Short summary
The zenith hydrostatic delay (ZHD) derived from blind models are of low accuracy, especially in mid- and high-latitude regions. To address this issue, the ratio of the ZHD to zenith total delay (ZTD) is firstly investigated; then, based on the relationship between the ZHD and ZTD, a new ZHD model was developed using the back propagation artificial neural network (BP-ANN) method which took the ZTD as an input variable. The model outperforms blind models.
Grant W. Petty
Atmos. Meas. Tech., 14, 1959–1976, https://doi.org/10.5194/amt-14-1959-2021, https://doi.org/10.5194/amt-14-1959-2021, 2021
Short summary
Short summary
Aircraft measurements of turbulent fluxes of matter and energy are important in field investigations of the interaction of the Earth's surface and the atmosphere. Because these measurements are of randomly fluctuating quantities, averages must be taken over longer flight tracks to reduce uncertainty. This paper investigates the relationship between track length and measurement error using a computer model simulation of a marine environment and compares the results with published theory.
Yadong Wang, Lin Tang, Pao-Liang Chang, and Yu-Shuang Tang
Atmos. Meas. Tech., 14, 185–197, https://doi.org/10.5194/amt-14-185-2021, https://doi.org/10.5194/amt-14-185-2021, 2021
Short summary
Short summary
The motivation of this work is to develop a precipitation separation approach that can be implemented on those radars with fast scanning schemes. In these schemes, the higher tilt radar data are not available, which poses a challenge for the traditional approaches. This approach uses artificial intelligence, which integrates polarimetric radar variables. The quantitative precipitation estimation will benefit from the output of this algorithm.
Loiy Al-Ghussain and Sean C. C. Bailey
Atmos. Meas. Tech., 14, 173–184, https://doi.org/10.5194/amt-14-173-2021, https://doi.org/10.5194/amt-14-173-2021, 2021
Short summary
Short summary
Unmanned aerial vehicles equipped with multi-hole probes are an effective approach to measure the wind vector with high spatial and temporal resolution. However, the aircraft motion must be removed from the measured signal first, a process often introducing bias due to small errors in the relative orientation of coordinates. We present an approach that has successfully been applied in post-processing, which was found to minimize the influence of aircraft motion on wind measurements.
Alessandro Fassò, Michael Sommer, and Christoph von Rohden
Atmos. Meas. Tech., 13, 6445–6458, https://doi.org/10.5194/amt-13-6445-2020, https://doi.org/10.5194/amt-13-6445-2020, 2020
Short summary
Short summary
Modern radiosonde balloons fly from ground level up to the lower stratosphere and take temperature measurements. What is the uncertainty of interpolated values in the resulting atmospheric temperature profiles? To answer this question, we introduce a general statistical–mathematical model for the computation of interpolation uncertainty. Analysing more than 51 million measurements, we provide some understanding of the consequences of filling missing data with interpolated ones.
Jussi Leinonen and Alexis Berne
Atmos. Meas. Tech., 13, 2949–2964, https://doi.org/10.5194/amt-13-2949-2020, https://doi.org/10.5194/amt-13-2949-2020, 2020
Short summary
Short summary
The appearance of snowflakes provides a signature of the atmospheric processes that created them. To get this information from large numbers of snowflake images, automated analysis using computer image recognition is needed. In this work, we use a neural network that learns the structure of the snowflake images to divide a snowflake dataset into classes corresponding to different sizes and structures. Unlike with most comparable methods, only minimal input from a human expert is needed.
Amber Ross, Craig D. Smith, and Alan Barr
Atmos. Meas. Tech., 13, 2979–2994, https://doi.org/10.5194/amt-13-2979-2020, https://doi.org/10.5194/amt-13-2979-2020, 2020
Short summary
Short summary
The raw data derived from most automated accumulating precipitation gauges often suffer from non-precipitation-related fluctuations in the measurement of the gauge bucket weights from which the precipitation amount is determined. This noise can be caused by electrical interference, mechanical noise, and evaporation. This paper presents an automated filtering technique that builds on the principle of iteratively balancing noise to produce a clean precipitation time series.
Soo-Hyun Kim, Hye-Yeong Chun, Jung-Hoon Kim, Robert D. Sharman, and Matt Strahan
Atmos. Meas. Tech., 13, 1373–1385, https://doi.org/10.5194/amt-13-1373-2020, https://doi.org/10.5194/amt-13-1373-2020, 2020
Short summary
Short summary
We retrieve the eddy dissipation rate (EDR) from the derived equivalent vertical gust included in the Aircraft Meteorological Data Relay data for more reliable and consistent observations of aviation turbulence globally with the single preferred EDR metric. We convert the DEVG to the EDR using two methods (lognormal mapping scheme and best-fit curve between EDR and DEVG), and the DEVG-derived EDRs are evaluated against in situ EDR data reported by US-operated carriers.
Nicholas Hamilton
Atmos. Meas. Tech., 13, 1019–1032, https://doi.org/10.5194/amt-13-1019-2020, https://doi.org/10.5194/amt-13-1019-2020, 2020
Short summary
Short summary
The identification of atmospheric conditions within a multivariable atmospheric data set is an important step in validating emerging and existing models used to simulate wind plant flows and operational strategies. The total variation approach developed here offers a method founded in tested mathematical metrics and can be used to identify and characterize periods corresponding to quiescent conditions or specific events of interest for study or wind energy development.
Dafina Kikaj, Janja Vaupotič, and Scott D. Chambers
Atmos. Meas. Tech., 12, 4455–4477, https://doi.org/10.5194/amt-12-4455-2019, https://doi.org/10.5194/amt-12-4455-2019, 2019
Short summary
Short summary
A new method was developed to identify persistent temperature inversion events in a subalpine basin using a radon-based method (RBM). By comparing with an existing pseudo-vertical temperature gradient method, the RBM was shown to be more reliable and seasonally independent. The RBM has the potential to increase the understanding of meteorological controls on air pollution episodes in complex terrain beyond the capability of contemporary atmospheric stability classification tools.
Jens Faber, Michael Gerding, Andreas Schneider, Andreas Dörnbrack, Henrike Wilms, Johannes Wagner, and Franz-Josef Lübken
Atmos. Meas. Tech., 12, 4191–4210, https://doi.org/10.5194/amt-12-4191-2019, https://doi.org/10.5194/amt-12-4191-2019, 2019
Short summary
Short summary
Atmospheric measurements on rising balloons can be compromised by the balloon's wake. The aim of this study is to provide a tool for assessing the likelihood of encountering the balloon's wake at the position of the gondola. This includes an uncertainty analysis of the calculation and a retrieval of vertical winds. We find an average wake encounter probability of 28 % for a standard radiosonde. Additionally, we evaluate the influence of wake from smaller objects on turbulence measurements.
Maosi Chen, Zhibin Sun, John M. Davis, Yan-An Liu, Chelsea A. Corr, and Wei Gao
Atmos. Meas. Tech., 12, 935–953, https://doi.org/10.5194/amt-12-935-2019, https://doi.org/10.5194/amt-12-935-2019, 2019
Short summary
Short summary
Combining a new dynamic uncertainty estimation method with Gaussian process regression (GP), we provide a generic and robust solution to estimate the underlying mean and uncertainty functions of time series with variable mean, noise, sampling density, and length of gaps. The GP solution was applied and validated on three UV-MFRSR Vo time series at three ground sites with improved accuracy of the smoothed time series in terms of aerosol optical depth compared with two other smoothing methods.
Christoph Schlager, Gottfried Kirchengast, and Juergen Fuchsberger
Atmos. Meas. Tech., 11, 5607–5627, https://doi.org/10.5194/amt-11-5607-2018, https://doi.org/10.5194/amt-11-5607-2018, 2018
Short summary
Short summary
In this work we further developed and evaluated an operational weather diagnostic application, the WegenerNet Wind Product Generator (WPG), and applied it to the WegenerNet Johnsbachtal (JBT), a dense meteorological station network located in a mountainous Alpine region. The WPG automatically generates gridded high-resolution wind fields in near-real time with a temporal resolution of 30 min and a spatial resolution of 100 m x 100 m.
Kaisa Lakkala, Antti Arola, Julian Gröbner, Sergio Fabian León-Luis, Alberto Redondas, Stelios Kazadzis, Tomi Karppinen, Juha Matti Karhu, Luca Egli, Anu Heikkilä, Tapani Koskela, Antonio Serrano, and José Manuel Vilaplana
Atmos. Meas. Tech., 11, 5167–5180, https://doi.org/10.5194/amt-11-5167-2018, https://doi.org/10.5194/amt-11-5167-2018, 2018
Short summary
Short summary
The performance of the cosine error correction method for correcting spectral UV measurements of the Brewer spectroradiometer was studied. The correction depends on the sky radiation distribution, which can change during one spectral scan. The results showed that the correction varied between 4 and 14 %, and that the relative differences between the reference and the Brewer diminished by 10 %. The method is applicable to other instruments as long as the required input parameters are available.
Jason Kelley and Chad Higgins
Atmos. Meas. Tech., 11, 2151–2158, https://doi.org/10.5194/amt-11-2151-2018, https://doi.org/10.5194/amt-11-2151-2018, 2018
Short summary
Short summary
Measuring fluxes of energy and trace gases using the surface renewal (SR) method can be economical and robust, but it requires computationally intensive calculations. Several new algorithms were written to perform the required calculations more efficiently and rapidly, and were tested with field data and computationally rigorous SR methods. These efficient algorithms facilitate expanded use of SR in atmospheric experiments, for applied monitoring, and in novel field implementations.
Viswanathan Bringi, Merhala Thurai, and Darrel Baumgardner
Atmos. Meas. Tech., 11, 1377–1384, https://doi.org/10.5194/amt-11-1377-2018, https://doi.org/10.5194/amt-11-1377-2018, 2018
Short summary
Short summary
Raindrop fall velocities are important for rain rate estimation, soil erosion studies and in numerical modelling of rain formation in clouds. The assumption that the fall velocity is uniquely related to drop size is made inherently based on laboratory measurements under still air conditions from nearly 68 years ago. There have been very few measurements of drop fall speeds in natural rain under both still and turbulent wind conditions. We report on fall speed measurements in natural rain shafts.
Marta Wacławczyk, Yong-Feng Ma, Jacek M. Kopeć, and Szymon P. Malinowski
Atmos. Meas. Tech., 10, 4573–4585, https://doi.org/10.5194/amt-10-4573-2017, https://doi.org/10.5194/amt-10-4573-2017, 2017
Short summary
Short summary
We propose two novel methods to estimate turbulent kinetic energy dissipation rate applicable to airborne measurements. In this way we increase robustness of the dissipation rate retrieval and extend its applicability to a wider range of data sets. The new approaches relate the predicted form of the dissipation spectrum to the mean of zero crossings of the measured velocity fluctuations. The methods are easy to implement numerically, and estimates remain unaffected by certain measurement errors.
Sabine Wüst, Verena Wendt, Ricarda Linz, and Michael Bittner
Atmos. Meas. Tech., 10, 3453–3462, https://doi.org/10.5194/amt-10-3453-2017, https://doi.org/10.5194/amt-10-3453-2017, 2017
Short summary
Short summary
Cubic splines with equidistant spline sampling points are a common method in atmospheric science for the approximation of background conditions by means of filtering superimposed fluctuations from a data series. However, splines can generate considerable artificial oscillations in the background and the residuals. We introduce a repeating spline approach which is able to significantly reduce this phenomenon and to apply it to TIMED-SABER vertical temperature profiles from 2010 to 2014.
Mohamed Djallel Dilmi, Cécile Mallet, Laurent Barthes, and Aymeric Chazottes
Atmos. Meas. Tech., 10, 1557–1574, https://doi.org/10.5194/amt-10-1557-2017, https://doi.org/10.5194/amt-10-1557-2017, 2017
Short summary
Short summary
The concept of a rain event is used to obtain a parsimonious characterisation of rain events using a minimal subset of variables at macrophysical scale. A classification in five classes is obtained in a unsupervised way from this subset. Relationships between these classes of microphysical parameters of precipitation are highlighted. There are several implications especially for remote sensing in the context of weather radar applications and quantitative precipitation estimation.
Christophe Praz, Yves-Alain Roulet, and Alexis Berne
Atmos. Meas. Tech., 10, 1335–1357, https://doi.org/10.5194/amt-10-1335-2017, https://doi.org/10.5194/amt-10-1335-2017, 2017
Short summary
Short summary
The Multi-Angle Snowflake Camera (MASC) provides high-resolution pictures of individual falling snowflakes and ice crystals. A method is proposed to automatically classify these pictures into six classes of snowflakes as well to estimate the degree of riming and to detect whether or not the particles are melting. Multinomial logistic regression is used with a manually classified
reference set. The evaluation demonstrates the good and reliable performance of the proposed technique.
Zhaopeng Luan, Yongxiang Han, Tianliang Zhao, Feng Liu, Chong Liu, Mark J. Rood, Xinghua Yang, Qing He, and Huichao Lu
Atmos. Meas. Tech., 10, 273–279, https://doi.org/10.5194/amt-10-273-2017, https://doi.org/10.5194/amt-10-273-2017, 2017
Zofia Baldysz, Grzegorz Nykiel, Andrzej Araszkiewicz, Mariusz Figurski, and Karolina Szafranek
Atmos. Meas. Tech., 9, 4861–4877, https://doi.org/10.5194/amt-9-4861-2016, https://doi.org/10.5194/amt-9-4861-2016, 2016
Short summary
Short summary
In this paper two official processing strategies of GPS observations were analysed. The main purpose was to assess differences in long-term (linear trends) and short-term (oscillations) changes between these two sets of data. Investigation was based on 18-year and 16-year time series and showed that, despite the general consistency, for selected stations a change of processing strategy may have caused significant differences (compared to the uncertainties) in estimated linear trend values.
Jussi Tiira, Dmitri N. Moisseev, Annakaisa von Lerber, Davide Ori, Ali Tokay, Larry F. Bliven, and Walter Petersen
Atmos. Meas. Tech., 9, 4825–4841, https://doi.org/10.5194/amt-9-4825-2016, https://doi.org/10.5194/amt-9-4825-2016, 2016
Short summary
Short summary
In this study winter measurements collected in Southern Finland are used to document microphysical properties of falling snow. It is shown that a new video imager can be used for such studies. Snow properties do vary between winters.
Cited articles
Agarwal, R. P., Meehan, M., and O'Regan, D.: Fixed Point Theory and Applications, 1st Edn., Cambridge University Press, Cambridge, UK, 184 pp., 2001.
Andreas, E. L.: Two-wavelength method of measuring path-averaged turbulent surface heat fluxes, J. Atmos. Ocean. Tech., 6, 280–292, 1989.
Andreas, E. L.: Uncertainty in a path averaged measurement of the friction velocity u*, J. Appl. Meteorol., 31, 1312–1321, 1992.
Andreas, E. L.: Two Experiments on Using a Scintillometer to Infer the Surface Fluxes of Momentum and Sensible Heat, J. Appl. Meteor. Climatol., 51, 1685–1701, 2012.
Beutner, E., and Zähle, H.: A modified functional delta method and its application to the estimation of risk functionals, J. Multivar. Anal., 101, 2452–2463, 2010.
Courant, R. and Hilbert, D.: Methods of Mathematical Physics: Chapter IV. The Calculus of Variations, Interscience Publishers, New York, USA, 164–274, 1953.
Edwards, H. M.: Galois Theory, 1st Edn., Springer-Verlag, New York, USA, 185 pp., 1984.
Evans, J. and De Bruin, H. A. R.: The effective height of a two-wavelength scintillometer system, Bound.-Lay. Meteorol., 141, 165–177, 2011.
Fernholz, L. T.: Von Mises calculus for statistical functionals, Lecture Notes in Statistics Volume 19, Springer-Verlag, New York, USA, 1983.
Foken, T.: 50 years of the Monin–Obukhov similarity theory, Bound.-Lay. Meteorol., 119, 431–447, 2006.
Geli, H. M. E., Neale, C. M. U., Watts, D., Osterberg, J., De Bruin, H. A. R., Kohsiek, W., Pack, R. T., and Hipps, L. E.: Scintillometer-based estimates of sensible heat flux using lidar-derived surface roughness, J. Hydrometeorol., 13, 1317–1331, 2012.
Greiner, W. and Reinhardt, J.: Field Quantization, 3rd Edn., Springer-Verlag, Berlin, Germany, 445 pp., 1996.
Gruber, M. A. and Fochesatto, G. J.: A new sensitivity analysis and solution method for scintillometer measurements of area-averaged turbulent fluxes, Bound.-Lay. Meteorol., 149, 65–83, https://doi.org/10.1007/s10546-013-9835-9, 2013.
Hartogensis, O. K., Watts, C. J., Rodriguez, J.-C., and De Bruin, H. A. R.: Derivation of an effective height for scintillometers: la Poza Experiment in Northwest Mexico, J. Hydrometeorol., 4, 915–928, 2003.
Kleissl, J., Gomez, J., Hong, S.-H., Hendrickx, J. M. H., Rahn, T., and Defoor, W. L.: Large aperture scintillometer intercomparison study, Bound.-Lay. Meteorol., 128, 133–150, 2008.
Liu, S. M., Xu, Z. W., Wang, W. Z., Jia, Z. Z., Zhu, M. J., Bai, J., and Wang, J. M.: A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem, Hydrol. Earth Syst. Sci., 15, 1291–1306, https://doi.org/10.5194/hess-15-1291-2011, 2011.
Meijninger, W. M. L., Green, A. E., Hartogensis, O. K., Kohsiek, W., Hoedjes, J. C. B., Zuurbier, R. M., and De Bruin, H. A. R.: Determination of area-averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface – Flevoland Field Experiment, Bound.-Lay. Meteorol., 105, 37–62, 2002.
Moene, A. F.: Effects of water vapour on the structure parameter of the refractive index for near-infrared radiation, Bound.-Lay. Meteorol., 107, 635–653, 2003.
Monin, A. S. and Obukhov, A. M.: Basic Laws of Turbulent Mixing in the Surface Layer of the Atmosphere, Tr. Akad. Nauk SSSR Geophiz. Inst., 24, 163–187, 1954.
Obukhov, A. M.: Turbulence in an atmosphere with a non-uniform temperature, Bound.-Lay. Meteorol., 2, 7–29, 1971.
Ochs, G. R. and Wang, T.-I.: Finite aperture optical scintillometer for profiling wind and Cn2, Appl. Optics, 17, 3774–3778, 1974.
Panofsky, H. A. and Dutton, J. A.: Atmospheric Turbulence: Models and Methods for Engineering Applications, J. Wiley, New York, USA, 397 pp., 1984.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.: Numerical Recipes in Fortran: The Art of Scientific Computing, 2nd Edn., Cambridge University Press, Cambridge, UK, 963 pp., 1992.
Solignac, P. A., Brut, A., Selves, J.-L., Béteille, J.-P., Gastellu-Etchegorry, J.-P., Keravec, P., Béziat, P., and Ceschia, E.: Uncertainty analysis of computational methods for deriving sensible heat flux values from scintillometer measurements, Atmos. Meas. Tech., 2, 741–753, https://doi.org/10.5194/amt-2-741-2009, 2009.
Sorbjan, Z.: Structure of the Atmospheric Boundary Layer, 1st Edn., Prentice-Hall, New Jersey, USA, 317 pp., 1989.
Taylor, J. R.: An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 2nd Edn., University Science Books, California, USA, 327 pp., 1997.
Traub, J. F.: Iterative Methods for the Solution of Equations, Prentice-Hall, New Jersey, USA, 310 pp., 1964.
Wyngaard, J. C., Izumi, Y., and Collins Jr., S. A.: Behavior of the refractive-index structure parameter near the ground, J. Opt. Soc. Am., 61, 1646–1650, 1971.