Articles | Volume 7, issue 12
Atmos. Meas. Tech., 7, 4151–4166, 2014
https://doi.org/10.5194/amt-7-4151-2014
Atmos. Meas. Tech., 7, 4151–4166, 2014
https://doi.org/10.5194/amt-7-4151-2014
Research article
05 Dec 2014
Research article | 05 Dec 2014

Performance of high-resolution X-band weather radar networks – the PATTERN example

K. Lengfeld et al.

Related authors

A novel approach for absolute radar calibration: formulation and theoretical validation
C. Merker, G. Peters, M. Clemens, K. Lengfeld, and F. Ament
Atmos. Meas. Tech., 8, 2521–2530, https://doi.org/10.5194/amt-8-2521-2015,https://doi.org/10.5194/amt-8-2521-2015, 2015
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Inter-comparison of atmospheric boundary layer (ABL) height estimates from different profiling sensors and models in the framework of HyMeX-SOP1
Donato Summa, Fabio Madonna, Noemi Franco, Benedetto De Rosa, and Paolo Di Girolamo
Atmos. Meas. Tech., 15, 4153–4170, https://doi.org/10.5194/amt-15-4153-2022,https://doi.org/10.5194/amt-15-4153-2022, 2022
Short summary
Evaluation of Aeolus L2B wind product with wind profiling radar measurements and numerical weather prediction model equivalents over Australia
Haichen Zuo, Charlotte Bay Hasager, Ioanna Karagali, Ad Stoffelen, Gert-Jan Marseille, and Jos de Kloe
Atmos. Meas. Tech., 15, 4107–4124, https://doi.org/10.5194/amt-15-4107-2022,https://doi.org/10.5194/amt-15-4107-2022, 2022
Short summary
Comparison of global UV spectral irradiance measurements between a BTS CCD-array and a Brewer spectroradiometer
Carmen González, José M. Vilaplana, José A. Bogeat, and Antonio Serrano
Atmos. Meas. Tech., 15, 4125–4133, https://doi.org/10.5194/amt-15-4125-2022,https://doi.org/10.5194/amt-15-4125-2022, 2022
Short summary
Scan strategies for wind profiling with Doppler lidar – an large-eddy simulation (LES)-based evaluation
Charlotte Rahlves, Frank Beyrich, and Siegfried Raasch
Atmos. Meas. Tech., 15, 2839–2856, https://doi.org/10.5194/amt-15-2839-2022,https://doi.org/10.5194/amt-15-2839-2022, 2022
Short summary
Exploiting Aeolus level-2b winds to better characterize atmospheric motion vector bias and uncertainty
Katherine E. Lukens, Kayo Ide, Kevin Garrett, Hui Liu, David Santek, Brett Hoover, and Ross N. Hoffman
Atmos. Meas. Tech., 15, 2719–2743, https://doi.org/10.5194/amt-15-2719-2022,https://doi.org/10.5194/amt-15-2719-2022, 2022
Short summary

Cited articles

Allegretti, M., Bertoldo, S., Prato, A., Lucianaz, C., Rorato, O., Notarpietro, R. and Gabella, M.: X-Band Mini Radar for Observing and Monitoring Rainfall Events, Atmos. Clim. Sci., 2, 290–297, 2012
Atlas, D. and Banks, H. C.: The Interpretation of Microwave Reflections from Rainfall, J. Meteor., 8, 271–282, 1951
Atlas, D. and Ulbrich, C. W.: Path- and Area-Integrated Rainfall Measurement by Microwave Attenuation in the 1-3 cm Band, J. Appl. Meteor., 1, 1322–1331, 1977
Barbieri, S., Piciotti, E., Montopoli, M., Di Fabio, S., Lidori, R., Marzano, F., Kalogiros, J., Anagnostou, M., and Baldini, L.: Intercomparison of Dual-Polarization X-Band Mini-Radar Performances with Reference Radar Systems at X- and C-Band in Rome Supersite, Proceedings of 8th European Conference on Radar in Meteorology and Hydrology, Garmisch-Partenkirchen, Germany, 1–5 September 2014
Beck, J. and Bousquet, O.: Using Gap-Filling Radars in Mountainous Regions to Complement a National Radar Network: Improvements in Multiple-Doppler Wind Syntheses, J. Appl. Meteor., 52, 1836–1850, 2013
Download
Short summary
This publication intends to prove that a network of low-cost local area weather radars with a time resolution of 30s and range resolution of 60m is a reliable and scientifically valuable comple-ment to nationwide radar networks, especially in urban areas. The advantages of high temporal resolution and multiple coverage in overlapping areas are proven to enhance the quality of pre-cipitation estimates. Long-term comparison with C-band radar confirms very good accordance with POD>90% and FAR<10%.