Articles | Volume 7, issue 3
Atmos. Meas. Tech., 7, 757–776, 2014
https://doi.org/10.5194/amt-7-757-2014
Atmos. Meas. Tech., 7, 757–776, 2014
https://doi.org/10.5194/amt-7-757-2014

Research article 13 Mar 2014

Research article | 13 Mar 2014

Retrieval of aerosol backscatter, extinction, and lidar ratio from Raman lidar with optimal estimation

A. C. Povey et al.

Related authors

Satellite-derived sulfur dioxide (SO2) emissions from the 2014–2015 Holuhraun eruption (Iceland)
Elisa Carboni, Tamsin A. Mather, Anja Schmidt, Roy G. Grainger, Melissa A. Pfeffer, Iolanda Ialongo, and Nicolas Theys
Atmos. Chem. Phys., 19, 4851–4862, https://doi.org/10.5194/acp-19-4851-2019,https://doi.org/10.5194/acp-19-4851-2019, 2019
Short summary
The Community Cloud retrieval for CLimate (CC4CL) – Part 1: A framework applied to multiple satellite imaging sensors
Oliver Sus, Martin Stengel, Stefan Stapelberg, Gregory McGarragh, Caroline Poulsen, Adam C. Povey, Cornelia Schlundt, Gareth Thomas, Matthew Christensen, Simon Proud, Matthias Jerg, Roy Grainger, and Rainer Hollmann
Atmos. Meas. Tech., 11, 3373–3396, https://doi.org/10.5194/amt-11-3373-2018,https://doi.org/10.5194/amt-11-3373-2018, 2018
Short summary
The Community Cloud retrieval for CLimate (CC4CL) – Part 2: The optimal estimation approach
Gregory R. McGarragh, Caroline A. Poulsen, Gareth E. Thomas, Adam C. Povey, Oliver Sus, Stefan Stapelberg, Cornelia Schlundt, Simon Proud, Matthew W. Christensen, Martin Stengel, Rainer Hollmann, and Roy G. Grainger
Atmos. Meas. Tech., 11, 3397–3431, https://doi.org/10.5194/amt-11-3397-2018,https://doi.org/10.5194/amt-11-3397-2018, 2018
Short summary
Unveiling aerosol–cloud interactions – Part 1: Cloud contamination in satellite products enhances the aerosol indirect forcing estimate
Matthew W. Christensen, David Neubauer, Caroline A. Poulsen, Gareth E. Thomas, Gregory R. McGarragh, Adam C. Povey, Simon R. Proud, and Roy G. Grainger
Atmos. Chem. Phys., 17, 13151–13164, https://doi.org/10.5194/acp-17-13151-2017,https://doi.org/10.5194/acp-17-13151-2017, 2017
Short summary
Retrieval of volcanic SO2 from HIRS/2 using optimal estimation
Georgina M. Miles, Richard Siddans, Roy G. Grainger, Alfred J. Prata, Bradford Fisher, and Nickolay Krotkov
Atmos. Meas. Tech., 10, 2687–2702, https://doi.org/10.5194/amt-10-2687-2017,https://doi.org/10.5194/amt-10-2687-2017, 2017
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Integration of GOCI and AHI Yonsei aerosol optical depth products during the 2016 KORUS-AQ and 2018 EMeRGe campaigns
Hyunkwang Lim, Sujung Go, Jhoon Kim, Myungje Choi, Seoyoung Lee, Chang-Keun Song, and Yasuko Kasai
Atmos. Meas. Tech., 14, 4575–4592, https://doi.org/10.5194/amt-14-4575-2021,https://doi.org/10.5194/amt-14-4575-2021, 2021
Short summary
Deriving boundary layer height from aerosol lidar using machine learning: KABL and ADABL algorithms
Thomas Rieutord, Sylvain Aubert, and Tiago Machado
Atmos. Meas. Tech., 14, 4335–4353, https://doi.org/10.5194/amt-14-4335-2021,https://doi.org/10.5194/amt-14-4335-2021, 2021
Short summary
Efficient multi-angle polarimetric inversion of aerosols and ocean color powered by a deep neural network forward model
Meng Gao, Bryan A. Franz, Kirk Knobelspiesse, Peng-Wang Zhai, Vanderlei Martins, Sharon Burton, Brian Cairns, Richard Ferrare, Joel Gales, Otto Hasekamp, Yongxiang Hu, Amir Ibrahim, Brent McBride, Anin Puthukkudy, P. Jeremy Werdell, and Xiaoguang Xu
Atmos. Meas. Tech., 14, 4083–4110, https://doi.org/10.5194/amt-14-4083-2021,https://doi.org/10.5194/amt-14-4083-2021, 2021
Short summary
Quantitative comparison of measured and simulated O4 absorptions for one day with extremely low aerosol load over the tropical Atlantic
Thomas Wagner, Steffen Dörner, Steffen Beirle, Sebastian Donner, and Stefan Kinne
Atmos. Meas. Tech., 14, 3871–3893, https://doi.org/10.5194/amt-14-3871-2021,https://doi.org/10.5194/amt-14-3871-2021, 2021
Short summary
A Dark Target research aerosol algorithm for MODIS observations over eastern China: increasing coverage while maintaining accuracy at high aerosol loading
Yingxi R. Shi, Robert C. Levy, Leiku Yang, Lorraine A. Remer, Shana Mattoo, and Oleg Dubovik
Atmos. Meas. Tech., 14, 3449–3468, https://doi.org/10.5194/amt-14-3449-2021,https://doi.org/10.5194/amt-14-3449-2021, 2021
Short summary

Cited articles

Agnew, J. L.: Lidar and radar tropospheric profiling at Chilbolton Observatory, in: Sixth International Symposium on Tropospheric Profiling: Needs and Technologies, 151–153, Leipzig, Germany, 2003.
Agnew, J. and Wrench, C.: Chilbolton UV Raman lidar raw data, STFC Chilbolton Observatory, Rutherford Appleton Laboratory, 2006–2010.
Althausen, D., Müller, D., Ansmann, A., Wandinger, U., Hube, H., Clauder, E., and Zörner, S.: Scanning 6-wavelength 11-channel aerosol lidar, J. Atmos. Ocean. Tech., 17, 1469–1482, https://doi.org/10.1175/1520-0426(2000)017<1469:swcal>2.0.co;2, 2000.
Ansmann, A., Wandinger, U., Riebesell, M., Weitkamp, C., and Michaelis, W.: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar, Appl. Optics, 31, 7113–7131, https://doi.org/10.1364/AO.31.007113, 1992.
Ansmann, A., Tesche, M., Gross, S., Freudenthaler, V., Seifert, P., Hiebsch, A., Schmidt, J., Wandinger, U., Mattis, I., Müller, D., and Wiegner, M.: The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany, Geophys. Res. Lett., 37, L13810, https://doi.org/10.1029/2010gl043809, 2010.
Download